[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 7(2): 293-314 Back to browse issues page
Nutraceutical potential of edible flowers: A new perspective for healthy lifestyle
Hassan Salehi * , Moein Sourani
Abstract:   (1308 Views)
In the modern era, edible flowers are gaining more and more popularity among the consumers. Edible flowers are appreciated for their sensory properties such as color, taste, aroma and evoke positive aesthetic impressions. Edible flowers provide bioactive compounds in the form of anthocyanins, carotenoids, polyphenols, vitamins and minerals. Edible flowers have a high content of phenolic compounds and a high antioxidant capacity, that confers positive effects on oxidative stress-related diseases. Unfortunately, the idea of eating flowers is still considered with mistrust, despite their agronomic potential and the fact that most of edible flowers are consumed by tribal inhabitants collected from the wild resources. Therefore, it is essential, first and foremost, to improve nutrition education aimed at proposing flowers as a functional food. This paper presents a comprehensive review of scientific studies about various species of edible flowers, their nutritional and phytochemical composition, health benefits, pre- and post-harvest technology, functional food products, marketing and eventually increasing the adequacy of edible flowers as potent food ingredient. In conclusion, edible flowers could be used as a new approach for the development of nutraceutical products.
Keywords: Antioxidant capacity, Bioactive compounds, Edible flowers, Nutraceutical potential, Phytochemical compounds
Full-Text [PDF 896 kb]   (326 Downloads)    
Type of Study: Review | Subject: Special
Received: 2022/09/27 | Accepted: 2022/09/30 | Published: 2023/06/24
References
1. Abdel-Aal, E.S.M., Rabalski, I. (2015). Composition of lutein ester regioisomers in marigold flower, dietary supplement, and herbal tea. Journal of Agricultural and Food Chemistry, 63(44), 9740-9746, doi: 10.1021/acs.jafc.5b04430. [DOI:10.1021/acs.jafc.5b04430]
2. Abdel-Aal, E.S.M., Akhtar, H., Zaheer, K., Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169-1185, doi: 10.3390/nu5041169. [DOI:10.3390/nu5041169]
3. Abdelhafez, O.H., Fawzy, M.A., Fahim, J.R., Desoukey, S.Y., Krischke, M., Mueller, M.J., et al. (2018). Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats. PlosOne, 13(8), Article e0202362, doi: 10.1371/journal.pone.0202362. [DOI:10.1371/journal.pone.0202362]
4. Al-Snafi, A.E. (2015). The pharmacological Importance of Antirrhinum majus-A review. Asian Journal of Pharmaceutical Science and Technology, 5(4), 313-320.
5. Araújo, S., Matos, C., Correia, E., Antunes, M.C. (2019). Evaluation of phytochemicals content, antioxidant activity and mineral composition of selected edible flowers. Quality Assurance and Safety of Crops & Foods, 11(5), 471-478, doi: 10.3920/QAS2018.1497. [DOI:10.3920/QAS2018.1497]
6. Armijos, C.P., Meneses, M.A., Guaman-Balc azar, M.C., Cuenca, M., Su arez, A.I. (2018). Antioxidant properties of medicinal plants used in the Southern Ecuador. Journal of Pharmacognosy and Phytochemistry, 7(1), 2803-2812.
