[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 1 (Spring and Summer 2022) ::
FOP 2022, 7(1): 163-172 Back to browse issues page
Improved growth indices and tolerance of myrtle (Myrtus communis L.) to water-deficit stress by alleviating antioxidants and compatible osmolytes using a superabsorbent polymer
Somayeh Esmaeili * , Abbas Danaeifar
Shahid Chamran University of Ahvaz
Abstract:   (1507 Views)
Superabsorbent polymers (SAPs) are able to increase soil moisture and improve plant growth. A greenhouse experiment was conducted to investigate the interaction between different irrigation levels (100% field capacity (FC), 75% FC, and 50% FC) and A200-SAP (0, 1, and 2 g kg-1 dry soil weight) in 1-year old myrtle plants. The results showed that water-deficit treatment (50% FC) significantly reduced growth indices and also increased proline, total phenol, and the activities of antioxidant enzymes compared to well-watered plants (100% FC). While, total soluble protein, flavonoids, and total antioxidant capacity (TAC) had no significant change by increasing water-deficit stress compared to control, added SAP (2 gr kg -1) led to an increase of about 43.81% in root length compared to non- SAP treatment at 50% FC. Furthermore, the use of SAP (2 gr kg -1) significantly increased the content of proline and the activities of antioxidant enzymes, especially catalase (CAT), under water-deficient conditions by providing more water and reducing reactive oxygen species. The results indicated that young myrtle plants are highly adapted to adverse environmental conditions by increasing antioxidant compounds and osmoregulators. Moreover, they could produce new shoot primordia when SAP is added, in both well-water and water-deficient treatments. Therefore, SAPs can be applied in a cost-efficient and efficient manner to the roots of young woody plants to increase their survival and performance efficiency.
Keywords: Ascorbate peroxidase, Catalase, Phenol, Proline, Total antioxidant capacity
Full-Text [PDF 301 kb]   (838 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/09/29 | Accepted: 2022/10/19 | Published: 2022/12/19
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
2. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
3. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
4. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
5. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
6. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
7. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
8. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
9. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
10. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
11. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
12. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
13. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
14. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
15. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
16. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
17. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
18. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
19. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
20. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
21. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
22. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
23. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
24. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
25. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
26. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
27. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
28. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
29. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
30. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
31. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
33. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
34. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
35. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
36. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
37. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
38. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
39. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
40. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
41. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
42. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
43. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
44. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
45. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
46. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
47. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
48. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
49. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
50. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
51. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
52. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
53. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
54. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
55. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
56. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
57. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
58. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
59. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
60. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
61. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
62. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
63. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
64. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
65. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
66. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
67. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
68. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
69. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
71. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
72. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
73. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
74. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
75. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
76. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
77. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
78. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
79. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
80. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
81. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
82. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
83. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
84. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
85. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
86. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
87. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
88. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
89. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
90. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
91. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
92. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
93. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
94. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
95. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
96. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
97. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
98. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
99. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
100. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
101. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
102. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
103. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
104. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
105. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
106. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
107. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
109. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
110. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
111. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
112. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
113. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
114. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
115. Abedi Koupaei, J., Asad Kazemi, K.J. (2006). Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer Journal, 15, 715-737.
116. Amiri, N., Emadian, S. F., Fallah, A., Adeli, K., Amirnejad, H. (2015). Estimation of conservation value of myrtle (Myrtus communis) using a contingent valuation method: a case study in a Dooreh forest area, Lorestan Province, Iran. Forest Ecosystems, 2, 1-11. [DOI:10.1186/s40663-015-0051-6]
117. Arbona, V., Iglesias, D.J, Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270, 3-82. [DOI:10.1007/s11104-004-1160-0]
118. Ashraf M.F.M.R., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
119. Azevedo, G.T.D.O.S., de Azevedo, G.B., de Souza, A.M., Mews, C.L., de Sousa, J.R.L. (2016). Effect of hydrogel doses in the quality of Corymbia citriodora Hill & Johnson seedlings. Nativa, 4, 244-248. [DOI:10.14583/2318-7670.v04n04a10]
120. Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C., Bader, M.K.F. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology Management, 497, 119478. [DOI:10.1016/j.foreco.2021.119478]
121. Başak, H. (2020). The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Applied Ecology and Environmental Research, 18, 5907-5921. [DOI:10.15666/aeer/1804_59075921]
122. Bates, L.S., Waldaren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. [DOI:10.1007/BF00018060]
123. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140. [DOI:10.1016/S0021-9258(19)50881-X]
124. Beniwal, R.S., Langenfeld-Heyser, R., Polle, A. (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 69, 189-197. [DOI:10.1016/j.envexpbot.2010.02.005]
125. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
126. Chang, Y.L., Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food Chemistry, 50, 3713-3717. [DOI:10.1021/jf020071c]
127. Farooq, M., Nawaz, A., Chaudhry, M.A.M., Indrasti, R., Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203, 1-9. [DOI:10.1111/jac.12222]
128. Ghasemi Ghehsareh, M., Khosh-Khui, M., Abedi-Koupai, J. (2010). Effects of superabsorbent polymer on water requirement and growth indices of Ficus benjamina L. 'Starlight'. Journal of Plant Nutrition, 33, 785-795. [DOI:10.1080/01904161003654030]
129. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120-1130. [DOI:10.1016/j.foodchem.2007.09.036]
130. Hare, P.D., Cress, W.A., Staden, J.V.A.N. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535-53. [DOI:10.1046/j.1365-3040.1998.00309.x]
131. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling and Behavior, 7, 1456-1466. [DOI:10.4161/psb.21949]
132. Hemeda, H.M., Klein, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
133. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. [DOI:10.3389/fpls.2018.00393]
134. Khaleghi, E., Moallemi, N. (2018). Effect of superabsorbent polymers on some morphological characteristics of olive cultivars' Baghmalek' and 'Dezphol' under water deficit. Journal of Horticulture Science, 31, 671-682. (In Persian).
