[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 2 (Fall & Winter 2024) ::
FOP 2024, 9(2): 337-358 Back to browse issues page
Physiological and biochemical responses of four petunia cultivars under different levels of water deficit stress
Leyla Cheheltanan , Ali Tehranifar * , Mahmoud Shoor , Hossein Nemati
Ferdowsi University of Mashhad
Abstract:   (1703 Views)

This study investigated the effects of water deficit stress on the growth, physiological, and biochemical parameters of four Petunia cultivars: 1. Iranian Petunia (P1), 2. Hybrid Supercascade White Petunia (P2), 3. Hybrid Grandiflora Frost Blue Petunia (P3), and 4. Hybrid Grandiflora Crimson Star Petunia (P4) under different levels of water deficit (90%, 60%, and 30% of field capacity). The experiment was conducted in a factorial design with four replications in a completely randomized layout. The results showed that water deficit stress significantly reduced the fresh and dry weight of shoots and roots. The greatest reductions in shoot and root fresh and dry weights were observed in cultivars P4 and P3. Under severe stress conditions, stem height in cultivars P1 and P2 decreased by 40.4% and 43.3%, respectively. Moreover, the number of lateral branches in cultivars P1 and P3 increased under moderate water deficit stress (by 24.4% and 42.9%, respectively), but significantly declined under severe stress. Water deficit stress also significantly reduced root diameter in cultivar P3 (by 48%). Severe water stress decreased both flower diameter and the number of flowers in all four cultivars, with the greatest reduction in flower diameter (22.97%) observed in cultivar P4 and the highest reduction in flower number (72.3%) recorded in cultivar P1. Electrolyte leakage increased under severe water deficit stress, with cultivar P4 exhibiting the highest electrolyte leakage (36.1%). Leaf relative water content decreased under drought conditions, with the greatest reduction (24.4%) observed in cultivar P4. Proline content reached its highest level in cultivar P1 under severe stress conditions (2.24 µmol g¹ fresh weight). Total carbohydrate concentration increased in cultivars P1 and P2 under severe stress (by 21.6% and 19.5%, respectively). Chlorophyll a and b contents decreased under drought conditions, with cultivar P4 showing the lowest chlorophyll b content (0.53 mg g¹ fresh leaf weight) under severe stress. Superoxide dismutase (SOD) activity increased under moderate stress in cultivars P1, P2, and P3 (by 34.45%, 52.5%, and 24.9%, respectively), but showed no significant changes under severe stress. Catalase (CAT) activity increased in cultivar P1 (by 29.5%), while it decreased in the other three cultivars. Peroxidase (POD) activity was highest in cultivar P1 under non-stress conditions (5.65 units g¹ fresh weight) and further increased (by 9.6%) under water deficit stress. Pearson correlation analysis revealed that proline and total carbohydrate contents were positively correlated with antioxidant enzyme activities, and chlorophyll a and b were closely associated with each other. Overall, cultivar P1 exhibited the highest drought tolerance, followed by cultivars P2 and P4, respectively.

Keywords: Antioxidant enzymes, Growth parameters, Photosynthetic pigments, Carbohydrate
Full-Text [PDF 794 kb]   (475 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/09/13 | Accepted: 2024/09/27 | Published: 2025/04/6
References
1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi. org/10, 1016, S0076-6879.
2. Ahmad, S., Aro, A., Bañón, S., Sánchez-Blanco, M. J. (2009). Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Horticulturae, 122 (4), 579-585.
3. Bajji, M., Kinet, J. M.hmad, R., Ashraf, M. Y., Ashraf, M., Waraich, E. A. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41 (2), 647-654.
4. Álvarez, S., Navar, Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70.
5. Bates, L. S., Waldren, R., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
6. Blum, A., Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1), 43-47.‌
7. Chaves, M. M., Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55 (407), 2365-2384.
8. Chegah, S., Chehrazi, M., Albaji, M. (2013). Effects of drought stress on growth and development of Frankenia plant (Frankenia laevis). Bulgarian Journal of Agricultural Science, 19 (4), 659-666.
9. Cherki, G. H., Foursy, A., Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50.
10. Chirivì, D., Betti, C. (2023). Molecular links between flowering and abiotic stress response: A focus on Poaceae. Plants, 12 (2), 331.
11. Dolatkhahi, A., Shoor, M., Bannayan, M., Tehranifar, A., Alizadeh, A. (2020). Water deficit decreases gas exchange parameters and marketable quality of Rosa hybrida ‘Club-Nika’ irrespective of training systems. Journal of Agricultural Science and Technology, 22 (3), 837-849.
