[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 1 (Spring & Summer 2025) ::
FOP 2025, 10(1): 83-98 Back to browse issues page
The effect of foliar application of silicon and calcium compounds on growth indices, plant pigments, and flowering period of Zinnia (Zinnia elegans L.)
Reza Eidian , Elham Danaee *
Garmsar Branch, Islamic Azad University
Abstract:   (722 Views)
Zinnia is highly valued due to its diverse shapes, colors, and long flowering period, and nutrition is a significant factor in enhancing the quality of this plant. Silicon is a beneficial element that plays a crucial role in building tolerance to biotic and abiotic stresses, and calcium is also a macronutrient and an important component of cell walls. Due to the various functions of these elements in plant metabolism, they have a positive role in increasing the quality of ornamental plants. This experiment was conducted to investigate the effect of foliar application of different silicon and calcium compounds on the growth and flowering of Zinnia elegans L. variety Dreamland Rose, in a completely randomized design with three replications in a commercial greenhouse located in Karaj. The treatments included nano-chelated silicon and nano-chelated calcium (0, 1.5, and 3 per 1000) and calcium silicate (0, 150, and 300 mg l-1). Two weeks after the complete establishment of seedlings in pots, the plants were foliar-sprayed three times every 5 days. Sampling and evaluation of traits were performed about two weeks after the last foliar application and at the time of flowering, and finally, sampling was performed at the full flowering stage. The results showed that the treatments had a significant effect on the evaluated traits. The highest fresh and dry weight of flowers (2.28 - 0.75 g), cell membrane stability index (88.43%), flower diameter (9.75 cm), petal carotenoid content (0.94 mg g-1 fresh weight), total leaf chlorophyll (3.11 mg g-1 fresh weight), and phenylalanine ammonia-lyase enzyme activity (7.64 µg of cinnamate produced g-1 fresh weight per minute) were observed in the calcium silicate treatment at 300 mg l-1. The highest stem diameter (4.47 cm) and leaf silicon content (4.73 mg g-1 dry weight) were obtained in the nano-chelated silicon treatment at 3 per 1000. The highest number of flowers in a plant (10.23), the number of leaves in a plant (27.63), and leaf calcium content (21.13 mg g-1 dry weight) were observed in the nano-chelated calcium treatment at 3 per 1000, while the lowest values for these traits were observed in the control group. The longest and shortest flowering periods of Zinnia were 109.74 and 101.45 days, and the longest and shortest longevity of Zinnia flowers on the plant were 59.36 and 49.45 days in the calcium silicate treatment at 300 mg l-1 and the control treatment, respectively. Therefore, according to the results of this study, foliar application of calcium silicate at 300 mg l-1 showed the greatest effect on improving the growth and flowering of Zinnia elegans L.
Keywords: Nutrition, Nano-chelate, Shelf life, Zinnia
Full-Text [PDF 1084 kb]   (117 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/03/3 | Accepted: 2025/07/19 | Published: 2025/09/18
References
1. Akhavan Markazi, V., Naderi, R., Danaee, E., Kalateh Jari, S., Nematollahi, F. (2022). Comparison of Phytoremediation Potential of Pothos and Sansevieria under Indoor Air Pollution. Journal of Ornamental Plants, 12(3), 235-245.
2. Allahverdizadeh, S., Danaee, E. (2023). Effect of humic acid and vermicompost on Some vegetative indices and proline content of Catharanthus roseous under low water stress. Environment and Water Engineering, 9(1), 141-152. (In Persian).
3. Anitha, J., Kaladhar Babu, K., Prasanth, p., Jyothi, G, Gouthami, P. (2023). Effect of nano calcium and silicon on growth, yield and quality of gerbera (Gerbera jamesonii Bolus Ex. Hook) grown under shade net conditions. Pharma Innovation, 12(11), 1201-1206.
