[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 8، شماره 2 - ( پاییز و زمستان 1402 ) ::
جلد 8 شماره 2 صفحات 296-279 برگشت به فهرست نسخه ها
اثرهای سیلیکات پتاسیم و قارچ مایکوریزا بر ویژگی های مورفولوژیک شب بو (Matthiola incana) زیر تنش خشکی
علیرضا شریفیان ، عباس میرزاخانی* ، شهاب خاقانی ، فاضل فاضلی کاخکی
بخش زراعی و باغی، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی ، اراک ، ایران
چکیده:   (1466 مشاهده)
اثرهای محلول‌پاشی سیلیکات پتاسیم و تلقیح مایکوریزا بر کاهش اثرهای تنش خشکی بر گیاه شب بو در آزمایش کرت‌های خرد شده در قالب طرح کاملاً تصادفی با سه تکرار در مجتمع گلخانه‌ای پرندیس طی سال‌های 99-1398 مورد بررسی قرار گرفت. کرت اصلی به تنش خشکی در سه سطح (25%، 50% و 70% FC) و کرت فرعی به تلقیح با قارچ مایکوریزا آربسکولار (AMF) در دو سطح (0 و 200 گرم قارچ در هر گلدان) و کرت فرعی به سیلیکات پتاسیم (PS) در سه سطح (0، 200 و 400 پی پی ام) اختصاص یافت. نتایج نشان داد که در تنش خشکی متوسط ​​(50 درصد FC)، وزن خشک ساقه نسبت به شاهد حدود 20 درصد افزایش یافت. حداکثر طول ریشه (9/13 سانتی‌متر) که حدود 53 درصد بیشتر از شاهد بود، در گیاهان تلقیح شده با AMF که در معرض تنش خشکی متوسط ​​قرار داشتند و با 400 ppm SP اسپری شدند، ثبت شد. همچنین نتایج نشان داد که محلول پاشی 400 ppm PS در غیاب تلقیح AMF با 46 درصد بیشتر وزن خشک برگ نسبت به تیمارهای ppm 0 SP بدون تلقیح AMF مرتبط بود. بیشترین تعداد گل در تمامی سطوح تنش خشکی از کاربرد سطوح بالاتر PS بدست آمد. حداکثر وزن خشک ریشه در گیاهان تلقیح شده با AMFدر معرض تنش خشکی متوسط ​​و تیمار شده با 400 ppm SP مشاهده شد. محتوای پرولین با استفاده از 200 گرم AMF و 400 پی پی ام PS در سطوح تنش خشکی متوسط ​​و شدید (25٪ FC) کاهش یافت. به طور کلی، در سطوح تنش خشکی متوسط ​​و شدید، برخی از صفات رویشی و زایشی با محلول پاشی 400 ppm PS و تلقیح AMF بهبود یافتند.
واژه‌های کلیدی: تعداد گل، تعداد برگ، پرولین، وزن خشک ساقه
متن کامل [PDF 510 kb]   (355 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/7/7 | پذیرش: 1401/12/14 | انتشار: 1402/12/6
فهرست منابع
1. Abbasi, G.H, Akhtar, J., Haq, M.A., Ali, S., Chen, Z.H. Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46,135-146
2. Ahmadi, A., Baker, D.A. (2000). Stomatal and non-stomatal factors limiting photosynthesis in wheat in drought stress conditions. Iranian Journal of Agricultural Sciences, 31, 813-8253(In Persian).
3. Al-Jum'ah, J., Lakzian, A. Hallaj-nia, A. (2019). The effect of mycorrhizal coexistence on the content of proline and chlorophyll of wheat leaves in saline conditions, 16th Iranian Soil Science Congress.
4. Alvan, M. Rahmati, M. (2009). Economic Study of Cultivation in the Flower and Ornamental Plants Industry, Entrepreneurship Development Magazine, 1, 11-50 (In Persian).
5. Araghi, M. (2011). The role of Trichoderma species in increasing plant growth. Knowledge of plant pathology. Yasuj University 1, 34-42.