12. Ebrahimi, M., Zamani, G. R., Alizadeh, Z. (2017). Investigation of qualitative traits and evaluation of flower yield of pot marigold (Calendula officinalis L.) during its growth period under drought stress. Environmental Stresses in Crop Sciences, 10 (2), 293-306.
13. Farahani, H. A., Valadabadi, S. A., Daneshian, J., Khalvati, M. A. (2009). Evaluation of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. Journal of Medicinal Plants Research, 3 (5), 329-333.
14. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153-188.
15. Ferreira, L. C., Cataneo, A. C., Remaeh, L. M. R., Corniani, N., de Fátima Fumis, T., de Souza, Y. A., Scavroni, J., Soares, B. J. A. (2010). Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pesticide Biochemistry and Physiology, 97 (1), 47-54.
16. Franco, J. (2011). Root development under drought stress. Technology and Knowledge Transfer E-Bulletin, 2 (6), 1.
17. Franks, S. J. (2011). Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytologist, 190 (1), 249-257.
18. Gholami, M., Rahemi, M., Kholdebarin, B., Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148, 109-117.
19. Ghoulam, C., Foursy, A., Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47 (1), 39-50.
20. Giannopolitis, C. N., Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59 (2), 309-314.
21. Giordano, M., Petropoulos, S. A., Cirillo, C., Rouphael, Y. (2021). Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae, 7 (5), 107.
22. Goldani, M., Dolatkhahi, A., Parsa, M., Vahdati, N., Rasouli, Z. (2021). Investigation of improving the drought tolerance in Persian petunia (Petunia sp.) by exogenous application of salicylic acid and gibberellic acid. Acta Scientiarum Polonorum Hortorum Cultus, 20 (1), 37-48.
23. Hatamifar, N., Babadaei Samani, R. (2017). Effect of paclobutrazol on some morphological and physiological characteristics of petunia under drought stress. Journal of Ornamental Plants, 7 (2), 125-136.
24. Jafari, S., Garmdareh, S. E. H., Azadegan, B. (2019). Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.). Scientia Horticulturae, 253, 128-133.
25. Khosravi, S., & Haghighi, M. (2021). The Effect of Foliar Spray of Brassinosteroid on Sweet Pepper (Capsicum annuum L.) Seedling under Drought Stress. Journal of Horticultural Science, 35(3), 367-381.
26. Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., Karabaliev, M. (2004). Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry, 63 (1-2), 121-124.
27. Kour, D., Rana, K. L., Yadav, A. N., Sheikh, I., Kumar, V., Dhaliwal, H. S., Saxena, A. K. (2020). Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environmental Sustainability, 3, 23-34.
28. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology (Vol. 148, pp. 350-382). Elsevier.
29. Liu, F., Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102 (1), 15-27.
30. Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. A., Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59 (2), 141-149.
31. McCready, R., Guggolz, J., Silviera, V., Owens, H. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22 (9), 1156-1158.
32. Naing, A. H., Campol, J. R., Kang, H., Xu, J., Chung, M. Y., Kim, C. K. (2022). Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in petunia. Frontiers in Plant Science, 13, 844449.
33. Oraee, A., Tehranifar, A. (2020). Evaluating the potential drought tolerance of pansy through its physiological and biochemical responses to drought and recovery periods. Scientia Horticulturae, 265, 109225.
34. Pourghayoumi, M., Bakhshi, D., Rahemi, M., Kamgar-Haghighi, A. A., Aalami, A. (2017). The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Scientia Horticulturae, 217, 164-172.
35. Rebi, A., Ejaz, I., Khatana, M. A., Alvi, A. B. A., Irfan, M., Wang, G., Gang, Y. Y., Wang, L., Meng, Y., Ghazanfar, S. (2024). Effect of irrigation levels on the physiological responses of petunia cultivars for selection. Ecological Frontiers, 44 (1), 206-216.
36. Rezaei, H., Mirzaie-Asl, A., Abdollahi, M. R., Tohidfar, M. (2023). Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia. PLOS ONE, 18 (5), e0285657.
37. Riaz, A., Younis, A., Taj, A. R., Karim, A., Tariq, U., Munir, S., Riaz, S. (2013). Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.). Pakistan Journal of Botany, 45 (S1), 123-131.
38. Sánchez-Blanco, M. J., Álvarez, S., Navarro, A., Bañón, S. (2009). Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. Journal of Plant Physiology, 166 (5), 467-476.
39. Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10 (2), 259.
40. Shams, J., Najafi, P., Etemadi, N. A. (2015). Effect of water deficiency on growth indices of Petunia hybrida cultivars and Petunia violacea grown in Isfahan region of Iran. Crop Research, 49 (1 to 3), 55-61.