7. Benvenuti, S., Bortolotti, E., Maggini, R. (2016). Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Scientia Horticulturae, 199, 170-177, doi: 10.1016/j.scienta.2015.12.052. [DOI:10.1016/j.scienta.2015.12.052]
8. Bhave, A., Schulzova, V., Libor, M., Hajslova, J. (2020). Influence of harvest date and post-harvest treatment on carotenoids and flavonoids composition in French marigold flowers. Journal of Agricultural and Food Chemistry, doi: 10.1021/acs.jafc.0c02042. [DOI:10.1021/acs.jafc.0c02042]
9. Bragueto Escher, G., Cardoso Borges, L.D.C., Sousa Santos, J., Mendanha Cruz, T., Boscacci Marques, M., Araújo Vieira do Carmo, M., Zhang, L. (2019). From the field to the pot: phytochemical and functional analyses of Calendula officinalis L. flower for incorporation in an organic yogurt. Antioxidants, 8(11), 559, doi: 10.3390/antiox8110559. [DOI:10.3390/antiox8110559]
10. Cao, X., Xiong, X., Xu, Z., Zeng, Q., He, S., Yuan, Y., et al. (2020). Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. Journal of Food Measurement and Characterization, 1-8, doi: 10.1007/s11694-020-00394-4. [DOI:10.1007/s11694-020-00394-4]
11. Cavaiuolo, M., Cocetta, G., Ferrante, A. (2013). The antioxidants changes in ornamental flowers during development and senescence. Antioxidants, 2(3), 132-155, doi: 10.3390/antiox2030132. [DOI:10.3390/antiox2030132]
12. Cendrowski, A., Scibisz, ' I., Mitek, M., Kieliszek, M., Kolniak-Ostek, J. (2017). Profile of the phenolic compounds of Rosa rugosa petals. Journal of Food Quality, 10, doi: 10.1155/2017/7941347. [DOI:10.1155/2017/7941347]
13. Chen, G.L., Chen, S.G., Xiao, Y., Fu, N.L. (2018). Antioxidant capacities and total phenolic contents of 30 flowers. Industrial Crops and Products, 111, 430-445, doi: 10.1016/j.indcrop.2017.10.051. [DOI:10.1016/j.indcrop.2017.10.051]
14. Chen, N.H., Wei, S. (2017). Factors influencing consumers' attitudes towards the consumption of edible flowers. Food Quality and Preference, 56, 93-100, doi: 10.1016/j.foodqual.2016.10.001. [DOI:10.1016/j.foodqual.2016.10.001]
15. Chensom, S., Okumura, H., Mishima, T. (2019). Primary screening of antioxidant activity, total polyphenol content, carotenoid content, and nutritional composition of 13 edible flowers from Japan. Preventive Nutrition and Food Science, 24(2), 171-178, doi: 10.3746/pnf.2019.24.2.171. [DOI:10.3746/pnf.2019.24.2.171]
16. Chiou, S.Y., Sung, J.M., Huang, P.W., Lin, S.D. (2017). Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. Journal of Medicinal Food, 20(2), 171-179, doi: 10.1089/jmf.2016.3790. [DOI:10.1089/jmf.2016.3790]
17. Dhiman, P., Malik, N., Khatkar, A., Kulharia, M. (2017). Antioxidant, xanthine oxidase and monoamine oxidase inhibitory potential of coumarins: A review. Current Organic Chemistry, 21(4), 294-304, doi: 10.2174/1385272820666161021103547. [DOI:10.2174/1385272820666161021103547]
18. Dorozko, J., Kunkulberga, D., Sivicka, I., Kruma, Z. (2019). The influence of various drying methods on the quality of edible flower petals. In: Proceedings of 13th Baltic Conference on Food Science and Technology "FOOD, NUTRITION, WELL-BEING". Latvia, Latvia University of Life Sciences and Technologies, 182-187. 10.22616/FoodBalt.2019.045. [DOI:10.22616/FoodBalt.2019.045]
19. El Bayani, G.F., Marpaung, N.L.E., Simorangkir, D.A.S., Sianipar, I.R., Ibrahim, N., Kartinah, N.T., et al. (2018). Anti-inflammatory effects of Hibiscus sabdariffa Linn. on the IL-1β/IL-1ra ratio in plasma and hippocampus of overtrained rats and correlation with spatial memory. Kobe Journal of Medical Sciences, 64(2), 73-83.
