[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 7(2): 329-348 Back to browse issues page
Comparison of the physiological effects of wild and mutated biological agents of Trichoderma spp. against Fusarium oxysporum f.sp. dianthi in carnation ‘White Liberty’
Razieh Sarabadani , Shima Heidarpour , Hamed Askari
Abstract:   (2547 Views)
Carnation is an important ornamental plant and Fusarium oxysporum f.sp. dianthi is the causal agent of Fusarium wilt of carnation, causes a lot of damage to carnation growers. The aim of the present study was to investigate the response of carnation plants infected with F. oxysporum f.sp. dianthi and inoculated with Trichoderma (wild and mutant) on some physiological and enzymatic parameters related to resistance against pathogen. After isolating and identification of the pathogens and studying their pathogenicity, F. oxysporum N112 was selected as the virulent strain. Trichoderma isolates were prepared from the fungal collection of the Nuclear Agriculture Research Institute and their in vitro ability to inhibit growth against F. oxysporum N112 was studied. The reduction of disease incidence due to treatment with selected Trichoderma on carnation ‘ White Liberty’ in the greenhouse condition was investigated. The content of total protein, chlorophyll a and b, carotenoids as well as the activity of peroxidase and polyphenol oxidase enzymes in leaf samples were studied on days 7, 14 and 21. The results showed a decrease in the production of total protein, chlorophyll (a, b) and carotenoids in infected plants and an increase in the activity of peroxidase and polyphenol oxidase enzymes led to accumulation of free radicals in leaf tissue. While the plants inoculated with Trichoderma led to increase the content of total protein, chlorophyll (a, b) and carotenoids and prevented the accumulation of free radicals, it may related to reducing the accumulation of peroxidase and polyphenol oxidase enzymes in the carnation plant infected with Fusarum fusarum. f.sp. dianthi. On the other hand, treatment with mutant Trichoderma (NAS106-M21 and NAS114-M12) had more influence on the progression of the disease than wild isolates 21 days after disease infection, which was due to the effect of treatment with mutant Trichoderma in reducing cellular oxidation in the infected plant. The results showed that NAS106-M21 and NAS114-M12, in addition to higher antagonistic activity than the wild isolates (T. viride NAS106 and T. virens (NAS114)), through a greater effect on the cellular oxidation balance could be a more effective biocontrol agent in the integrated program to combat carnation Fusarium wilt.
Keywords: Dianthus caryophyllus, Fusarium oxysporum, Trichoderma, Biocontrol, Gamma irradiation.
Full-Text [PDF 1095 kb]   (539 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/09/28 | Accepted: 2023/01/7 | Published: 2023/05/3
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Bradford, M.M., )1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1006/abio.1976.9999]
2. Daguerre, Y., Siegel, K., Edel-Hermann, V., Steinberg, C., )2014(. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biology Reviews, 28, 97-125. [DOI:10.1016/j.fbr.2014.11.001]
3. De Gara, L., de Pinto, M.C., Tommasi, F., )2003(. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry 41, 863-870. [DOI:10.1016/S0981-9428(03)00135-9]
4. Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond‐Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., )2012(. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430. [DOI:10.1111/j.1364-3703.2011.00783.x]
5. Dogan, S., Dogan, M., )2004(. Determination of kinetic properties of polyphenol oxidase from Thymus (Thymus longicaulis subsp. chaubardii var. chaubardii). Food Chemistry, 88, 69-77. [DOI:10.1016/j.foodchem.2003.12.025]
6. Garavaglia, B.S., Thomas, L., Gottig, N., Dunger, G., Garofalo, C.G., Daurelio, L.D., Ndimba, B., Orellano, E.G., Gehring, C., Ottado, J., )2010(. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS One, 5, 8950. [DOI:10.1371/journal.pone.0008950]
7. Gullino, M.L., Daughtrey, M.L., Garibaldi, A., Elmer, W.H., )2015(. Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50-59. [DOI:10.1016/j.cropro.2015.01.003]
8. Gupta, V., Misra, A., )2009(. Efficacy of bioagents against Fusarium wilt of guava. Journal of Mycology and Plant Pathology, 39, 101.