135. Kargar, M., Suresh, R., Legrand, M., Jutras, P., Clark, O.G., Prasher, S.O. (2017). Reduction in water stress for tree saplings using hydrogels in soil. Journal of Geoscience and Environment Protection, 5, 27-39. [DOI:10.4236/gep.2017.51002]
136. Khodadadi Dehkordi, D. (2017). Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globules. Applied Ecology and Environmental Research, 15, 1791-1802. [DOI:10.15666/aeer/1504_17911802]
137. Li, J., Liu, L., Zhou, H., Li, M. (2018). Improved viability of areca (Areca catechu L.) seedlings under drought stress using a superabsorbent polymer. HortScience, 53, 1872-1876. [DOI:10.21273/HORTSCI13586-18]
138. Mazloom, N., Khorassani, R., Zohury, G.H., Emami, H., Whalen, J. (2020). Lignin-based hydrogel alleviates drought stress in maize. Environmental and Experimental Botany, 175, 1-28. [DOI:10.1016/j.envexpbot.2020.104055]
139. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. [DOI:10.1016/S0308-8146(00)00288-0]
140. Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G., Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, Journal of Biological Diversity, 22, 933-946. [DOI:10.13057/biodiv/d220249]
141. Najafinezhad, H., Sarvestani, Z.T., Sanavy, S.A.M., Naghavi, H. (2014). Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences, 5, 234-245. [DOI:10.12692/ijb/5.3.234-245]
142. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
143. Nazarli, H., Zardashti, M.R., Darvishzadeh, R., Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae, 2, 53-58. [DOI:10.15835/nsb244823]
144. Nestlé. (2011). Meeting the Global Water Challenge; Creating Shared Value Summary Report. Available online: http://www.nestle.com/asset-
145. Patra, S.K., Poddar, R., Brestic, M., Acharjee, P.U., Bhattacharya, P., Sengupta, S, ... Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. International Journal of Polymer Science, [DOI:10.1155/2022/4914836]
147. Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., Sastry, S.K. (2013). Challenges facing food engineering. Journal of Food Engineering, 119, 332-342. [DOI:10.1016/j.jfoodeng.2013.05.031]
148. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186, 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
149. Sayyari, M., Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (Capsicum annuum L.) under various irrigation regimes. International Journal of Agriculture and Food Research, 1, 1-11. [DOI:10.24102/ijafr.v1i1.123]
150. Shi, Y., Li, J., Shao, J., Deng, S., Wang, R., Li, N., Chen, S. (2010). Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Scientia Horticulturae, 124, 268-273. [DOI:10.1016/j.scienta.2009.12.031]
151. Sun, T., Xu, Z., Wu, C.T., Janes, M., Prinyawiwatkul, K. (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 72, 98-102. [DOI:10.1111/j.1750-3841.2006.00245.x]
152. Tomášková, I., Svatoš, M., Macků, J., Vanická, H., Resnerová, K., Čepl, J., Dohrenbusch, A. (2020). Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests, 11, 1-15. [DOI:10.3390/f11020211]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili S, Danaeifar A. Improved growth indices and tolerance of myrtle (Myrtus communis L.) to water-deficit stress by alleviating antioxidants and compatible osmolytes using a superabsorbent polymer. FOP 2022; 7 (1) :163-172
URL: http://flowerjournal.ir/article-1-245-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (Spring and Summer 2022) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645