20. Espejel, E.A.R., Alvarez, O.C., Munoz, ˜ J.M.M., Mateos, M.D.R.G., Leon, ' M.T.B.C., Dami' an, M.T.M. (2019). Physicochemical quality, antioxidant capacity and nutritional value of edible flowers of some wild dahlia species. Folia Horticulturae, 31(2), 331-342, doi: 10.2478/fhort-2019-0026. [DOI:10.2478/fhort-2019-0026]
21. Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60, 38-50, doi: 10.1016/j.jfca.2017.03.017. [DOI:10.1016/j.jfca.2017.03.017]
22. Fernandes, L., Casal, S., Pereira, J.A., Pereira, E.L., Saraiva, J.A., Ramalhosa, E. (2020). Freezing of edible flowers: Effect on microbial and antioxidant quality during storage. Journal of Food Science, 85(4), 1151-1159, doi: 10.1111/1750-3841.15097. [DOI:10.1111/1750-3841.15097]
23. Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2018). Effects of different drying methods on the bioactive compounds and antioxidant properties of edible Centaurea (Centaurea cyanus) petals. Brazilian Journal of Food Technology, 21, doi: 10.1590/1981-6723.21117. [DOI:10.1590/1981-6723.21117]
24. Fernandes, L., Ramalhosa, E., Baptista, P., Pereira, J.A., Saraiva, J.A., Casal, S.I. (2019). Nutritional and nutraceutical composition of pansies (Viola× wittrockiana) during flowering. Journal of Food Science, 84(3), 490-498, doi: 10.1111/1750-3841.14482. [DOI:10.1111/1750-3841.14482]
25. Fernandes, L., Ramalhosa, E., Pereira, J.A., Saraiva, J.A., Casal, S. (2020). Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Research International, 132, doi: 10.1016/j.foodres.2020.109070. [DOI:10.1016/j.foodres.2020.109070]
26. Garzon, ' G.A., Manns, D.C., Riedl, K., Schwartz, S.J., Padilla-Zakour, O. (2015). Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). Journal of Agricultural and Food Chemistry, 63(6), 1803-1811, doi: 10.1021/ jf503366c. [DOI:10.1021/jf503366c]
27. Garzón, G.A., Wrolstad, R.E. (2009). Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry, 114(1), 44-49, doi: 10.1016/j.foodchem.2008.09.013. [DOI:10.1016/j.foodchem.2008.09.013]
28. Gonçalves, J., Borges Júnior, J.C.F., Carlos, L.D.A., Silva, A.P.C.M., Souza, F.A.D. (2019). Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Revista Ceres, 66(6), 407-415, doi: 10.1590/0034-737x201966060001. [DOI:10.1590/0034-737x201966060001]
29. Gonzalez-Barrio, ' R., Periago, M.J., Luna-Recio, C., Garcia-Alonso, F.J., NavarroGonzalez, ' I. (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252, 373-380, doi: 10.1016/j.foodchem.2018.01.102. [DOI:10.1016/j.foodchem.2018.01.102]
30. Grzeszczuk, M., Stefaniak, A., Meller, E., Wysocka, G. (2018). Mineral composition of some edible flowers. Journal of Elementology, 23(1), 151-162, doi: 10.5601/ jelem.2017.22.2.1352. [DOI:10.5601/jelem.2017.22.2.1352]
31. Harati, E., Bahrami, M., Razavi, A., Kamalinejad, M., Mohammadian, M., Rastegar, T., et al. (2018). Effects of viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma. Iranian Journal of Allergy, Asthma and Immunology, 17(5), 409-417, doi: 10.18502/ijaai. v17i5.299. [DOI:10.18502/ijaai.v17i5.299]
32. Hasler, C.M., Blumberg, J.B. (1999). Phytochemicals: Biochemistry and physiology. Introduction. The Journal of Nutrition, 129(3), 756S-757S, doi: 10.1093/ jn/129.3.756s. [DOI:10.1093/jn/129.3.756S]
33. Hettiarachchi, M.P., Balas, J. (2004). Effects of cold storage on post-harvest keeping quality of gloriosa (Gloriosa superba L.) flowering stems. Tropical Agricultural Research and Extension, 7, 88-94, doi: 10.17660/ ActaHortic.2005.683.60. [DOI:10.4038/tare.v7i0.5422]
34. Huang, W., Mao, S., Zhang, L., Lu, B., Zheng, L., Zhou, F., et al. (2017). Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays. Journal of the Science of Food and Agriculture, 97(14), 4760-4769, doi: 10.1002/jsfa.8345. [DOI:10.1002/jsfa.8345]