6. Arab, M., Khalighi, A. (2007). Effect of hydroxy quinoline sulfate and saccharides on potted lifespan and branch-cut flower quality of night-scented stocks. Journal of Agricultural Sciences, 13, 623-637.
7. Azcón-Aguilar, J., Barea, M. (2002). Applying mycorrhiza biotechnology to horticulture significance and potentials. Scientia Horticulturae, 68, 1-24. [DOI:10.1016/S0304-4238(96)00954-5]
8. Bae, M.J., Park, Y.G., Joe, G.B.R. (2010). Effect of silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Research Journal, 18, 50-56
9. Baher, Z.F., Mirza, M., Ghorbanli, M., Rezaii, M.B. (2001). The influence of water stress on plant height, herbal and essential oil yield and composition in (Satureja hortensis L.). Flavour and Fragrance Journal, 17, 275-277. [DOI:10.1002/ffj.1097]
10. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
11. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11-15. [DOI:10.1016/j.scienta.2007.05.012]
12. Caporal, A.G., Sommella, A., Lorito, M., Lombardi, N., Azam, S.M., Pigna, M., Ruocco, M. (2014). Trichoderma spp. Alleviate phytotoxicity in Lettuce plants (Lactuca sativa L.). Irrigated with arsenic-contaminated Water. Journal of Plant Physiology, 171, 1378-1384 [DOI:10.1016/j.jplph.2014.05.011]
13. Elmi, M. (2009). A brief overview of the global flower market. Business Thought Department, Iran Trade Development Organization. 5p.
14. Enjili, M., Jalilvand, P., Fatemi, H., Ismailpour, B. (2018). The effect of Mycorrhiza fungus on the growth and function of bell pepper (Capsicum annum L.) under drought stress conditions. Greenhouse cultivation science and technology. 9th year. 2nd Issue. 53-62 [DOI:10.29252/ejgcst.9.2.39]
15. Farooq, M. Wahid, A. Kobayashi,N. Fujita, D., Basra, S.M.A. (2009). Plant Drought Stress, Effects, Mechanisms and Management. Sustainable Agriculture, 29, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
16. Fazeli Kakhki, S.F., Moayedi, A.A. (2017). Plant stess physiology to genome. Sokhangostar publications, 473p.
17. Fitzsimons, M.S., Miller, M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937-1943. [DOI:10.3732/ajb.0900237]
18. Ghaemi, M., Zare, Z., Samiee Paghaleh, S. (2020). Effects of drought stress on some morphological characteristics and quercetin production levels of pot marigold at different stages of growth. Journal of Flower and Ornamental Plants, 5, 37-50 [DOI:10.52547/flowerjournal.5.1.37]
19. Ghazi, A.K., Zak, B.M. (2003). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14, 263-269. [DOI:10.1007/s00572-003-0265-2]
20. Gong, G.H., Chen. K., Chen, G., Wan, G.S. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. [DOI:10.1081/PLN-120020075]
21. Gong, H. X., Zhu, K., Chen, S., Wang Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plant in pots under drought. Plant Science, 169, 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
22. Iyyakkannu, S., Moon, S.S., Jang P.L., ByoungRyong, G. (2010). Propagation of Ornamental Plants, 10, 136-140.
23. Jazizadeh, A. and Mortezaeinejad, F. (2017). Effects of drought stress on physiological and morphological indicators of chicory to be used in urban green space. Greenhouse Cultivation Science and Technology, 6, 666-680.
24. Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements affect horticultural traits of greenhouse produced ornamental sunflowers. Horticultural Science, 43, 236-239. [DOI:10.21273/HORTSCI.43.1.236]
25. Kamenidou, S., Cavins, T.J., Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394. [DOI:10.1016/j.scienta.2009.09.008]
26. Khalid, K.A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289- 296.
27. Kim, S., Park, E.W., Choi, D.I. (2002). Silicon induced cell wall fortification of rice leaves A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095-1103. [DOI:10.1094/PHYTO.2002.92.10.1095]
28. Liang, Y., Sun, W., Zhu, Y.G. Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants. A review. Enviromental Pollution, 147, 422-428. [DOI:10.1016/j.envpol.2006.06.008]
29. Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. [DOI:10.1080/00380768.2004.10408447]
