[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 8(2): 279-296 Back to browse issues page
Potassium silicate and mycorrhizal fungi effect on morphological traits of Matthiola incana under drought stress
Alireza Sharifian , Abbas Mirzakhani * , Shahab Khaghani , Fazel Fazeli kakhki
Abstract:   (1467 Views)
The effects of foliar application of potassium silicate and inoculation with mycorrhiza on alleviating the effects of drought stress on Matthiola incana plants were explored in a split-split-plot experiment based on a completely randomized design with three replications in Perndis Greenhouse Complex during 2019-2020. The main plot was assigned to drought stress at three levels (25%, 50%, and 70% FC), and the sub-plot was assigned to inoculation with arbuscular mycorrhizal fungi (AMF) at two levels (0 and 200 g of fungi per pot), and the sub-sub-plot was assigned to potassium silicate (PS) at three levels (0, 200, and 400 ppm). The results showed that at moderate drought stress (50% FC), stem dry weight was increased by about 20% compared to the control. The maximum root length (13.9 cm), which was about 53% higher than that of the control, was recorded in AMF-inoculated plants exposed to moderate drought stress and sprayed with 400 ppm SP. The results also showed that the foliar application of 400 ppm PS in the absence of AMF inoculation was related to 46% higher leaf dry weight than the treatments of 0 ppm SP with no AMF inoculation. The highest number of flowers in all drought stress levels was obtained from the application of the higher levels of PS. The maximum root dry weight was observed in AMF-inoculated plants exposed to moderate drought stress and treated with 400 ppm SP. Proline content was reduced by the application of 200 g of AMF and 400 ppm of PS at moderate and severe (25% FC) drought stress levels. In general, at moderate and severe drought stress levels, some vegetative and reproductive traits were improved by the foliar application of 400 ppm PS and AMF inoculation.
Keywords: Flower number, Leaf number, Proline, Stem dry weight
Full-Text [PDF 510 kb]   (355 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/09/29 | Accepted: 2023/03/5 | Published: 2024/02/25
References
1. Abbasi, G.H, Akhtar, J., Haq, M.A., Ali, S., Chen, Z.H. Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46,135-146
2. Ahmadi, A., Baker, D.A. (2000). Stomatal and non-stomatal factors limiting photosynthesis in wheat in drought stress conditions. Iranian Journal of Agricultural Sciences, 31, 813-8253(In Persian).
3. Al-Jum'ah, J., Lakzian, A. Hallaj-nia, A. (2019). The effect of mycorrhizal coexistence on the content of proline and chlorophyll of wheat leaves in saline conditions, 16th Iranian Soil Science Congress.
4. Alvan, M. Rahmati, M. (2009). Economic Study of Cultivation in the Flower and Ornamental Plants Industry, Entrepreneurship Development Magazine, 1, 11-50 (In Persian).
5. Araghi, M. (2011). The role of Trichoderma species in increasing plant growth. Knowledge of plant pathology. Yasuj University 1, 34-42.
6. Arab, M., Khalighi, A. (2007). Effect of hydroxy quinoline sulfate and saccharides on potted lifespan and branch-cut flower quality of night-scented stocks. Journal of Agricultural Sciences, 13, 623-637.
7. Azcón-Aguilar, J., Barea, M. (2002). Applying mycorrhiza biotechnology to horticulture significance and potentials. Scientia Horticulturae, 68, 1-24. [DOI:10.1016/S0304-4238(96)00954-5]
8. Bae, M.J., Park, Y.G., Joe, G.B.R. (2010). Effect of silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Research Journal, 18, 50-56
9. Baher, Z.F., Mirza, M., Ghorbanli, M., Rezaii, M.B. (2001). The influence of water stress on plant height, herbal and essential oil yield and composition in (Satureja hortensis L.). Flavour and Fragrance Journal, 17, 275-277. [DOI:10.1002/ffj.1097]
10. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
11. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11-15. [DOI:10.1016/j.scienta.2007.05.012]
12. Caporal, A.G., Sommella, A., Lorito, M., Lombardi, N., Azam, S.M., Pigna, M., Ruocco, M. (2014). Trichoderma spp. Alleviate phytotoxicity in Lettuce plants (Lactuca sativa L.). Irrigated with arsenic-contaminated Water. Journal of Plant Physiology, 171, 1378-1384 [DOI:10.1016/j.jplph.2014.05.011]
13. Elmi, M. (2009). A brief overview of the global flower market. Business Thought Department, Iran Trade Development Organization. 5p.