35. Jan, N., John, R. (2017). Calendula officinalis-an important medicinal plant with potential biological properties. Proceedings of the Indian National Science Academy, 83(4), 769-787, doi: 10.16943/ptinsa/2017/49126. [DOI:10.16943/ptinsa/2017/49126]
36. Kaisoon, O., Konczak, I., Siriamornpun, S. (2012). Potential health enhancing properties of edible flowers from Thailand. Food Research International, 46(2), 563-571, doi: 10.1016/j.foodres.2011.06.016. [DOI:10.1016/j.foodres.2011.06.016]
37. Kalaiselvi, M., Narmatha, R., Ragavendran, P., Ravikumar, G., Sophia, D., Gomathi, D., et al. (2011). In vitro free radical scavenging activity of Jasminum sambac (L.) Ait oleaceae flower. Asian Journal of Pharmaceutical & Biological Research, 1(3). [DOI:10.1016/S2221-1691(11)60158-5]
38. Kao, F.J., Chiang, W.D., Liu, H.M. (2015). Inhibitory effect of daylily buds at various stages of maturity on nitric oxide production and the involved phenolic compounds. LWT-Food Science and Technology, 61(1), 130-137, doi: 10.1016/j. lwt.2014.11.023. [DOI:10.1016/j.lwt.2014.11.023]
39. Kaulika, N., Febriansah, R. (2019). Chemopreventive activity of roselle's hexane fraction against breast cancer by in-vitro and in-silico study. In Third international conference on sustainable innovation 2019-health science and nursing (IcoSIHSN2019). Atlantis Press, doi: 10.2991/icosihsn-19.2019.16. [DOI:10.2991/icosihsn-19.2019.16]
40. Kim, B.R., Paudel, S.B., Nam, J.W., Jin, C.H., Lee, I.S., Han, A.R. (2020). Constituents of Coreopsis lanceolate flower and their dipeptidyl peptidase IV inhibitory effects. Molecules, 25(19), 4370, doi: 10.3390/ molecules25194370. [DOI:10.3390/molecules25194370]
41. Kim, G.C., Kim, J.S., Kim, G.M., Choi, S.Y. (2017). Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food & Nutrition Research, 61(1), 1339555, doi: 0.1080/16546628. 12017.1339555. [DOI:10.1080/16546628.2017.1339555]
42. Kinupp, V., Lorenzi, H. (2014). Plantas Alimentícias Nao ˜ Convencionais no Brasil: Guia de identificaç˜ ao, aspectos nutricionais e receitas ilustradas. Plantarum-Nova Odessa, 768p.
43. Koche, D., Shirsat, R., Kawale, M. (2016). An overerview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia Journal, 9, 1-11.
44. Koike, A.C., S' a, A., Araujo, E.D.S., Almeida-Muradian, L.B.D., Villavicencio, A.L. (2018). Evaluation of carotenoids in edible flowers processed by radiation. Brazilian Congress of Food Science and Technology, 26.
45. Koike, A., Barreira, J.C., Barros, L., Santos-Buelga, C., Villavicencio, A.L., Ferreira, I.C. (2015a). Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food chemistry, 179, 6-14, doi: 10.1016/j. foodchem.2015.01.123. [DOI:10.1016/j.foodchem.2015.01.123]
46. Koike, A., Barreira, J.C., Barros, L., Santos-Buelga, C., Villavicencio, A.L., Ferreira, I.C. (2015b). Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innovative Food Science & Emerging Technologies, 30, 138-144, doi:10.1016/j.ifset. 2015.04.009. [DOI:10.1016/j.ifset.2015.04.009]
47. Kou, L., Turner, E.R., Luo, Y. (2012). Extending the shelf life of edible flowers with controlled release of 1-Methylcyclopropene and modified atmosphere packaging. Journal of Food Science, 77(5), S188-S193, doi: 10.1111/j.1750-3841.2012.02683.x. [DOI:10.1111/j.1750-3841.2012.02683.x]
48. Kovacs, E., Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210, doi: 10.1016/S0968-4328(01)00012-9. [DOI:10.1016/S0968-4328(01)00012-9]
49. Kumar, A., Singh, A. (2012). Review on Hibiscus rosa sinensis. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(2), 534-538.
