[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 7، شماره 1 - ( بهار و تابستان 1401 ) ::
جلد 7 شماره 1 صفحات 172-163 برگشت به فهرست نسخه ها
بهبود شاخص‌های رشد و تحمل Myrtus communis L. به تنش کم‌آبی با کاهش آنتی-اکسیدان‌ها و اسمولیت‌های سازگار توسط یک بسپار ابر‌جاذب
سمیه اسماعیلی* ، عباس دانایی فر
دانشگاه شهید چمران اهواز
چکیده:   (2012 مشاهده)
 پلیمرهای ابرجاذب (SAPs) قادر به افزایش رطوبت خاک و بهبود رشد گیاه هستند. در این پژوهش، آزمایش گلخانه‌‌ای برای بررسی برهمکنش بین سطوح مختلف آبیاری (%100 ظرفیت مزرعه (FC) ، 75% FC و 50% FC) و A200-SAP  (0، 1 و 2 گرم در کیلوگرم وزن خاک خشک) انجام شد. آزمایش فاکتوریل در قالب طرح کامل تصادفی با چهار تکرار در گیاهان یکساله "مورد"، بررسی شد. نتایج نشان داد که تیمار کم‌آبی (%50 FC) به طور معنی‌داری سبب کاهش شاخص‌های رشد و همچنین افزایش میزان پرولین، فعالیت آنزیم‌های آنتی اکسیدانی، و فنول کل در مقایسه با گیاهان خوب آبیاری شده (%100FC ) شد. در حالی که پروتئین کل محلول، فلاونوئیدها و ظرفیت آنتی‌‌اکسیدانی کل (TAC) با افزایش تنش کم‌‌آبی نسبت به شاهد تغییر معنی‌‌داری نداشتند. SAP افزوده شده (2 گرم در کیلوگرم) باعث افزایش حدود 81/43% طول ریشه در مقایسه با تیمار بدونSAP  در %100FC  شد. افزون بر این، استفاده از SAP (2 گرم در کیلوگرم خاک) به طور قابل توجهی میزان پرولین و آنزیم های آنتی‌‌اکسیدانی به ویژه کاتالاز (CAT) را در شرایط کم‌‌ آبی با فراهم کردن آب بیشتر و کاهش گونه‌‌های اکسیژن فعال (ROSs) افزایش داد. نتایج نشان داد که گیاهان جوان "مورد" با افزایش ترکیبات آنتی‌‌اکسیدانی و تنظیم کننده‌‌های اسمزی مانند پرولین، سازگاری بالایی با محیط‌‌های با شرایط نامطلوب دارند. افزون بر این، آن‌‌ها قادر به تولید سرآغازه‌‌های جدید شاخه با کاربرد SAP در هر دو شرایط آبیاری خوب و تنش های کم‌‌آبی می‌‌باشند. از این رو، می توان با افزودن SAP به محیط ریشه گیاهان جوان چوبی با روشی کم‌‌هزینه و کارا، زنده‌‌مانی و بازده عملکرد آن‌‌ها را در مناطق کم‌‌آب افزایش داد.
واژه‌های کلیدی: آسکوربیت پراکسیداز، پرولین، ظرفیت کل آنتی اکسیدانی، فنول، کاتالاز
متن کامل [PDF 383 kb]   (1168 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/7/7 | پذیرش: 1401/7/27 | انتشار: 1401/9/28
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
2. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
3. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
4. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
5. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
6. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
7. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
8. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
9. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
10. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
11. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
12. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
13. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
14. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
15. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
16. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
17. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
18. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
19. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
20. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
21. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
22. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
23. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
24. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
25. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
26. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
27. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
28. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
29. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
30. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
31. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
33. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
34. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
35. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
36. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
37. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
38. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
39. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
40. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
41. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
42. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
43. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
44. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
45. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
46. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
47. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
48. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
49. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
50. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
51. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
52. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
53. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
54. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
55. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
56. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
57. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
58. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
59. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
60. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
61. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
62. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
63. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
64. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
65. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
66. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
67. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
68. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
69. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
71. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
72. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
73. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
74. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
75. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
76. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
77. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
78. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
79. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
80. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
81. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
82. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
83. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
84. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
85. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
86. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
87. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
88. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
89. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
90. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
91. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
92. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
93. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
94. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
95. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
96. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
97. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
98. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
99. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
100. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
101. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
102. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
103. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
104. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
105. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
106. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
107. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
109. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
110. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
111. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
112. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
113. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
114. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
115. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
116. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
117. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
118. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
119. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
120. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
121. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
122. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
123. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
124. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
125. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
126. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
127. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
128. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
129. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
130. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
131. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
132. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
133. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
134. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
135. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
136. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
137. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
138. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
139. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
140. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
141. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
142. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
143. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
144. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
145. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
147. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
148. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
149. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
150. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
151. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
152. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili S, Danaeifar A. Improved growth indices and tolerance of myrtle (Myrtus communis L.) to water-deficit stress by alleviating antioxidants and compatible osmolytes using a superabsorbent polymer. FOP 2022; 7 (1) :163-172
URL: http://flowerjournal.ir/article-1-245-fa.html

اسماعیلی سمیه، دانایی فر عباس. بهبود شاخص‌های رشد و تحمل Myrtus communis L. به تنش کم‌آبی با کاهش آنتی-اکسیدان‌ها و اسمولیت‌های سازگار توسط یک بسپار ابر‌جاذب. گل و گیاهان زینتی. 1401; 7 (1) :163-172

URL: http://flowerjournal.ir/article-1-245-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 1 - ( بهار و تابستان 1401 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.2 seconds with 45 queries by YEKTAWEB 4660