1. Abdel-Aal, E.S.M., Rabalski, I. (2015). Composition of lutein ester regioisomers in marigold flower, dietary supplement, and herbal tea. Journal of Agricultural and Food Chemistry, 63(44), 9740-9746, doi: 10.1021/acs.jafc.5b04430. [ DOI:10.1021/acs.jafc.5b04430] 2. Abdel-Aal, E.S.M., Akhtar, H., Zaheer, K., Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169-1185, doi: 10.3390/nu5041169. [ DOI:10.3390/nu5041169] 3. Abdelhafez, O.H., Fawzy, M.A., Fahim, J.R., Desoukey, S.Y., Krischke, M., Mueller, M.J., et al. (2018). Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats. PlosOne, 13(8), Article e0202362, doi: 10.1371/journal.pone.0202362. [ DOI:10.1371/journal.pone.0202362] 4. Al-Snafi, A.E. (2015). The pharmacological Importance of Antirrhinum majus-A review. Asian Journal of Pharmaceutical Science and Technology, 5(4), 313-320. 5. Araújo, S., Matos, C., Correia, E., Antunes, M.C. (2019). Evaluation of phytochemicals content, antioxidant activity and mineral composition of selected edible flowers. Quality Assurance and Safety of Crops & Foods, 11(5), 471-478, doi: 10.3920/QAS2018.1497. [ DOI:10.3920/QAS2018.1497] 6. Armijos, C.P., Meneses, M.A., Guaman-Balc azar, M.C., Cuenca, M., Su arez, A.I. (2018). Antioxidant properties of medicinal plants used in the Southern Ecuador. Journal of Pharmacognosy and Phytochemistry, 7(1), 2803-2812. 7. Benvenuti, S., Bortolotti, E., Maggini, R. (2016). Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Scientia Horticulturae, 199, 170-177, doi: 10.1016/j.scienta.2015.12.052. [ DOI:10.1016/j.scienta.2015.12.052] 8. Bhave, A., Schulzova, V., Libor, M., Hajslova, J. (2020). Influence of harvest date and post-harvest treatment on carotenoids and flavonoids composition in French marigold flowers. Journal of Agricultural and Food Chemistry, doi: 10.1021/acs.jafc.0c02042. [ DOI:10.1021/acs.jafc.0c02042] 9. Bragueto Escher, G., Cardoso Borges, L.D.C., Sousa Santos, J., Mendanha Cruz, T., Boscacci Marques, M., Araújo Vieira do Carmo, M., Zhang, L. (2019). From the field to the pot: phytochemical and functional analyses of Calendula officinalis L. flower for incorporation in an organic yogurt. Antioxidants, 8(11), 559, doi: 10.3390/antiox8110559. [ DOI:10.3390/antiox8110559] 10. Cao, X., Xiong, X., Xu, Z., Zeng, Q., He, S., Yuan, Y., et al. (2020). Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. Journal of Food Measurement and Characterization, 1-8, doi: 10.1007/s11694-020-00394-4. [ DOI:10.1007/s11694-020-00394-4] 11. Cavaiuolo, M., Cocetta, G., Ferrante, A. (2013). The antioxidants changes in ornamental flowers during development and senescence. Antioxidants, 2(3), 132-155, doi: 10.3390/antiox2030132. [ DOI:10.3390/antiox2030132] 12. Cendrowski, A., Scibisz, ' I., Mitek, M., Kieliszek, M., Kolniak-Ostek, J. (2017). Profile of the phenolic compounds of Rosa rugosa petals. Journal of Food Quality, 10, doi: 10.1155/2017/7941347. [ DOI:10.1155/2017/7941347] 13. Chen, G.L., Chen, S.G., Xiao, Y., Fu, N.L. (2018). Antioxidant capacities and total phenolic contents of 30 flowers. Industrial Crops and Products, 111, 430-445, doi: 10.1016/j.indcrop.2017.10.051. [ DOI:10.1016/j.indcrop.2017.10.051] 14. Chen, N.H., Wei, S. (2017). Factors influencing consumers' attitudes towards the consumption of edible flowers. Food Quality and Preference, 56, 93-100, doi: 10.1016/j.foodqual.2016.10.001. [ DOI:10.1016/j.foodqual.2016.10.001] 15. Chensom, S., Okumura, H., Mishima, T. (2019). Primary screening of antioxidant activity, total polyphenol content, carotenoid content, and nutritional composition of 13 edible flowers from Japan. Preventive Nutrition and Food Science, 24(2), 171-178, doi: 10.3746/pnf.2019.24.2.171. [ DOI:10.3746/pnf.2019.24.2.171] 16. Chiou, S.Y., Sung, J.M., Huang, P.W., Lin, S.D. (2017). Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. Journal of Medicinal Food, 20(2), 171-179, doi: 10.1089/jmf.2016.3790. [ DOI:10.1089/jmf.2016.3790] 17. Dhiman, P., Malik, N., Khatkar, A., Kulharia, M. (2017). Antioxidant, xanthine oxidase and monoamine oxidase inhibitory potential of coumarins: A review. Current Organic Chemistry, 21(4), 294-304, doi: 10.2174/1385272820666161021103547. [ DOI:10.2174/1385272820666161021103547] 18. Dorozko, J., Kunkulberga, D., Sivicka, I., Kruma, Z. (2019). The influence of various drying methods on the quality of edible flower petals. In: Proceedings of 13th Baltic Conference on Food Science and Technology "FOOD, NUTRITION, WELL-BEING". Latvia, Latvia University of Life Sciences and Technologies, 182-187. 10.22616/FoodBalt.2019.045. [ DOI:10.22616/FoodBalt.2019.045] 19. El Bayani, G.F., Marpaung, N.L.E., Simorangkir, D.A.S., Sianipar, I.R., Ibrahim, N., Kartinah, N.T., et al. (2018). Anti-inflammatory effects of Hibiscus sabdariffa Linn. on the IL-1β/IL-1ra ratio in plasma and hippocampus of overtrained rats and correlation with spatial memory. Kobe Journal of Medical Sciences, 64(2), 73-83. 20. Espejel, E.A.R., Alvarez, O.C., Munoz, ˜ J.M.M., Mateos, M.D.R.G., Leon, ' M.T.B.C., Dami' an, M.T.M. (2019). Physicochemical quality, antioxidant capacity and nutritional value of edible flowers of some wild dahlia species. Folia Horticulturae, 31(2), 331-342, doi: 10.2478/fhort-2019-0026. [ DOI:10.2478/fhort-2019-0026] 21. Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60, 38-50, doi: 10.1016/j.jfca.2017.03.017. [ DOI:10.1016/j.jfca.2017.03.017] 22. Fernandes, L., Casal, S., Pereira, J.A., Pereira, E.L., Saraiva, J.A., Ramalhosa, E. (2020). Freezing of edible flowers: Effect on microbial and antioxidant quality during storage. Journal of Food Science, 85(4), 1151-1159, doi: 10.1111/1750-3841.15097. [ DOI:10.1111/1750-3841.15097] 23. Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2018). Effects of different drying methods on the bioactive compounds and antioxidant properties of edible Centaurea (Centaurea cyanus) petals. Brazilian Journal of Food Technology, 21, doi: 10.1590/1981-6723.21117. [ DOI:10.1590/1981-6723.21117] 24. Fernandes, L., Ramalhosa, E., Baptista, P., Pereira, J.A., Saraiva, J.A., Casal, S.I. (2019). Nutritional and nutraceutical composition of pansies (Viola× wittrockiana) during flowering. Journal of Food Science, 84(3), 490-498, doi: 10.1111/1750-3841.14482. [ DOI:10.1111/1750-3841.14482] 25. Fernandes, L., Ramalhosa, E., Pereira, J.A., Saraiva, J.A., Casal, S. (2020). Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Research International, 132, doi: 10.1016/j.foodres.2020.109070. [ DOI:10.1016/j.foodres.2020.109070] 26. Garzon, ' G.A., Manns, D.C., Riedl, K., Schwartz, S.J., Padilla-Zakour, O. (2015). Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). Journal of Agricultural and Food Chemistry, 63(6), 1803-1811, doi: 10.1021/ jf503366c. [ DOI:10.1021/jf503366c] 27. Garzón, G.A., Wrolstad, R.E. (2009). Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry, 114(1), 44-49, doi: 10.1016/j.foodchem.2008.09.013. [ DOI:10.1016/j.foodchem.2008.09.013] 28. Gonçalves, J., Borges Júnior, J.C.F., Carlos, L.D.A., Silva, A.P.C.M., Souza, F.A.D. (2019). Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Revista Ceres, 66(6), 407-415, doi: 10.1590/0034-737x201966060001. [ DOI:10.1590/0034-737x201966060001] 29. Gonzalez-Barrio, ' R., Periago, M.J., Luna-Recio, C., Garcia-Alonso, F.J., NavarroGonzalez, ' I. (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252, 373-380, doi: 10.1016/j.foodchem.2018.01.102. [ DOI:10.1016/j.foodchem.2018.01.102] 30. Grzeszczuk, M., Stefaniak, A., Meller, E., Wysocka, G. (2018). Mineral composition of some edible flowers. Journal of Elementology, 23(1), 151-162, doi: 10.5601/ jelem.2017.22.2.1352. [ DOI:10.5601/jelem.2017.22.2.1352] 31. Harati, E., Bahrami, M., Razavi, A., Kamalinejad, M., Mohammadian, M., Rastegar, T., et al. (2018). Effects of viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma. Iranian Journal of Allergy, Asthma and Immunology, 17(5), 409-417, doi: 10.18502/ijaai. v17i5.299. [ DOI:10.18502/ijaai.v17i5.299] 32. Hasler, C.M., Blumberg, J.B. (1999). Phytochemicals: Biochemistry and physiology. Introduction. The Journal of Nutrition, 129(3), 756S-757S, doi: 10.1093/ jn/129.3.756s. [ DOI:10.1093/jn/129.3.756S] 33. Hettiarachchi, M.P., Balas, J. (2004). Effects of cold storage on post-harvest keeping quality of gloriosa (Gloriosa superba L.) flowering stems. Tropical Agricultural Research and Extension, 7, 88-94, doi: 10.17660/ ActaHortic.2005.683.60. [ DOI:10.4038/tare.v7i0.5422] 34. Huang, W., Mao, S., Zhang, L., Lu, B., Zheng, L., Zhou, F., et al. (2017). Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays. Journal of the Science of Food and Agriculture, 97(14), 4760-4769, doi: 10.1002/jsfa.8345. [ DOI:10.1002/jsfa.8345] 35. Jan, N., John, R. (2017). Calendula officinalis-an important medicinal plant with potential biological properties. Proceedings of the Indian National Science Academy, 83(4), 769-787, doi: 10.16943/ptinsa/2017/49126. [ DOI:10.16943/ptinsa/2017/49126] 36. Kaisoon, O., Konczak, I., Siriamornpun, S. (2012). Potential health enhancing properties of edible flowers from Thailand. Food Research International, 46(2), 563-571, doi: 10.1016/j.foodres.2011.06.016. [ DOI:10.1016/j.foodres.2011.06.016] 37. Kalaiselvi, M., Narmatha, R., Ragavendran, P., Ravikumar, G., Sophia, D., Gomathi, D., et al. (2011). In vitro free radical scavenging activity of Jasminum sambac (L.) Ait oleaceae flower. Asian Journal of Pharmaceutical & Biological Research, 1(3). [ DOI:10.1016/S2221-1691(11)60158-5] 38. Kao, F.J., Chiang, W.D., Liu, H.M. (2015). Inhibitory effect of daylily buds at various stages of maturity on nitric oxide production and the involved phenolic compounds. LWT-Food Science and Technology, 61(1), 130-137, doi: 10.1016/j. lwt.2014.11.023. [ DOI:10.1016/j.lwt.2014.11.023] 39. Kaulika, N., Febriansah, R. (2019). Chemopreventive activity of roselle's hexane fraction against breast cancer by in-vitro and in-silico study. In Third international conference on sustainable innovation 2019-health science and nursing (IcoSIHSN2019). Atlantis Press, doi: 10.2991/icosihsn-19.2019.16. [ DOI:10.2991/icosihsn-19.2019.16] 40. Kim, B.R., Paudel, S.B., Nam, J.W., Jin, C.H., Lee, I.S., Han, A.R. (2020). Constituents of Coreopsis lanceolate flower and their dipeptidyl peptidase IV inhibitory effects. Molecules, 25(19), 4370, doi: 10.3390/ molecules25194370. [ DOI:10.3390/molecules25194370] 41. Kim, G.C., Kim, J.S., Kim, G.M., Choi, S.Y. (2017). Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food & Nutrition Research, 61(1), 1339555, doi: 0.1080/16546628. 12017.1339555. [ DOI:10.1080/16546628.2017.1339555] 42. Kinupp, V., Lorenzi, H. (2014). Plantas Alimentícias Nao ˜ Convencionais no Brasil: Guia de identificaç˜ ao, aspectos nutricionais e receitas ilustradas. Plantarum-Nova Odessa, 768p. 43. Koche, D., Shirsat, R., Kawale, M. (2016). An overerview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia Journal, 9, 1-11. 44. Koike, A.C., S' a, A., Araujo, E.D.S., Almeida-Muradian, L.B.D., Villavicencio, A.L. (2018). Evaluation of carotenoids in edible flowers processed by radiation. Brazilian Congress of Food Science and Technology, 26. 45. Koike, A., Barreira, J.C., Barros, L., Santos-Buelga, C., Villavicencio, A.L., Ferreira, I.C. (2015a). Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food chemistry, 179, 6-14, doi: 10.1016/j. foodchem.2015.01.123. [ DOI:10.1016/j.foodchem.2015.01.123] 46. Koike, A., Barreira, J.C., Barros, L., Santos-Buelga, C., Villavicencio, A.L., Ferreira, I.C. (2015b). Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innovative Food Science & Emerging Technologies, 30, 138-144, doi:10.1016/j.ifset. 2015.04.009. [ DOI:10.1016/j.ifset.2015.04.009] 47. Kou, L., Turner, E.R., Luo, Y. (2012). Extending the shelf life of edible flowers with controlled release of 1-Methylcyclopropene and modified atmosphere packaging. Journal of Food Science, 77(5), S188-S193, doi: 10.1111/j.1750-3841.2012.02683.x. [ DOI:10.1111/j.1750-3841.2012.02683.x] 48. Kovacs, E., Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210, doi: 10.1016/S0968-4328(01)00012-9. [ DOI:10.1016/S0968-4328(01)00012-9] 49. Kumar, A., Singh, A. (2012). Review on Hibiscus rosa sinensis. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(2), 534-538. 50. Kumari, P. (2017). Isolation and Characterization of Anthocyanin Pigments from Indian Rose Varieties as a Potential Source of Nutraceuticals. Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi. 51. Kumari, P., Bhargava, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. Journal of Functional Foods, 78, 104375, doi: 10.1016/j.jff.2021.104375 [ DOI:10.1016/j.jff.2021.104375] 52. Kumari, P., Raju, D.V.S., Prasad, K.V., Singh, K.P., Saha, S., Arora, A., et al. (2017). Quantification and correlation of anthocyanin pigments and their antioxidant activities in rose (Rosa hybrida) varieties. Indian Journal of Agricultural Sciences, 87(10), 1340-1346. [ DOI:10.56093/ijas.v87i10.74991] 53. Kumari, P., Raju, D.V.S., Singh, K.P., Prasad, K.V., Panwar, S. (2018). Characterization of phenolic compounds in petal extracts of rose. Indian Journal of Horticulture, 75(2), 349-351, doi: 10.5958/0974-0112.2018.00060.9. [ DOI:10.5958/0974-0112.2018.00060.9] 54. Lara-Cort' es, E., Osorio-Díaz, P., Jim'enez-Aparicio, A., Bautista-Banos, S. (2013). Nutritional content, functional properties and conservation of edible flowers. Review. Archivos Latinoamericanos de Nutrici' on, 63(3), 197-208. 