50. Kumari, P. (2017). Isolation and Characterization of Anthocyanin Pigments from Indian Rose Varieties as a Potential Source of Nutraceuticals. Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi.
51. Kumari, P., Bhargava, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. Journal of Functional Foods, 78, 104375, doi: 10.1016/j.jff.2021.104375 [DOI:10.1016/j.jff.2021.104375]
52. Kumari, P., Raju, D.V.S., Prasad, K.V., Singh, K.P., Saha, S., Arora, A., et al. (2017). Quantification and correlation of anthocyanin pigments and their antioxidant activities in rose (Rosa hybrida) varieties. Indian Journal of Agricultural Sciences, 87(10), 1340-1346. [DOI:10.56093/ijas.v87i10.74991]
53. Kumari, P., Raju, D.V.S., Singh, K.P., Prasad, K.V., Panwar, S. (2018). Characterization of phenolic compounds in petal extracts of rose. Indian Journal of Horticulture, 75(2), 349-351, doi: 10.5958/0974-0112.2018.00060.9. [DOI:10.5958/0974-0112.2018.00060.9]
54. Lara-Cort' es, E., Osorio-Díaz, P., Jim'enez-Aparicio, A., Bautista-Banos, S. (2013). Nutritional content, functional properties and conservation of edible flowers. Review. Archivos Latinoamericanos de Nutrici' on, 63(3), 197-208.
55. Lauderdale, C., Bradley, L. (2014). Choosing and using edible flowers: Enjoy the flavor, color, and texture that flowers can bring to food. North Carolina Cooperative Extension Service, doi: 10.1080/87559129.2019. 1639727.
56. Lee, E.J., Kim, J.S., Kim, H.P., Lee, J.H., Kang, S.S. (2010). Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chemistry, 120(1), 134-139, doi: 10.1016/j. foodchem.2009.09.088. [DOI:10.1016/j.foodchem.2009.09.088]
57. Lee, J.H., Lee, H.J., Choung, M.G. (2011). Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chemistry, 129(2), 272-278, doi: 10.1016/j.foodchem.2011.04.040. [DOI:10.1016/j.foodchem.2011.04.040]
58. Li, W., Song, X., Hua, Y., Tao, J., Zhou, C. (2020). Effects of different harvest times on nutritional component of herbaceous peony flower petals. Journal of Chemistry, 2020, doi: 10.1155/2020/4942805. [DOI:10.1155/2020/4942805]
59. Lin, S.D., Sung, J.M., Chen, C.L. (2011). Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chemistry, 125(1), 226-231, doi: 10.1016/j. foodchem.2010.09.006. [DOI:10.1016/j.foodchem.2010.09.006]
60. Liu, M., Yu, Q., Yi, Y., Xiao, H., Putra, D. F., Ke, K., et al. (2020). Antiviral activities of Lonicera japonica Thunb. Components against grouper iridovirus in vitro and in vivo. Aquaculture, 519, Article 734882, doi: 10.1016/j. aquaculture.2019.734882. [DOI:10.1016/j.aquaculture.2019.734882]
61. Loizzo, M.R., Pugliese, A., Bonesi, M., Tenuta, M.C., Menichini, F., Xiao, J., et al. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467-2474, doi: 10.1021/acs.jafc.5b03092. [DOI:10.1021/acs.jafc.5b03092]
62. Lu, B., Li, M., Yin, R. (2016). Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000-2015). Critical Reviews in Food Science and Nutrition, 56(1), 130-148. https://doi.org/10.1080/10408398.2015.1078276 [DOI:10.1080/10408398.2015.1078276.]
63. Mediani, A., Abas, F., Tan, C. P., Khatib, A. (2014). Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants, 3(2), 358-370, doi: 10.3390/ antiox3020358. [DOI:10.3390/antiox3020358]
64. Miguel, M., Barros, L., Pereira, C., Calhelha, R.C., Garcia, P.A., Castro, M.A., et al. (2016). Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and mentha cervina L. (leaves). Food and Function, 7(5), 2223-2232, doi: 10.1039/c6fo00398b. [DOI:10.1039/C6FO00398B]
65. Mishra, J.N., Verma, N.K. (2017). A brief study on Catharanthus roseus: A review. International Journal of Pharmaceutical Sciences and Research, 2(2), 20-23.