30. Soil Science and Plant Nutrition, 50, 11-18.
31. MattSon‌, N.‌S., leatherwoo‌‌, D.W.‌R. ‌(2010). ‌Potassium‌silicate drenches‌increased leaf silicon content and‌affect‌ morphological traits of several floricultural crops grown in a pear-based substrate. Horticultural Science, 45, 43-47. [DOI:10.21273/HORTSCI.45.1.43]
32. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., Rao, A. S. (2014). A case of silicon fertilization to improve crop yields in tropical soil. Proc. Nat. Acad. Sci. India Section B. Biological Sciences, 84, 505-518. [DOI:10.1007/s40011-013-0270-y]
33. Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biology, 12, 563-569. [DOI:10.1111/j.1438-8677.2009.00308.x]
34. Mehregan, B., Mousavi Fard, S. and Rezaeinejad, A. (2018). The effect of potassium silicate foliar application on some morphological, physiological and biochemical properties of (Alternanthera repens L.) under drought stress. Journal of Agricultural Sciences, 20, 299-314.
35. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell, and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
36. Reddy, A., Chiatanya, K. Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189- 1202. [DOI:10.1016/j.jplph.2004.01.013]
37. Ruiz-Llozno, J.M. (2003). Arbuscular mycorrhiza symbiosis and alleviation of osmotics stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317. [DOI:10.1007/s00572-003-0237-6]
38. Sodaeizadeh, H., Shamsaii, M., Tajammolian, M., Mir Mohammadi Meybodi, S.A., Hakimzadeh, M.A. (2016). Investigating the effect of drought stress on some morphological and physiological traits of Satureja. Plant Process and Function, 5, 1-12.
39. Sun, C.W., Liang, Y.C., Romheld, V. (2005). Effects of foliar- and root applied silicon on the enhancement of induced resistance to powdery mildew in cucumis sativus. Journal of Plant Patholgy, 54, 678-685. [DOI:10.1111/j.1365-3059.2005.01246.x]
40. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sinauer Associates. 3 edition, 690.
41. Voleti, S.R., Padmakumari, A.P., Raju, V.S., Mallikarjuna Babu, S., Ranganathan, S. (2008). Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L.). Crop Protection, 27, 1398- 1402. [DOI:10.1016/j.cropro.2008.05.009]
42. Xia, R.X., Wu, Q.S. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163, 417-425. [DOI:10.1016/j.jplph.2005.04.024]
43. Zangene, M., Salehi, H. (2020). Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla). Flower and Ornamental Plants, 5, 123-138 [DOI:10.52547/flowerjournal.5.2.123]
44. Zarghami, M., Shoor, M., Tehranifar, A., Moshtaqi, N. (2014). Evaluation of morphophysiological, biochemical and molecular responses of Atlas plant to drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
45. Zekavati, H.R., Shoor, M., Rohani, H., Fazeli Kakhki, S.F., Gangi Moghadam, A. (2019). Investigating the morphological and enzymatic changes by using Trichoderma fungus (Trichoderma harzianum L.) in tuberose plant (Polianthess tuberosa L.) under drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
46. Abbasi, G.H, Akhtar, J., Haq, M.A., Ali, S., Chen, Z.H. Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46,135-146
47. Ahmadi, A., Baker, D.A. (2000). Stomatal and non-stomatal factors limiting photosynthesis in wheat in drought stress conditions. Iranian Journal of Agricultural Sciences, 31, 813-8253(In Persian).
48. Al-Jum'ah, J., Lakzian, A. Hallaj-nia, A. (2019). The effect of mycorrhizal coexistence on the content of proline and chlorophyll of wheat leaves in saline conditions, 16th Iranian Soil Science Congress.
49. Alvan, M. Rahmati, M. (2009). Economic Study of Cultivation in the Flower and Ornamental Plants Industry, Entrepreneurship Development Magazine, 1, 11-50 (In Persian).
50. Araghi, M. (2011). The role of Trichoderma species in increasing plant growth. Knowledge of plant pathology. Yasuj University 1, 34-42.