9. Howell, C.R., )2006(. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96, 178-180. [DOI:10.1094/PHYTO-96-0178]
10. John, R.P., Tyagi, R.D., Prévost, D., Brar, S.K., Pouleur, S., Surampalli, R.Y., )2010(. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29, 1452-1459. [DOI:10.1016/j.cropro.2010.08.004]
11. Karimi, A., Rouhani H., Zafari, D., Khodakaramian G. and Taghinasab M., )2007). Biological control of carnation vascular wilt disease with Fusarium oxysporum f. sp. dianthii by strains of Bacillus and Pseudomonas isolated from rhizosphere, Journal of Agricultural Science and Technology and Natural Resources, 11(41b), 309-319.
12. Khan, R.A., Najeeb, S., Hussain, S., Xie, B., Li, Y., (2020). Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms, , 8(6), 817. [DOI:10.3390/microorganisms8060817]
13. Lavania, M., Chauhan, P.S., Chauhan, S.V.S., Singh, H.B., Nautiyal, C.S., (2006). Induction of Plant Defense Enzymes and Phenolics by Treatment With Plant Growth-Promoting Rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52, 363-368. [DOI:10.1007/s00284-005-5578-2]
14. Leslie, J.F., Summerell, B.A., (2008). The Fusarium laboratory manual. In: John Wiley & Sons(ed.) Media recipis and preparatin. First Edition. Wiley, New York, pp 5-11.
15. Lori, G., Edel-Hermann, V., Gautheron, N. and Alabouvette, C., (2004). Genetic diversity of pathogenic and nonpathogenic populations of Fusarium oxysporum isolated from carnation fields in Argentina. Phytopathology, 94(6), 661-668. [DOI:10.1094/PHYTO.2004.94.6.661]
16. Lu, S., Su, W., Li, H., Guo, Z., (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47, 132-138. [DOI:10.1016/j.plaphy.2008.10.006]
17. Mika, A., Luthje, S., (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489-1498. [DOI:10.1104/pp.103.020396]
18. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., Hens, L., (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. [DOI:10.3389/fpubh.2016.00148]
19. Nikam, P., Jagtap, G., Sontakke, P., (2007). Management of chickpea wilt caused byFusarium oxysporium f. sp. ciceri. African Journal of Agricultural Research, 2, 692-697.
20. Pratibha, S., (2000). An integrated approach for the management of carnation wilt caused by Fusarium oxysporum f. sp. dianthi (Pril. and Del.) Snyd. and Hans. New Botanist, 27, 143-150.
21. Rana, A., Sahgal, M., Johri, B.N., (2017). Fusarium oxysporum: Genomics, Diversity and Plant-Host Interaction, in: Satyanarayana, T., Deshmukh, S.K., Johri, B.N. (Eds.), Developments in Fungal Biology and Applied Mycology. Springer Singapore, Singapore, pp. 159-199. [DOI:10.1007/978-981-10-4768-8_10]
22. Rini, C., Sulochana, K., (2008). Usefulness of Trichoderma and Pseudomonas against Rhizoctonia solani and Fusarium oxysporum infecting tomato. Journal of Tropical Agriculture, 45, 21-28.
23. Ros, M., Pascual, J., (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56(1), 59-66.‌ [DOI:10.1016/j.biocontrol.2010.10.003]
24. Santos-Rodríguez, J., Coy-Barrera, E., Ardila, H.D., (2021). Mycelium dispersion from Fusarium oxysporum f. sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (Dianthus caryophyllus L.) roots. Plants, 10, 1447. [DOI:10.3390/plants10071447]
25. Soufi, E., Safaie, N., Shahbazi, S., Mojerlou, S., (2021). Gamma irradiation induces genetic variation and boosting antagonism in Trichoderma aureoviride. Archives of Phytopathology and Plant Protection, 54(19-20), 1649-1674.‌ [DOI:10.1080/03235408.2021.1936377]
26. Sundaramoorthy, S., Balabaskar, P., (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology & Biotechnology, 1, 36-40.