14. Enjili, M., Jalilvand, P., Fatemi, H., Ismailpour, B. (2018). The effect of Mycorrhiza fungus on the growth and function of bell pepper (Capsicum annum L.) under drought stress conditions. Greenhouse cultivation science and technology. 9th year. 2nd Issue. 53-62 [DOI:10.29252/ejgcst.9.2.39]
15. Farooq, M. Wahid, A. Kobayashi,N. Fujita, D., Basra, S.M.A. (2009). Plant Drought Stress, Effects, Mechanisms and Management. Sustainable Agriculture, 29, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
16. Fazeli Kakhki, S.F., Moayedi, A.A. (2017). Plant stess physiology to genome. Sokhangostar publications, 473p.
17. Fitzsimons, M.S., Miller, M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937-1943. [DOI:10.3732/ajb.0900237]
18. Ghaemi, M., Zare, Z., Samiee Paghaleh, S. (2020). Effects of drought stress on some morphological characteristics and quercetin production levels of pot marigold at different stages of growth. Journal of Flower and Ornamental Plants, 5, 37-50 [DOI:10.52547/flowerjournal.5.1.37]
19. Ghazi, A.K., Zak, B.M. (2003). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14, 263-269. [DOI:10.1007/s00572-003-0265-2]
20. Gong, G.H., Chen. K., Chen, G., Wan, G.S. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. [DOI:10.1081/PLN-120020075]
21. Gong, H. X., Zhu, K., Chen, S., Wang Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plant in pots under drought. Plant Science, 169, 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
22. Iyyakkannu, S., Moon, S.S., Jang P.L., ByoungRyong, G. (2010). Propagation of Ornamental Plants, 10, 136-140.
23. Jazizadeh, A. and Mortezaeinejad, F. (2017). Effects of drought stress on physiological and morphological indicators of chicory to be used in urban green space. Greenhouse Cultivation Science and Technology, 6, 666-680.
24. Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements affect horticultural traits of greenhouse produced ornamental sunflowers. Horticultural Science, 43, 236-239. [DOI:10.21273/HORTSCI.43.1.236]
25. Kamenidou, S., Cavins, T.J., Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394. [DOI:10.1016/j.scienta.2009.09.008]
26. Khalid, K.A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289- 296.
27. Kim, S., Park, E.W., Choi, D.I. (2002). Silicon induced cell wall fortification of rice leaves A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095-1103. [DOI:10.1094/PHYTO.2002.92.10.1095]
28. Liang, Y., Sun, W., Zhu, Y.G. Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants. A review. Enviromental Pollution, 147, 422-428. [DOI:10.1016/j.envpol.2006.06.008]
29. Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. [DOI:10.1080/00380768.2004.10408447]
30. Soil Science and Plant Nutrition, 50, 11-18.
31. MattSon‌, N.‌S., leatherwoo‌‌, D.W.‌R. ‌(2010). ‌Potassium‌silicate drenches‌increased leaf silicon content and‌affect‌ morphological traits of several floricultural crops grown in a pear-based substrate. Horticultural Science, 45, 43-47. [DOI:10.21273/HORTSCI.45.1.43]
32. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., Rao, A. S. (2014). A case of silicon fertilization to improve crop yields in tropical soil. Proc. Nat. Acad. Sci. India Section B. Biological Sciences, 84, 505-518. [DOI:10.1007/s40011-013-0270-y]
33. Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biology, 12, 563-569. [DOI:10.1111/j.1438-8677.2009.00308.x]
34. Mehregan, B., Mousavi Fard, S. and Rezaeinejad, A. (2018). The effect of potassium silicate foliar application on some morphological, physiological and biochemical properties of (Alternanthera repens L.) under drought stress. Journal of Agricultural Sciences, 20, 299-314.
35. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell, and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
36. Reddy, A., Chiatanya, K. Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189- 1202. [DOI:10.1016/j.jplph.2004.01.013]
37. Ruiz-Llozno, J.M. (2003). Arbuscular mycorrhiza symbiosis and alleviation of osmotics stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317. [DOI:10.1007/s00572-003-0237-6]
38. Sodaeizadeh, H., Shamsaii, M., Tajammolian, M., Mir Mohammadi Meybodi, S.A., Hakimzadeh, M.A. (2016). Investigating the effect of drought stress on some morphological and physiological traits of Satureja. Plant Process and Function, 5, 1-12.
39. Sun, C.W., Liang, Y.C., Romheld, V. (2005). Effects of foliar- and root applied silicon on the enhancement of induced resistance to powdery mildew in cucumis sativus. Journal of Plant Patholgy, 54, 678-685. [DOI:10.1111/j.1365-3059.2005.01246.x]
40. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sinauer Associates. 3 edition, 690.