66. Mlcek, J., Rop, O. (2011). Fresh edible flowers of ornamental plants-A new source of nutraceutical foods. Trends in Food Science & Technology, 22(10), 561-569, doi: 10.1016/j.tifs.2011.04.006. [DOI:10.1016/j.tifs.2011.04.006]
67. Moldovan, I., Szekely-Varga, Z., Cantor, M. (2017). Dahlia an unforgettable flower-a new perspective for therapeutic medicine. Hop and Medicinal Plants, 25(1-2), 56-68.
68. Moliner, C., Barros, L., Dias, M.I., Lopez, ' V., Langa, E., Ferreira, I. C., et al. (2018). Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on caenorhabditis elegans. Nutrients, 10(12), 2002, doi: 10.3390/nu10122002. [DOI:10.3390/nu10122002]
69. Moliner, C., Barros, L., Dias, M.I., Reigada, I., Ferreira, I.C., Lopez, V., et al. (2019). Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. Journal of Food and Drug Analysis, 27(4), 849-859, doi: 10.1016/j.jfda.2019.05.005. [DOI:10.1016/j.jfda.2019.05.005]
70. Mota, A.H., Andrade, J.M., Rodrigues, M.J., Custodio, ' L., Bronze, M.R., Duarte, N., et al. (2020). Synchronous insight of in vitro and in vivo biological activities of Sambucus nigra L. extracts for industrial uses. Industrial Crops and Products, 154, Article 112709, doi: 10.1016/j.indcrop.2020.112709. [DOI:10.1016/j.indcrop.2020.112709]
71. Nanda, B.L. (2019). Antioxidant and anticancer activity of edible flowers. Journal of Drug Delivery and Therapeutics, 9(3), 290-295, doi: 10.22270/jddt.v9i3- s.2996.
72. Navarro-Gonzalez, I., Gonz' alez-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B., Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. International Journal of Molecular Sciences, 16(1), 805-822, doi: 10.3390/ ijms16010805. [DOI:10.3390/ijms16010805]
73. Ngoitaku, C., Kwannate, P., Riangwong, K. (2016). Total phenolic content and antioxidant activities of edible flower tea products from Thailand. International Food Research Journal, 23(5), 2286.
74. Niizu, P.Y., Rodriguez-Amaya, D.B. (2005). Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. Journal of Food Science, 70(9), S605-S609, doi: 10.1111/j.1365-2621.2005.tb08336.x. [DOI:10.1111/j.1365-2621.2005.tb08336.x]
75. Ojulari, O.V., Lee, S.G., Nam, J. O. (2019). Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules, 24(1), 210, doi: 10.3390/molecules24010210. [DOI:10.3390/molecules24010210]
76. Olennikov, D.N., Kashchenko, N.I., Chirikova, N.K., Akobirshoeva, A., Zilfikarov, I.N., Vennos, C. (2017). Isorhamnetin and quercetin derivatives as antiacetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. International Journal of Molecular Sciences, 18(8), 1685, doi: 10.3390/ijms18081685. [DOI:10.3390/ijms18081685]
77. Park, C.H., Chae, S.C., Park, S.Y., Kim, J.K., Kim, Y.J., Chung, S.O., et al. (2015). Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules, 20(6), 11090-11102, doi: 10.3390/molecules200611090. [DOI:10.3390/molecules200611090]
78. Pasukamonset, P., Pumalee, T., Sanguansuk, N., Chumyen, C., Wongvasu, P., Adisakwattana, S., et al. (2018). Physicochemical, antioxidant and sensory characteristics of sponge cakes fortified with Clitoria ternatea extract. Journal of Food Science and Technology, 55(8), 2881-2889, doi: 10.1007/s13197-018-3204-0. [DOI:10.1007/s13197-018-3204-0]
79. Pavelkova, P., Krmela, A., Schulzov' a, V. (2020). Determination of carotenoids in flowers and food supplements by HPLC-DAD. Acta Chimica Slovaca, 13(1), 6-12, doi: 10.2478/acs-2020-0002. [DOI:10.2478/acs-2020-0002]
80. Petrova, I., Petkova, N., Ivanov, I. (2016). Five edible flowers-valuable source of antioxidants in human nutrition. International Journal of Pharmacognosy and Phytochemical Research, 8(4), 604-610.