4. Anser, A., Basra, S.M.A., Hussain, S., Iqbal, J. (2012). Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition, 11(8): 637-655 [DOI:10.3923/pjn.2012.735.753]
5. Arnon, D.I. )1949(. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1-15. [DOI:10.1104/pp.24.1.1]
6. Artyszak, A. (2018). Effect of Silicon Fertilization on Crop Yield Quantity and Quality-A Literature Review in Europe. Plants (Basel, Switzerland), 7(3), 54; [DOI:10.3390/plants7030054]
7. Balakhnina, T., Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: Review. International Agrophysics, 27 (2), 225-232. [DOI:10.2478/v10247-012-0089-4]
8. Beaudoin-Eagan, L., Thorpe, TA. (1985) Tyrosine and phenylalanine ammonia-lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology,78, 438-441 [DOI:10.1104/pp.78.3.438]
9. Benzon, H R L., Rubenecia, M R U., Ultra, V U., S C, Lee. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7, 105-117. [DOI:10.5539/jas.v7n4p20]
10. Danaee, E., Abdossi, V. (2016). Evaluation of the effect of plant growth substances on longevity of gerbera cut flowers cv. Sorbet. Iranian Journal of Plant Physiology, 7(1), 1943- 1947.
11. Danaee, E., Abdossi, V. (2021). Effect of foliar application of iron, potassium and zinc nano-chlates on morphological, physiological and phytochemical traits of Basil (Ocimum basilicum L.). Food & Health Journal, 4(4): 13-20.
12. Dareini, H., Abdossi, V., Danaee, E. (2014). Effect of some essential oils on postharvest quality and vase life of gerbera cut flowers (Gerbera Jamesonii cv. Sorbet). European Journal of Experimental Biology, 4(3), 276-280.
13. Eghlima, G., Mohammadi, M., Ranjabr, ME. (2024). Foliar application of nano-silicon enhances drought tolerance rate of pot marigold (Calendula officinalis L.) by regulation of abscisic acid signaling. BMC Plant Biology, 24, 1220. [DOI:10.1186/s12870-024-05986-6]
14. Elliott, E., Snyder, G. H. (1991). Autoclave-induced digestion for the colorimetric of silicon in rice straw. Journal of [DOI:10.1021/jf00006a024]
15. Agricultural and Food Chemistry, 39(6), 1118-1119.
16. Fani, E., Hajihashemi,S .(2023). Investigation of the effect of silica spraying and salinity stress on some physiological traits of Camelina sativa oil plan. Journal of Plant Environmental Physiology. 69 (18), 149-159. (In Persian)
17. Farahani, H., Sajedi, N., Madani, H., Changizi, M., Naeini, M. R. (2021). Effect of potassium silicate on water use efficiency, quantitative traits and essential ‎oil yield of damask rose (Rosa damascena Miller) under water deficit stress. Iranian Journal of Horticultural Science, 52(1), 171-182. (In Persian)
18. Gerami, M., Akbari Nodehi, D., Amiri, M., Darvakh, E. (2024). Effects of calcium nano-paticle on some physiologic and biochemical characteristics of Ocimum basilicum L. under salinity stress. Iranian Journal of Medicinal and Aromatic Plants Research, 40(2), 415-400. doi: 10.22092/ijmapr.2024.131551(In Persian)
19. Gómez-Santos, M., González García, Y., Perez, M., Cadenas-Pliego, G. (2023). Impact of Calcium-Silicon nanoparticles on flower quality and biochemical characteristics of Lilium under salt stress. Plant Stress. 10, 100270. [DOI:10.1016/j.stress.2023.100270]
20. Hajipour, H., Jabbarzadeh, Z. (2018). Growth and photosynthetic responses of chrysanthemum to foliar application of sodium and calcium silicate. Plant Process and Function, 6 (19), 129-138. (In Persian)
21. Khosravi, S., Tehranifar, A., Selahvarzi, Y., Khoshgoftarmanesh, A.H., Cheheltanan, L. (2024a). Comparing the effect of Calcium itrate and Calcium Amino Chelate (Lysine) foliar application on nutritional status, vegetative and reproductive characteristics, and postharvest longevity of 'Jumilia' Rose cultivar. Journal of Soil and Plant Interactions, 15(3), 89-107. (In Persian) [DOI:10.47176/jspi.15.3.21461]