27. Shahbazi, S., Zaker Tavallaie, F., Daroodi, Z., (2021). Morphological and molecular identification of Fusarium spp. associated with carnation Dianthus caryophyllus in Mahallat, Iran. Journal of Crop Protection, 10(3), 461-471.
28. Younesi, P., Raushit, A. M., Etebarian H. R., (2013). The mutual effect of plant nutrition and Fusarium wilt disease of cucumber caused by Fusarium oxysporum f. sp. cucumerinum, New Research in Plant Pathology, 6(3), 297-308 (In persian).
29. Zaker Tavallaie, F., Shahbazi, S., Daroodi, Z. (2022). Effective biological control of carnation Fusarium wilt using a new combination of Trichoderma mutant isolates. Journal of Agricultural Science and Technology, 24(6), 1501-12517.‌ [DOI:10.52547/jast.24.6.1501]
30. Bradford, M.M., )1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1006/abio.1976.9999]
31. Daguerre, Y., Siegel, K., Edel-Hermann, V., Steinberg, C., )2014(. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biology Reviews, 28, 97-125. [DOI:10.1016/j.fbr.2014.11.001]
32. De Gara, L., de Pinto, M.C., Tommasi, F., )2003(. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry 41, 863-870. [DOI:10.1016/S0981-9428(03)00135-9]
33. Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond‐Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., )2012(. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430. [DOI:10.1111/j.1364-3703.2011.00783.x]
34. Dogan, S., Dogan, M., )2004(. Determination of kinetic properties of polyphenol oxidase from Thymus (Thymus longicaulis subsp. chaubardii var. chaubardii). Food Chemistry, 88, 69-77. [DOI:10.1016/j.foodchem.2003.12.025]
35. Garavaglia, B.S., Thomas, L., Gottig, N., Dunger, G., Garofalo, C.G., Daurelio, L.D., Ndimba, B., Orellano, E.G., Gehring, C., Ottado, J., )2010(. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS One, 5, 8950. [DOI:10.1371/journal.pone.0008950]
36. Gullino, M.L., Daughtrey, M.L., Garibaldi, A., Elmer, W.H., )2015(. Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50-59. [DOI:10.1016/j.cropro.2015.01.003]
37. Gupta, V., Misra, A., )2009(. Efficacy of bioagents against Fusarium wilt of guava. Journal of Mycology and Plant Pathology, 39, 101.
38. Howell, C.R., )2006(. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96, 178-180. [DOI:10.1094/PHYTO-96-0178]
39. John, R.P., Tyagi, R.D., Prévost, D., Brar, S.K., Pouleur, S., Surampalli, R.Y., )2010(. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29, 1452-1459. [DOI:10.1016/j.cropro.2010.08.004]
40. Karimi, A., Rouhani H., Zafari, D., Khodakaramian G. and Taghinasab M., )2007). Biological control of carnation vascular wilt disease with Fusarium oxysporum f. sp. dianthii by strains of Bacillus and Pseudomonas isolated from rhizosphere, Journal of Agricultural Science and Technology and Natural Resources, 11(41b), 309-319.
41. Khan, R.A., Najeeb, S., Hussain, S., Xie, B., Li, Y., (2020). Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms, , 8(6), 817. [DOI:10.3390/microorganisms8060817]
42. Lavania, M., Chauhan, P.S., Chauhan, S.V.S., Singh, H.B., Nautiyal, C.S., (2006). Induction of Plant Defense Enzymes and Phenolics by Treatment With Plant Growth-Promoting Rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52, 363-368. [DOI:10.1007/s00284-005-5578-2]
43. Leslie, J.F., Summerell, B.A., (2008). The Fusarium laboratory manual. In: John Wiley & Sons(ed.) Media recipis and preparatin. First Edition. Wiley, New York, pp 5-11.