81. Pinakin, D.J., Kumar, V., Suri, S., Sharma, R., Kaushal, M. (2020). Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Research International, 127, Article 108724, doi: 10.1016/j.foodres.2019.108724. [DOI:10.1016/j.foodres.2019.108724]
82. Pinedo-Espinoza, J. M., Guti' errez-Tlahque, J., Santiago-Saenz, Y. O., AguirreMancilla, C. L., Reyes-Fuentes, M., Lopez-Palestina, ' C.U. (2020). Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Foods for Human Nutrition, 75, 413-419, doi: 10.1007/s11130-020-00822-2. [DOI:10.1007/s11130-020-00822-2]
83. Pintea, A., Bele, C., Andrei, S., Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40.
84. Pires, T.C.S.P., Dias, M.I., Barros, L., Ferreira, I.C.F.R. (2017). Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chemistry, 220, 337-343, doi: 10.1016/j. foodchem.2016.10.026. [DOI:10.1016/j.foodchem.2016.10.026]
85. Prior, R. L., & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40(10), 1014-1028, doi: 10.1080/10715760600758522. [DOI:10.1080/10715760600758522]
86. Rivas-García, L., Navarro-Hortal, M.D., Romero-Márquez, J.M., Forbes-Hernández, T.Y., Varela-López, A., Llopis, J., Quiles, J. L. (2021). Edible flowers as a health promoter: An evidence-based review. Trends in Food Science & Technology, 117, 46-59, doi: 10.1016/j.tifs.2020.12.007 [DOI:10.1016/j.tifs.2020.12.007]
87. Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., Vabkova, J. (2012). Edible flowers-a new promising source of mineral elements in human nutrition. Molecules, 17(6), 6672-6683, doi: 10.3390/molecules17066672. [DOI:10.3390/molecules17066672]
88. Ryu, J., Nam, B., Kim, B.R., Kim, S.H., Jo, Y.D., Ahn, J.W., et al. (2019). Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium. Molecules, 24(16), 3003, doi: 10.3390/ molecules24163003. [DOI:10.3390/molecules24163003]
89. Skowyra, M., Calvo, M.I., Gallego Iradi, M.G., Azman, N.A.B.M., Almajano Pablos, M.P. (2014). Characterization of phytochemicals in petals of different colours from Viola× wittrockiana Gams and their correlation with antioxidant activity. Journal of Agricultural Science, 6(9), 93-105, doi: 10.5539/jas. v6n9p93. [DOI:10.5539/jas.v6n9p93]
90. Skrajda-Brdak, M., Dąbrowski, G., Konopka, I. (2020). Edible flowers, a source of valuable phytonutrients and their pro-healthy effects-A review. Trends in Food Science & Technology, doi: 10.1016/j.tifs.2020.06.016. [DOI:10.1016/j.tifs.2020.06.016]
91. Sotelo, A., Lopez-García, S., Basurto-Pena, F. (2007). Content of nutrient and antinutrient in edible flowers of [DOI:10.1007/s11130-007-0053-9]
92. wild plants in Mexico. Plant Foods for Human Nutrition, 62(3), 133-138, doi: 10.1007/s11130-007-0053-9. [DOI:10.1007/s11130-007-0053-9]
93. Stefaniak, A., Grzeszczuk, M.E. (2019). Nutritional and biological value of five edible flower species. Notulae Botanicae Horticultural Agrobotanici Cluj-Napoca, 47(1), 128-134, doi: 10.15835/nbha47111136. [DOI:10.15835/nbha47111136]
94. Sun, J., Liu, W., Zhang, M., Geng, P., Shan, Y., Li, G., et al. (2018). The analysis of phenolic compounds in daylily using UHPLC-HRMSn and evaluation of drying processing method by fingerprinting and metabolomic approaches. Journal of Food Processing and Preservation, 42(1), Article e13325, doi: 10.1111/ jfpp.13325. [DOI:10.1111/jfpp.13325]
95. Sun, Q.L., Hua, S., Ye, J.H., Zheng, X.Q., Liang, Y.R. (2010). Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from Tongxiang County in China. African Journal of Biotechnology, 9(25), 3817-3821, doi: 10.5897/AJB2010.000-3252.