22. Kokabi, S., Tabatabaei, S J. (2011). Effect of different ratios of potassium to calcium on the yield and quality of galia melons in hydroponic. Journal of Horticultural Science, 25(2), 178-184. (In Persian)
23. Mirzaee, N., Jabbarzadeh, Z., Rasouli-Sadaghiani, M. (2020). Influence of humic acid and nano-calcium chelate application on photosynthetic pigments and nutrient uptake of Gerbera jamesonii cv. Dune. Plant Process and Function. 9 (39), 61-76
24. Moallaye Mazraei, S., Chehrazi, M., Khaleghi, E. (2020). The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of gerbera under hydroponic system. Plant Productions, 43(1), 53-66. (In Persian)
25. Mobaraki, L., Rezapour fard, J., Norouzi, P. (2024). Effects of calcium silicate and calcium chelate on bent neck and vase life of roses (Rosa hybrida) cv. 'Dolce Vita'. Journal of Plant Production Research, Doi: 10.22069/jopp.2024.21076.3035 (In Persian)
26. Mobaraki, L., Rezapour Fard, J., Noruzi, P. (2023). Effects of pre-harvest application of calcium silicate and calcium chelate on some morpho-physiolocal parameters of cut rose (Rosa hybrida) cv. Dolce Vita. Plant Process and Function; 12 (57): 231-250. (In Persian)
27. Nazari, F. (2019). The effect of foliar application of calcium chloride and nano-calcium chelated on vegetative, reproductive and post-harvest life of tuberose (Polianthes tuberosa L.). Journal of Plant Research (Iranian Journal of Biology), 32(2), 497-510. (In Persian)
28. Osmanpour, S., Mozafari, A.A., Ghaderi, N. (2021). The effect of Jasmonic Acid and Silica Nanoparticles on some physiological traits of Strawberry under salinity stress. Journal of Soil and Plant Interactions, 12(1), 1-15. (In Persian) [DOI:10.47176/jspi.12.1.19722]
29. Rahmani, F., mohammadi, A., Moradi, H. (2019). Studying the effect of phosphorus on flowering and vegetative traits of zinnia (Zinnia sp.) in vermicompost medium. Flower and Ornamental Plants, 4 (1), 13-25. (In Persian) [DOI:10.29252/flowerjournal.4.1.13]
30. Ranjbar, S., Rahemi, M., Ramezanian, A. (2018). Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in Apple cv. Red Delicious. Scientia Horticulturae, 240, 57-64. [DOI:10.1016/j.scienta.2018.05.035]
31. Reis, L. S., Azevedo, R. A., Pereira, G. (2014). Determination of Calcium in Plant Material by Complexometric Titration with EDTA. Brazilian Journal of Agricultural Sciences, 9(3), 412-418
32. Robatjazi, R., Roshandel, P., Hooshmand, S. (2020). Benefits of Silicon nutrition on growth, physiological and phytochemical attributes of Basil upon salinity stress. International Journal of Horticultural Science and Technology, 7(1), 37-50.
33. Roosta, H., Nili, F., Pourkhaloee, A., Askari, N. (2024). Effects of supplemental light quality and foliar application with Calcium on photosynthetic parameters and flower stem strength of cut Gerbera (Gerbera jamesonii 'Bayadere'). International Journal of Horticultural Science and Technology, 11(1), 69-82.
34. Sánchez-Navarro, J., González García, Y., Benavides-Mendoza, A., Morales-Díaz, A., González-Morales, S., Cadenas-Pliego, G., Garcia, M. (2021). Silicon nanoparticles improve the shelf life and antioxidant status of Lilium. Plants. 10 (11), 2338. [DOI:10.3390/plants10112338]
35. Savvas, D., G. Ntatsi. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66-81. [DOI:10.1016/j.scienta.2015.09.010]
36. Soroori, S., Danaee, E., Hemmati, K., Ladan Moghadam, A R. (2021). Metabolic and enzymatic responses of Calendula officinalis L. to foliar application of Spermidine, Citric Acid and Proline under drought stress in a post-harvest condition. Journal of Agricultural Science and Technology, 23 (6), 1339-1353.