44. Lori, G., Edel-Hermann, V., Gautheron, N. and Alabouvette, C., (2004). Genetic diversity of pathogenic and nonpathogenic populations of Fusarium oxysporum isolated from carnation fields in Argentina. Phytopathology, 94(6), 661-668. [DOI:10.1094/PHYTO.2004.94.6.661]
45. Lu, S., Su, W., Li, H., Guo, Z., (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47, 132-138. [DOI:10.1016/j.plaphy.2008.10.006]
46. Mika, A., Luthje, S., (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489-1498. [DOI:10.1104/pp.103.020396]
47. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., Hens, L., (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. [DOI:10.3389/fpubh.2016.00148]
48. Nikam, P., Jagtap, G., Sontakke, P., (2007). Management of chickpea wilt caused byFusarium oxysporium f. sp. ciceri. African Journal of Agricultural Research, 2, 692-697.
49. Pratibha, S., (2000). An integrated approach for the management of carnation wilt caused by Fusarium oxysporum f. sp. dianthi (Pril. and Del.) Snyd. and Hans. New Botanist, 27, 143-150.
50. Rana, A., Sahgal, M., Johri, B.N., (2017). Fusarium oxysporum: Genomics, Diversity and Plant-Host Interaction, in: Satyanarayana, T., Deshmukh, S.K., Johri, B.N. (Eds.), Developments in Fungal Biology and Applied Mycology. Springer Singapore, Singapore, pp. 159-199. [DOI:10.1007/978-981-10-4768-8_10]
51. Rini, C., Sulochana, K., (2008). Usefulness of Trichoderma and Pseudomonas against Rhizoctonia solani and Fusarium oxysporum infecting tomato. Journal of Tropical Agriculture, 45, 21-28.
52. Ros, M., Pascual, J., (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56(1), 59-66.‌ [DOI:10.1016/j.biocontrol.2010.10.003]
53. Santos-Rodríguez, J., Coy-Barrera, E., Ardila, H.D., (2021). Mycelium dispersion from Fusarium oxysporum f. sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (Dianthus caryophyllus L.) roots. Plants, 10, 1447. [DOI:10.3390/plants10071447]
54. Soufi, E., Safaie, N., Shahbazi, S., Mojerlou, S., (2021). Gamma irradiation induces genetic variation and boosting antagonism in Trichoderma aureoviride. Archives of Phytopathology and Plant Protection, 54(19-20), 1649-1674.‌ [DOI:10.1080/03235408.2021.1936377]
55. Sundaramoorthy, S., Balabaskar, P., (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology & Biotechnology, 1, 36-40.
56. Shahbazi, S., Zaker Tavallaie, F., Daroodi, Z., (2021). Morphological and molecular identification of Fusarium spp. associated with carnation Dianthus caryophyllus in Mahallat, Iran. Journal of Crop Protection, 10(3), 461-471.
57. Younesi, P., Raushit, A. M., Etebarian H. R., (2013). The mutual effect of plant nutrition and Fusarium wilt disease of cucumber caused by Fusarium oxysporum f. sp. cucumerinum, New Research in Plant Pathology, 6(3), 297-308 (In persian).
58. Zaker Tavallaie, F., Shahbazi, S., Daroodi, Z. (2022). Effective biological control of carnation Fusarium wilt using a new combination of Trichoderma mutant isolates. Journal of Agricultural Science and Technology, 24(6), 1501-12517.‌ [DOI:10.52547/jast.24.6.1501]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarabadani R, Heidarpour S, Askari H. Comparison of the physiological effects of wild and mutated biological agents of Trichoderma spp. against Fusarium oxysporum f.sp. dianthi in carnation ‘White Liberty’. FOP 2023; 7 (2) :329-348
URL: http://flowerjournal.ir/article-1-210-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4712