41. Voleti, S.R., Padmakumari, A.P., Raju, V.S., Mallikarjuna Babu, S., Ranganathan, S. (2008). Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L.). Crop Protection, 27, 1398- 1402. [DOI:10.1016/j.cropro.2008.05.009]
42. Xia, R.X., Wu, Q.S. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163, 417-425. [DOI:10.1016/j.jplph.2005.04.024]
43. Zangene, M., Salehi, H. (2020). Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla). Flower and Ornamental Plants, 5, 123-138 [DOI:10.52547/flowerjournal.5.2.123]
44. Zarghami, M., Shoor, M., Tehranifar, A., Moshtaqi, N. (2014). Evaluation of morphophysiological, biochemical and molecular responses of Atlas plant to drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
45. Zekavati, H.R., Shoor, M., Rohani, H., Fazeli Kakhki, S.F., Gangi Moghadam, A. (2019). Investigating the morphological and enzymatic changes by using Trichoderma fungus (Trichoderma harzianum L.) in tuberose plant (Polianthess tuberosa L.) under drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
46. Abbasi, G.H, Akhtar, J., Haq, M.A., Ali, S., Chen, Z.H. Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46,135-146
47. Ahmadi, A., Baker, D.A. (2000). Stomatal and non-stomatal factors limiting photosynthesis in wheat in drought stress conditions. Iranian Journal of Agricultural Sciences, 31, 813-8253(In Persian).
48. Al-Jum'ah, J., Lakzian, A. Hallaj-nia, A. (2019). The effect of mycorrhizal coexistence on the content of proline and chlorophyll of wheat leaves in saline conditions, 16th Iranian Soil Science Congress.
49. Alvan, M. Rahmati, M. (2009). Economic Study of Cultivation in the Flower and Ornamental Plants Industry, Entrepreneurship Development Magazine, 1, 11-50 (In Persian).
50. Araghi, M. (2011). The role of Trichoderma species in increasing plant growth. Knowledge of plant pathology. Yasuj University 1, 34-42.
51. Arab, M., Khalighi, A. (2007). Effect of hydroxy quinoline sulfate and saccharides on potted lifespan and branch-cut flower quality of night-scented stocks. Journal of Agricultural Sciences, 13, 623-637.
52. Azcón-Aguilar, J., Barea, M. (2002). Applying mycorrhiza biotechnology to horticulture significance and potentials. Scientia Horticulturae, 68, 1-24. [DOI:10.1016/S0304-4238(96)00954-5]
53. Bae, M.J., Park, Y.G., Joe, G.B.R. (2010). Effect of silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Research Journal, 18, 50-56
54. Baher, Z.F., Mirza, M., Ghorbanli, M., Rezaii, M.B. (2001). The influence of water stress on plant height, herbal and essential oil yield and composition in (Satureja hortensis L.). Flavour and Fragrance Journal, 17, 275-277. [DOI:10.1002/ffj.1097]
55. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
56. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11-15. [DOI:10.1016/j.scienta.2007.05.012]
57. Caporal, A.G., Sommella, A., Lorito, M., Lombardi, N., Azam, S.M., Pigna, M., Ruocco, M. (2014). Trichoderma spp. Alleviate phytotoxicity in Lettuce plants (Lactuca sativa L.). Irrigated with arsenic-contaminated Water. Journal of Plant Physiology, 171, 1378-1384 [DOI:10.1016/j.jplph.2014.05.011]
58. Elmi, M. (2009). A brief overview of the global flower market. Business Thought Department, Iran Trade Development Organization. 5p.
59. Enjili, M., Jalilvand, P., Fatemi, H., Ismailpour, B. (2018). The effect of Mycorrhiza fungus on the growth and function of bell pepper (Capsicum annum L.) under drought stress conditions. Greenhouse cultivation science and technology. 9th year. 2nd Issue. 53-62 [DOI:10.29252/ejgcst.9.2.39]
60. Farooq, M. Wahid, A. Kobayashi,N. Fujita, D., Basra, S.M.A. (2009). Plant Drought Stress, Effects, Mechanisms and Management. Sustainable Agriculture, 29, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
61. Fazeli Kakhki, S.F., Moayedi, A.A. (2017). Plant stess physiology to genome. Sokhangostar publications, 473p.
62. Fitzsimons, M.S., Miller, M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937-1943. [DOI:10.3732/ajb.0900237]
63. Ghaemi, M., Zare, Z., Samiee Paghaleh, S. (2020). Effects of drought stress on some morphological characteristics and quercetin production levels of pot marigold at different stages of growth. Journal of Flower and Ornamental Plants, 5, 37-50 [DOI:10.52547/flowerjournal.5.1.37]
64. Ghazi, A.K., Zak, B.M. (2003). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14, 263-269. [DOI:10.1007/s00572-003-0265-2]
65. Gong, G.H., Chen. K., Chen, G., Wan, G.S. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. [DOI:10.1081/PLN-120020075]
66. Gong, H. X., Zhu, K., Chen, S., Wang Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plant in pots under drought. Plant Science, 169, 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
67. Iyyakkannu, S., Moon, S.S., Jang P.L., ByoungRyong, G. (2010). Propagation of Ornamental Plants, 10, 136-140.
68. Jazizadeh, A. and Mortezaeinejad, F. (2017). Effects of drought stress on physiological and morphological indicators of chicory to be used in urban green space. Greenhouse Cultivation Science and Technology, 6, 666-680.
69. Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements affect horticultural traits of greenhouse produced ornamental sunflowers. Horticultural Science, 43, 236-239. [DOI:10.21273/HORTSCI.43.1.236]
70. Kamenidou, S., Cavins, T.J., Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394. [DOI:10.1016/j.scienta.2009.09.008]
71. Khalid, K.A. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20, 289- 296.
72. Kim, S., Park, E.W., Choi, D.I. (2002). Silicon induced cell wall fortification of rice leaves A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095-1103. [DOI:10.1094/PHYTO.2002.92.10.1095]
73. Liang, Y., Sun, W., Zhu, Y.G. Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants. A review. Enviromental Pollution, 147, 422-428. [DOI:10.1016/j.envpol.2006.06.008]
74. Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. [DOI:10.1080/00380768.2004.10408447]
75. Soil Science and Plant Nutrition, 50, 11-18.
76. MattSon‌, N.‌S., leatherwoo‌‌, D.W.‌R. ‌(2010). ‌Potassium‌silicate drenches‌increased leaf silicon content and‌affect‌ morphological traits of several floricultural crops grown in a pear-based substrate. Horticultural Science, 45, 43-47. [DOI:10.21273/HORTSCI.45.1.43]
77. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., Rao, A. S. (2014). A case of silicon fertilization to improve crop yields in tropical soil. Proc. Nat. Acad. Sci. India Section B. Biological Sciences, 84, 505-518. [DOI:10.1007/s40011-013-0270-y]
78. Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biology, 12, 563-569. [DOI:10.1111/j.1438-8677.2009.00308.x]
79. Mehregan, B., Mousavi Fard, S. and Rezaeinejad, A. (2018). The effect of potassium silicate foliar application on some morphological, physiological and biochemical properties of (Alternanthera repens L.) under drought stress. Journal of Agricultural Sciences, 20, 299-314.
80. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell, and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
81. Reddy, A., Chiatanya, K. Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189- 1202. [DOI:10.1016/j.jplph.2004.01.013]
82. Ruiz-Llozno, J.M. (2003). Arbuscular mycorrhiza symbiosis and alleviation of osmotics stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317. [DOI:10.1007/s00572-003-0237-6]
83. Sodaeizadeh, H., Shamsaii, M., Tajammolian, M., Mir Mohammadi Meybodi, S.A., Hakimzadeh, M.A. (2016). Investigating the effect of drought stress on some morphological and physiological traits of Satureja. Plant Process and Function, 5, 1-12.
84. Sun, C.W., Liang, Y.C., Romheld, V. (2005). Effects of foliar- and root applied silicon on the enhancement of induced resistance to powdery mildew in cucumis sativus. Journal of Plant Patholgy, 54, 678-685. [DOI:10.1111/j.1365-3059.2005.01246.x]
85. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sinauer Associates. 3 edition, 690.
86. Voleti, S.R., Padmakumari, A.P., Raju, V.S., Mallikarjuna Babu, S., Ranganathan, S. (2008). Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L.). Crop Protection, 27, 1398- 1402. [DOI:10.1016/j.cropro.2008.05.009]
87. Xia, R.X., Wu, Q.S. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163, 417-425. [DOI:10.1016/j.jplph.2005.04.024]
88. Zangene, M., Salehi, H. (2020). Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla). Flower and Ornamental Plants, 5, 123-138 [DOI:10.52547/flowerjournal.5.2.123]
89. Zarghami, M., Shoor, M., Tehranifar, A., Moshtaqi, N. (2014). Evaluation of morphophysiological, biochemical and molecular responses of Atlas plant to drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
90. Zekavati, H.R., Shoor, M., Rohani, H., Fazeli Kakhki, S.F., Gangi Moghadam, A. (2019). Investigating the morphological and enzymatic changes by using Trichoderma fungus (Trichoderma harzianum L.) in tuberose plant (Polianthess tuberosa L.) under drought stress. Ph.D. thesis, Ferdowsi University of Mashhad.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifian A, Mirzakhani A, Khaghani S, fazeli kakhki F. Potassium silicate and mycorrhizal fungi effect on morphological traits of Matthiola incana under drought stress. FOP 2023; 8 (2) :279-296
URL: http://flowerjournal.ir/article-1-244-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 35 queries by YEKTAWEB 4700