37. Tofighi Alikhani, T., Tabatabaei, S., Torkashvand, A., Khalighi, A., Talei, D. (2021b). Silica nanoparticles and calcium on the histological characteristics and stem bending in gerbera cut flower. Ornamental Horticulture. 27(3), 334-343. [DOI:10.1590/2447-536x.v27i3.2308]
38. Tofighi Alikhani, T., Tabatabaei, S., Torkashvand, A., Khalighi, A., Talei, D. (2021a). Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition. 44, 1-15. (In Persian) [DOI:10.1080/01904167.2020.1867578]
39. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70-81. [DOI:10.1016/j.plaphy.2016.06.026]
40. Zamani, G., nabipour, Z., gheisari, Y. (2021). The effect of Silicon application on some physiological characteristics, yield and yield components of Sunflower (Helianthus.annus L.) under different moisture levels. Applied Soil Research, 9(3), 57-72. (In Persian)
41. Akhavan Markazi, V., Naderi, R., Danaee, E., Kalateh Jari, S., Nematollahi, F. (2022). Comparison of Phytoremediation Potential of Pothos and Sansevieria under Indoor Air Pollution. Journal of Ornamental Plants, 12(3), 235-245.
42. Allahverdizadeh, S., Danaee, E. (2023). Effect of humic acid and vermicompost on Some vegetative indices and proline content of Catharanthus roseous under low water stress. Environment and Water Engineering, 9(1), 141-152. (In Persian).
43. Anitha, J., Kaladhar Babu, K., Prasanth, p., Jyothi, G, Gouthami, P. (2023). Effect of nano calcium and silicon on growth, yield and quality of gerbera (Gerbera jamesonii Bolus Ex. Hook) grown under shade net conditions. Pharma Innovation, 12(11), 1201-1206.
44. Anser, A., Basra, S.M.A., Hussain, S., Iqbal, J. (2012). Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition, 11(8): 637-655 [DOI:10.3923/pjn.2012.735.753]
45. Arnon, D.I. )1949(. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1-15. [DOI:10.1104/pp.24.1.1]
46. Artyszak, A. (2018). Effect of Silicon Fertilization on Crop Yield Quantity and Quality-A Literature Review in Europe. Plants (Basel, Switzerland), 7(3), 54; [DOI:10.3390/plants7030054]
47. Balakhnina, T., Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: Review. International Agrophysics, 27 (2), 225-232. [DOI:10.2478/v10247-012-0089-4]
48. Beaudoin-Eagan, L., Thorpe, TA. (1985) Tyrosine and phenylalanine ammonia-lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology,78, 438-441 [DOI:10.1104/pp.78.3.438]
49. Benzon, H R L., Rubenecia, M R U., Ultra, V U., S C, Lee. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7, 105-117. [DOI:10.5539/jas.v7n4p20]
50. Danaee, E., Abdossi, V. (2016). Evaluation of the effect of plant growth substances on longevity of gerbera cut flowers cv. Sorbet. Iranian Journal of Plant Physiology, 7(1), 1943- 1947.
51. Danaee, E., Abdossi, V. (2021). Effect of foliar application of iron, potassium and zinc nano-chlates on morphological, physiological and phytochemical traits of Basil (Ocimum basilicum L.). Food & Health Journal, 4(4): 13-20.
52. Dareini, H., Abdossi, V., Danaee, E. (2014). Effect of some essential oils on postharvest quality and vase life of gerbera cut flowers (Gerbera Jamesonii cv. Sorbet). European Journal of Experimental Biology, 4(3), 276-280.