96. Tanaka, Y., Sasaki, N., Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749, doi: 10.1111/j.1365-313X.2008.03447.x. [DOI:10.1111/j.1365-313X.2008.03447.x]
97. Varzakas, T., Kiokias, S. (2016). HPLC analysis and determination of carotenoid pigments in commercially available plant extracts. Current Research in Nutrition and Food Science Journal, 4, 1-14, doi: 10.12944/CRNFSJ.4.SpecialIssue1.01. [DOI:10.12944/CRNFSJ.4.Special-Issue1.01]
98. Villavicencio, A.L., Heleno, S.A., Calhelha, R.C., Santos-Buelga, C., Barros, L., Ferreira, I.C. (2018). The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chemistry, 241, 163-170, doi: 10.1016/j.foodchem.2017.08.093. [DOI:10.1016/j.foodchem.2017.08.093]
99. Wan, H., Yu, C., Han, Y., Guo, X., Ahmad, S., Tang, A., et al. (2018). Flavonols and carotenoids in yellow petals of rose cultivar (Rosa 'Sun City'): A possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 66(16), 4171-4181, doi: 10.1021/acs.jafc.8b01509. [DOI:10.1021/acs.jafc.8b01509]
100. Wan, H., Yu, C., Han, Y., Guo, X., Luo, L., Pan, H., et al. (2019). Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Frontiers Plant Science, 10, 123, doi: 10.3389/ fpls.2019.00123. [DOI:10.3389/fpls.2019.00123]
101. Wu, Y.Q., Wei, M.R., Zhao, D.Q., Jun, T.A.O. (2016). Flavonoid content and expression analysis of flavonoid biosynthetic genes in herbaceous peony (Paeonia lactiflora pall.) with double colors. Journal of Integrative Agriculture, 15(9), 2023-2031, doi: 10.1016/S2095-3119(15)61318-1. [DOI:10.1016/S2095-3119(15)61318-1]
102. Xu, L.W., Juan, C., Qi, H.Y., Shi, Y.P. (2012). Phytochemicals and their biological activities of plants in Tagetes L. Chinese Herbal Medicines, 4(2), 103-117, doi: 10.3969/j.issn.1674-6384.2012.02.004.
103. Yasukawa, K., Kasahara, Y. (2013). Effects of flavonoids from French Marigold (Florets of Tagetes patula L.) on acute inflammation model. International Journal of Inflammation, 2013. https, doi: 10.1155/2013/309493. [DOI:10.1155/2013/309493]
104. Yuan, A., Li, Z., Li, X., Yi, S., Wang, S., Shi, K., et al. (2009). Distinct effect of Chrysanthemum indicum Linn' e extracts on isoproterenol-induced growth of human hepatocellular carcinoma cells. Oncology Reports, 22(6), 1357-1363, 10.3892/. [DOI:10.3892/or_00000575]
105. Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., Dong, M. (2014). Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 42, 125-131, doi: 10.1016/j.foodcont. 2014.02.001. [DOI:10.1016/j.foodcont.2014.02.001]
106. Zheng, J., Meenu, M., Xu, B. (2019). A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. Journal of Pharmaceutical and Biomedical Analysis, 172, 268-277, doi: 10.1016/j. jpba.2019.05.007. [DOI:10.1016/j.jpba.2019.05.007]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

salehi H, sourani M. Nutraceutical potential of edible flowers: A new perspective for healthy lifestyle. FOP 2023; 7 (2) :293-314
URL: http://flowerjournal.ir/article-1-243-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4660