51. Arab, M., Khalighi, A. (2007). Effect of hydroxy quinoline sulfate and saccharides on potted lifespan and branch-cut flower quality of night-scented stocks. Journal of Agricultural Sciences, 13, 623-637.
52. Azcón-Aguilar, J., Barea, M. (2002). Applying mycorrhiza biotechnology to horticulture significance and potentials. Scientia Horticulturae, 68, 1-24. [DOI:10.1016/S0304-4238(96)00954-5]
53. Bae, M.J., Park, Y.G., Joe, G.B.R. (2010). Effect of silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Research Journal, 18, 50-56
54. Baher, Z.F., Mirza, M., Ghorbanli, M., Rezaii, M.B. (2001). The influence of water stress on plant height, herbal and essential oil yield and composition in (Satureja hortensis L.). Flavour and Fragrance Journal, 17, 275-277. [DOI:10.1002/ffj.1097]
55. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
56. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11-15. [DOI:10.1016/j.scienta.2007.05.012]
57. Caporal, A.G., Sommella, A., Lorito, M., Lombardi, N., Azam, S.M., Pigna, M., Ruocco, M. (2014). Trichoderma spp. Alleviate phytotoxicity in Lettuce plants (Lactuca sativa L.). Irrigated with arsenic-contaminated Water. Journal of Plant Physiology, 171, 1378-1384 [DOI:10.1016/j.jplph.2014.05.011]
58. Elmi, M. (2009). A brief overview of the global flower market. Business Thought Department, Iran Trade Development Organization. 5p.
59. Enjili, M., Jalilvand, P., Fatemi, H., Ismailpour, B. (2018). The effect of Mycorrhiza fungus on the growth and function of bell pepper (Capsicum annum L.) under drought stress conditions. Greenhouse cultivation science and technology. 9th year. 2nd Issue. 53-62 [DOI:10.29252/ejgcst.9.2.39]
60. Farooq, M. Wahid, A. Kobayashi,N. Fujita, D., Basra, S.M.A. (2009). Plant Drought Stress, Effects, Mechanisms and Management. Sustainable Agriculture, 29, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
61. Fazeli Kakhki, S.F., Moayedi, A.A. (2017). Plant stess physiology to genome. Sokhangostar publications, 473p.
62. Fitzsimons, M.S., Miller, M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937-1943. [DOI:10.3732/ajb.0900237]
63. Ghaemi, M., Zare, Z., Samiee Paghaleh, S. (2020). Effects of drought stress on some morphological characteristics and quercetin production levels of pot marigold at different stages of growth. Journal of Flower and Ornamental Plants, 5, 37-50 [DOI:10.52547/flowerjournal.5.1.37]
64. Ghazi, A.K., Zak, B.M. (2003). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14, 263-269. [DOI:10.1007/s00572-003-0265-2]
65. Gong, G.H., Chen. K., Chen, G., Wan, G.S. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. [DOI:10.1081/PLN-120020075]
66. Gong, H. X., Zhu, K., Chen, S., Wang Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plant in pots under drought. Plant Science, 169, 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
67. Iyyakkannu, S., Moon, S.S., Jang P.L., ByoungRyong, G. (2010). Propagation of Ornamental Plants, 10, 136-140.
68. Jazizadeh, A. and Mortezaeinejad, F. (2017). Effects of drought stress on physiological and morphological indicators of chicory to be used in urban green space. Greenhouse Cultivation Science and Technology, 6, 666-680.
69. Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements affect horticultural traits of greenhouse produced ornamental sunflowers. Horticultural Science, 43, 236-239. [DOI:10.21273/HORTSCI.43.1.236]
70. Kamenidou, S., Cavins, T.J., Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394. [DOI:10.1016/j.scienta.2009.09.008]
71. Khalid, K.A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289- 296.
72. Kim, S., Park, E.W., Choi, D.I. (2002). Silicon induced cell wall fortification of rice leaves A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095-1103. [DOI:10.1094/PHYTO.2002.92.10.1095]
73. Liang, Y., Sun, W., Zhu, Y.G. Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants. A review. Enviromental Pollution, 147, 422-428. [DOI:10.1016/j.envpol.2006.06.008]
74. Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. [DOI:10.1080/00380768.2004.10408447]
75. Soil Science and Plant Nutrition, 50, 11-18.
76. MattSon‌, N.‌S., leatherwoo‌‌, D.W.‌R. ‌(2010). ‌Potassium‌silicate drenches‌increased leaf silicon content and‌affect‌ morphological traits of several floricultural crops grown in a pear-based substrate. Horticultural Science, 45, 43-47. [DOI:10.21273/HORTSCI.45.1.43]
77. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., Rao, A. S. (2014). A case of silicon fertilization to improve crop yields in tropical soil. Proc. Nat. Acad. Sci. India Section B. Biological Sciences, 84, 505-518. [DOI:10.1007/s40011-013-0270-y]
78. Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biology, 12, 563-569. [DOI:10.1111/j.1438-8677.2009.00308.x]
79. Mehregan, B., Mousavi Fard, S. and Rezaeinejad, A. (2018). The effect of potassium silicate foliar application on some morphological, physiological and biochemical properties of (Alternanthera repens L.) under drought stress. Journal of Agricultural Sciences, 20, 299-314.
80. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell, and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
81. Reddy, A., Chiatanya, K. Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189- 1202. [DOI:10.1016/j.jplph.2004.01.013]
82. Ruiz-Llozno, J.M. (2003). Arbuscular mycorrhiza symbiosis and alleviation of osmotics stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317. [DOI:10.1007/s00572-003-0237-6]
83. Sodaeizadeh, H., Shamsaii, M., Tajammolian, M., Mir Mohammadi Meybodi, S.A., Hakimzadeh, M.A. (2016). Investigating the effect of drought stress on some morphological and physiological traits of Satureja. Plant Process and Function, 5, 1-12.
84. Sun, C.W., Liang, Y.C., Romheld, V. (2005). Effects of foliar- and root applied silicon on the enhancement of induced resistance to powdery mildew in cucumis sativus. Journal of Plant Patholgy, 54, 678-685. [DOI:10.1111/j.1365-3059.2005.01246.x]
85. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sinauer Associates. 3 edition, 690.
86. Voleti, S.R., Padmakumari, A.P., Raju, V.S., Mallikarjuna Babu, S., Ranganathan, S. (2008). Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L.). Crop Protection, 27, 1398- 1402. [DOI:10.1016/j.cropro.2008.05.009]
87. Xia, R.X., Wu, Q.S. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163, 417-425. [DOI:10.1016/j.jplph.2005.04.024]
88. Zangene, M., Salehi, H. (2020). Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla). Flower and Ornamental Plants, 5, 123-138 [DOI:10.52547/flowerjournal.5.2.123]
89. Zarghami, M., Shoor, M., Tehranifar, A., Moshtaqi, N. (2014). Evaluation of morphophysiological, biochemical and molecular responses of Atlas plant to drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
90. Zekavati, H.R., Shoor, M., Rohani, H., Fazeli Kakhki, S.F., Gangi Moghadam, A. (2019). Investigating the morphological and enzymatic changes by using Trichoderma fungus (Trichoderma harzianum L.) in tuberose plant (Polianthess tuberosa L.) under drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifian A, Mirzakhani A, Khaghani S, fazeli kakhki F. Potassium silicate and mycorrhizal fungi effect on morphological traits of Matthiola incana under drought stress. FOP 2023; 8 (2) :279-296
URL: http://flowerjournal.ir/article-1-244-fa.html

شریفیان علیرضا، میرزاخانی عباس، خاقانی شهاب، فاضلی کاخکی فاضل. اثرهای سیلیکات پتاسیم و قارچ مایکوریزا بر ویژگی های مورفولوژیک شب بو (Matthiola incana) زیر تنش خشکی. گل و گیاهان زینتی. 1402; 8 (2) :279-296

URL: http://flowerjournal.ir/article-1-244-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 2 - ( پاییز و زمستان 1402 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4700