53. Eghlima, G., Mohammadi, M., Ranjabr, ME. (2024). Foliar application of nano-silicon enhances drought tolerance rate of pot marigold (Calendula officinalis L.) by regulation of abscisic acid signaling. BMC Plant Biology, 24, 1220. [DOI:10.1186/s12870-024-05986-6]
54. Elliott, E., Snyder, G. H. (1991). Autoclave-induced digestion for the colorimetric of silicon in rice straw. Journal of [DOI:10.1021/jf00006a024]
55. Agricultural and Food Chemistry, 39(6), 1118-1119.
56. Fani, E., Hajihashemi,S .(2023). Investigation of the effect of silica spraying and salinity stress on some physiological traits of Camelina sativa oil plan. Journal of Plant Environmental Physiology. 69 (18), 149-159. (In Persian)
57. Farahani, H., Sajedi, N., Madani, H., Changizi, M., Naeini, M. R. (2021). Effect of potassium silicate on water use efficiency, quantitative traits and essential ‎oil yield of damask rose (Rosa damascena Miller) under water deficit stress. Iranian Journal of Horticultural Science, 52(1), 171-182. (In Persian)
58. Gerami, M., Akbari Nodehi, D., Amiri, M., Darvakh, E. (2024). Effects of calcium nano-paticle on some physiologic and biochemical characteristics of Ocimum basilicum L. under salinity stress. Iranian Journal of Medicinal and Aromatic Plants Research, 40(2), 415-400. doi: 10.22092/ijmapr.2024.131551(In Persian)
59. Gómez-Santos, M., González García, Y., Perez, M., Cadenas-Pliego, G. (2023). Impact of Calcium-Silicon nanoparticles on flower quality and biochemical characteristics of Lilium under salt stress. Plant Stress. 10, 100270. [DOI:10.1016/j.stress.2023.100270]
60. Hajipour, H., Jabbarzadeh, Z. (2018). Growth and photosynthetic responses of chrysanthemum to foliar application of sodium and calcium silicate. Plant Process and Function, 6 (19), 129-138. (In Persian)
61. Khosravi, S., Tehranifar, A., Selahvarzi, Y., Khoshgoftarmanesh, A.H., Cheheltanan, L. (2024a). Comparing the effect of Calcium itrate and Calcium Amino Chelate (Lysine) foliar application on nutritional status, vegetative and reproductive characteristics, and postharvest longevity of 'Jumilia' Rose cultivar. Journal of Soil and Plant Interactions, 15(3), 89-107. (In Persian) [DOI:10.47176/jspi.15.3.21461]
62. Kokabi, S., Tabatabaei, S J. (2011). Effect of different ratios of potassium to calcium on the yield and quality of galia melons in hydroponic. Journal of Horticultural Science, 25(2), 178-184. (In Persian)
63. Mirzaee, N., Jabbarzadeh, Z., Rasouli-Sadaghiani, M. (2020). Influence of humic acid and nano-calcium chelate application on photosynthetic pigments and nutrient uptake of Gerbera jamesonii cv. Dune. Plant Process and Function. 9 (39), 61-76
64. Moallaye Mazraei, S., Chehrazi, M., Khaleghi, E. (2020). The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of gerbera under hydroponic system. Plant Productions, 43(1), 53-66. (In Persian)
65. Mobaraki, L., Rezapour fard, J., Norouzi, P. (2024). Effects of calcium silicate and calcium chelate on bent neck and vase life of roses (Rosa hybrida) cv. 'Dolce Vita'. Journal of Plant Production Research, Doi: 10.22069/jopp.2024.21076.3035 (In Persian)
66. Mobaraki, L., Rezapour Fard, J., Noruzi, P. (2023). Effects of pre-harvest application of calcium silicate and calcium chelate on some morpho-physiolocal parameters of cut rose (Rosa hybrida) cv. Dolce Vita. Plant Process and Function; 12 (57): 231-250. (In Persian)
67. Nazari, F. (2019). The effect of foliar application of calcium chloride and nano-calcium chelated on vegetative, reproductive and post-harvest life of tuberose (Polianthes tuberosa L.). Journal of Plant Research (Iranian Journal of Biology), 32(2), 497-510. (In Persian)