41. Shamshiri, M., Mozafari, V., Sedaghati, E., Bagheri, V. (2011). Response of petunia plants (Petunia hybrida cv. Mix) inoculated with Glomus mosseae and Glomus intraradices to phosphorous and drought stress. Journal of Agricultural Science and Technology, 13 (6), 929-942.
42. Sivakumar, R., Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30, 3-1.1.
43. Tafaghodi, R., Marashi, H., Moshtaghi, N., Zarghami, M. (2018). Expression patterns of catalase and superoxide dismutase (Cu/Zn-SOD) genes under drought stress in petunia hybrid. Journal of Advanced Plant Science, 1, 209.
44. Takeno, K. (2016). Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany, 67 (17), 4925-4934.
45. Teisseire, H., Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant science, 153(1), 65-72.‌
46. Toscano, S., Ferrante, A., Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5 (1), 6.
47. Tran, N.-H. T., Van Hoang, D., Phan, L. T. (2024). Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. Plant Biotechnology, 41 (1), 53-63.
48. Vakilian, K. A., Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and Electronics in Agriculture, 139, 153-163.
49. Wang, C., Turner, V. K., Wentz, E. A., Zhao, Q., Myint, S. W. (2021). Optimization of residential green space for environmental sustainability and property appreciation in metropolitan Phoenix, Arizona. Science of the Total Environment, 763, 144605.
50. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56 (417), 1975-1981.
51. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi. org/10, 1016, S0076-6879.
52. Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., Waraich, E. A. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41 (2), 647-654.
53. Álvarez, S., Navarro, A., Bañón, S., Sánchez-Blanco, M. J. (2009). Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Horticulturae, 122 (4), 579-585.
54. Bajji, M., Kinet, J. M., Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70.
55. Bates, L. S., Waldren, R., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
56. Blum, A., Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1), 43-47.‌
57. Chaves, M. M., Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55 (407), 2365-2384.
58. Chegah, S., Chehrazi, M., Albaji, M. (2013). Effects of drought stress on growth and development of Frankenia plant (Frankenia laevis). Bulgarian Journal of Agricultural Science, 19 (4), 659-666.
59. Cherki, G. H., Foursy, A., Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50.
60. Chirivì, D., Betti, C. (2023). Molecular links between flowering and abiotic stress response: A focus on Poaceae. Plants, 12 (2), 331.
61. Dolatkhahi, A., Shoor, M., Bannayan, M., Tehranifar, A., Alizadeh, A. (2020). Water deficit decreases gas exchange parameters and marketable quality of Rosa hybrida ‘Club-Nika’ irrespective of training systems. Journal of Agricultural Science and Technology, 22 (3), 837-849.
62. Ebrahimi, M., Zamani, G. R., Alizadeh, Z. (2017). Investigation of qualitative traits and evaluation of flower yield of pot marigold (Calendula officinalis L.) during its growth period under drought stress. Environmental Stresses in Crop Sciences, 10 (2), 293-306.
63. Farahani, H. A., Valadabadi, S. A., Daneshian, J., Khalvati, M. A. (2009). Evaluation of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. Journal of Medicinal Plants Research, 3 (5), 329-333.
64. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153-188.
65. Ferreira, L. C., Cataneo, A. C., Remaeh, L. M. R., Corniani, N., de Fátima Fumis, T., de Souza, Y. A., Scavroni, J., Soares, B. J. A. (2010). Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pesticide Biochemistry and Physiology, 97 (1), 47-54.
66. Franco, J. (2011). Root development under drought stress. Technology and Knowledge Transfer E-Bulletin, 2 (6), 1.
67. Franks, S. J. (2011). Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytologist, 190 (1), 249-257.
68. Gholami, M., Rahemi, M., Kholdebarin, B., Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148, 109-117.
69. Ghoulam, C., Foursy, A., Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47 (1), 39-50.
70. Giannopolitis, C. N., Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59 (2), 309-314.
71. Giordano, M., Petropoulos, S. A., Cirillo, C., Rouphael, Y. (2021). Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae, 7 (5), 107.
72. Goldani, M., Dolatkhahi, A., Parsa, M., Vahdati, N., Rasouli, Z. (2021). Investigation of improving the drought tolerance in Persian petunia (Petunia sp.) by exogenous application of salicylic acid and gibberellic acid. Acta Scientiarum Polonorum Hortorum Cultus, 20 (1), 37-48.