68. Osmanpour, S., Mozafari, A.A., Ghaderi, N. (2021). The effect of Jasmonic Acid and Silica Nanoparticles on some physiological traits of Strawberry under salinity stress. Journal of Soil and Plant Interactions, 12(1), 1-15. (In Persian) [DOI:10.47176/jspi.12.1.19722]
69. Rahmani, F., mohammadi, A., Moradi, H. (2019). Studying the effect of phosphorus on flowering and vegetative traits of zinnia (Zinnia sp.) in vermicompost medium. Flower and Ornamental Plants, 4 (1), 13-25. (In Persian) [DOI:10.29252/flowerjournal.4.1.13]
70. Ranjbar, S., Rahemi, M., Ramezanian, A. (2018). Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in Apple cv. Red Delicious. Scientia Horticulturae, 240, 57-64. [DOI:10.1016/j.scienta.2018.05.035]
71. Reis, L. S., Azevedo, R. A., Pereira, G. (2014). Determination of Calcium in Plant Material by Complexometric Titration with EDTA. Brazilian Journal of Agricultural Sciences, 9(3), 412-418
72. Robatjazi, R., Roshandel, P., Hooshmand, S. (2020). Benefits of Silicon nutrition on growth, physiological and phytochemical attributes of Basil upon salinity stress. International Journal of Horticultural Science and Technology, 7(1), 37-50.
73. Roosta, H., Nili, F., Pourkhaloee, A., Askari, N. (2024). Effects of supplemental light quality and foliar application with Calcium on photosynthetic parameters and flower stem strength of cut Gerbera (Gerbera jamesonii 'Bayadere'). International Journal of Horticultural Science and Technology, 11(1), 69-82.
74. Sánchez-Navarro, J., González García, Y., Benavides-Mendoza, A., Morales-Díaz, A., González-Morales, S., Cadenas-Pliego, G., Garcia, M. (2021). Silicon nanoparticles improve the shelf life and antioxidant status of Lilium. Plants. 10 (11), 2338. [DOI:10.3390/plants10112338]
75. Savvas, D., G. Ntatsi. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66-81. [DOI:10.1016/j.scienta.2015.09.010]
76. Soroori, S., Danaee, E., Hemmati, K., Ladan Moghadam, A R. (2021). Metabolic and enzymatic responses of Calendula officinalis L. to foliar application of Spermidine, Citric Acid and Proline under drought stress in a post-harvest condition. Journal of Agricultural Science and Technology, 23 (6), 1339-1353.
77. Tofighi Alikhani, T., Tabatabaei, S., Torkashvand, A., Khalighi, A., Talei, D. (2021b). Silica nanoparticles and calcium on the histological characteristics and stem bending in gerbera cut flower. Ornamental Horticulture. 27(3), 334-343. [DOI:10.1590/2447-536x.v27i3.2308]
78. Tofighi Alikhani, T., Tabatabaei, S., Torkashvand, A., Khalighi, A., Talei, D. (2021a). Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition. 44, 1-15. (In Persian) [DOI:10.1080/01904167.2020.1867578]
79. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70-81. [DOI:10.1016/j.plaphy.2016.06.026]
80. Zamani, G., nabipour, Z., gheisari, Y. (2021). The effect of Silicon application on some physiological characteristics, yield and yield components of Sunflower (Helianthus.annus L.) under different moisture levels. Applied Soil Research, 9(3), 57-72. (In Persian)
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eidian R, Danaee E. The effect of foliar application of silicon and calcium compounds on growth indices, plant pigments, and flowering period of Zinnia (Zinnia elegans L.). FOP 2025; 10 (1) :83-98
URL: http://flowerjournal.ir/article-1-342-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 1 (Spring & Summer 2025) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.03 seconds with 37 queries by YEKTAWEB 4732