73. Hatamifar, N., Babadaei Samani, R. (2017). Effect of paclobutrazol on some morphological and physiological characteristics of petunia under drought stress. Journal of Ornamental Plants, 7 (2), 125-136.
74. Jafari, S., Garmdareh, S. E. H., Azadegan, B. (2019). Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.). Scientia Horticulturae, 253, 128-133.
75. Khosravi, S., & Haghighi, M. (2021). The Effect of Foliar Spray of Brassinosteroid on Sweet Pepper (Capsicum annuum L.) Seedling under Drought Stress. Journal of Horticultural Science, 35(3), 367-381.
76. Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., Karabaliev, M. (2004). Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry, 63 (1-2), 121-124.
77. Kour, D., Rana, K. L., Yadav, A. N., Sheikh, I., Kumar, V., Dhaliwal, H. S., Saxena, A. K. (2020). Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environmental Sustainability, 3, 23-34.
78. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology (Vol. 148, pp. 350-382). Elsevier.
79. Liu, F., Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102 (1), 15-27.
80. Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. A., Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59 (2), 141-149.
81. McCready, R., Guggolz, J., Silviera, V., Owens, H. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22 (9), 1156-1158.
82. Naing, A. H., Campol, J. R., Kang, H., Xu, J., Chung, M. Y., Kim, C. K. (2022). Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in petunia. Frontiers in Plant Science, 13, 844449.
83. Oraee, A., Tehranifar, A. (2020). Evaluating the potential drought tolerance of pansy through its physiological and biochemical responses to drought and recovery periods. Scientia Horticulturae, 265, 109225.
84. Pourghayoumi, M., Bakhshi, D., Rahemi, M., Kamgar-Haghighi, A. A., Aalami, A. (2017). The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Scientia Horticulturae, 217, 164-172.
85. Rebi, A., Ejaz, I., Khatana, M. A., Alvi, A. B. A., Irfan, M., Wang, G., Gang, Y. Y., Wang, L., Meng, Y., Ghazanfar, S. (2024). Effect of irrigation levels on the physiological responses of petunia cultivars for selection. Ecological Frontiers, 44 (1), 206-216.
86. Rezaei, H., Mirzaie-Asl, A., Abdollahi, M. R., Tohidfar, M. (2023). Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia. PLOS ONE, 18 (5), e0285657.
87. Riaz, A., Younis, A., Taj, A. R., Karim, A., Tariq, U., Munir, S., Riaz, S. (2013). Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.). Pakistan Journal of Botany, 45 (S1), 123-131.
88. Sánchez-Blanco, M. J., Álvarez, S., Navarro, A., Bañón, S. (2009). Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. Journal of Plant Physiology, 166 (5), 467-476.
89. Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10 (2), 259.
90. Shams, J., Najafi, P., Etemadi, N. A. (2015). Effect of water deficiency on growth indices of Petunia hybrida cultivars and Petunia violacea grown in Isfahan region of Iran. Crop Research, 49 (1 to 3), 55-61.
91. Shamshiri, M., Mozafari, V., Sedaghati, E., Bagheri, V. (2011). Response of petunia plants (Petunia hybrida cv. Mix) inoculated with Glomus mosseae and Glomus intraradices to phosphorous and drought stress. Journal of Agricultural Science and Technology, 13 (6), 929-942.
92. Sivakumar, R., Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30, 3-1.1.
93. Tafaghodi, R., Marashi, H., Moshtaghi, N., Zarghami, M. (2018). Expression patterns of catalase and superoxide dismutase (Cu/Zn-SOD) genes under drought stress in petunia hybrid. Journal of Advanced Plant Science, 1, 209.
94. Takeno, K. (2016). Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany, 67 (17), 4925-4934.
95. Teisseire, H., Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant science, 153(1), 65-72.‌
96. Toscano, S., Ferrante, A., Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5 (1), 6.
97. Tran, N.-H. T., Van Hoang, D., Phan, L. T. (2024). Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. Plant Biotechnology, 41 (1), 53-63.
98. Vakilian, K. A., Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and Electronics in Agriculture, 139, 153-163.
99. Wang, C., Turner, V. K., Wentz, E. A., Zhao, Q., Myint, S. W. (2021). Optimization of residential green space for environmental sustainability and property appreciation in metropolitan Phoenix, Arizona. Science of the Total Environment, 763, 144605.
100. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56 (417), 1975-1981.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cheheltanan L, Tehranifar A, shoor M, Nemati H. Physiological and biochemical responses of four petunia cultivars under different levels of water deficit stress. FOP 2024; 9 (2) :337-358
URL: http://flowerjournal.ir/article-1-321-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (Fall & Winter 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 35 queries by YEKTAWEB 4735