55. Lauderdale, C., Bradley, L. (2014). Choosing and using edible flowers: Enjoy the flavor, color, and texture that flowers can bring to food. North Carolina Cooperative Extension Service, doi: 10.1080/87559129.2019. 1639727. 56. Lee, E.J., Kim, J.S., Kim, H.P., Lee, J.H., Kang, S.S. (2010). Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chemistry, 120(1), 134-139, doi: 10.1016/j. foodchem.2009.09.088. [ DOI:10.1016/j.foodchem.2009.09.088] 57. Lee, J.H., Lee, H.J., Choung, M.G. (2011). Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chemistry, 129(2), 272-278, doi: 10.1016/j.foodchem.2011.04.040. [ DOI:10.1016/j.foodchem.2011.04.040] 58. Li, W., Song, X., Hua, Y., Tao, J., Zhou, C. (2020). Effects of different harvest times on nutritional component of herbaceous peony flower petals. Journal of Chemistry, 2020, doi: 10.1155/2020/4942805. [ DOI:10.1155/2020/4942805] 59. Lin, S.D., Sung, J.M., Chen, C.L. (2011). Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chemistry, 125(1), 226-231, doi: 10.1016/j. foodchem.2010.09.006. [ DOI:10.1016/j.foodchem.2010.09.006] 60. Liu, M., Yu, Q., Yi, Y., Xiao, H., Putra, D. F., Ke, K., et al. (2020). Antiviral activities of Lonicera japonica Thunb. Components against grouper iridovirus in vitro and in vivo. Aquaculture, 519, Article 734882, doi: 10.1016/j. aquaculture.2019.734882. [ DOI:10.1016/j.aquaculture.2019.734882] 61. Loizzo, M.R., Pugliese, A., Bonesi, M., Tenuta, M.C., Menichini, F., Xiao, J., et al. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467-2474, doi: 10.1021/acs.jafc.5b03092. [ DOI:10.1021/acs.jafc.5b03092] 62. Lu, B., Li, M., Yin, R. (2016). Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000-2015). Critical Reviews in Food Science and Nutrition, 56(1), 130-148.
https://doi.org/10.1080/10408398.2015.1078276 [ DOI:10.1080/10408398.2015.1078276.] 63. Mediani, A., Abas, F., Tan, C. P., Khatib, A. (2014). Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants, 3(2), 358-370, doi: 10.3390/ antiox3020358. [ DOI:10.3390/antiox3020358] 64. Miguel, M., Barros, L., Pereira, C., Calhelha, R.C., Garcia, P.A., Castro, M.A., et al. (2016). Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and mentha cervina L. (leaves). Food and Function, 7(5), 2223-2232, doi: 10.1039/c6fo00398b. [ DOI:10.1039/C6FO00398B] 65. Mishra, J.N., Verma, N.K. (2017). A brief study on Catharanthus roseus: A review. International Journal of Pharmaceutical Sciences and Research, 2(2), 20-23. 66. Mlcek, J., Rop, O. (2011). Fresh edible flowers of ornamental plants-A new source of nutraceutical foods. Trends in Food Science & Technology, 22(10), 561-569, doi: 10.1016/j.tifs.2011.04.006. [ DOI:10.1016/j.tifs.2011.04.006] 67. Moldovan, I., Szekely-Varga, Z., Cantor, M. (2017). Dahlia an unforgettable flower-a new perspective for therapeutic medicine. Hop and Medicinal Plants, 25(1-2), 56-68. 68. Moliner, C., Barros, L., Dias, M.I., Lopez, ' V., Langa, E., Ferreira, I. C., et al. (2018). Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on caenorhabditis elegans. Nutrients, 10(12), 2002, doi: 10.3390/nu10122002. [ DOI:10.3390/nu10122002] 69. Moliner, C., Barros, L., Dias, M.I., Reigada, I., Ferreira, I.C., Lopez, V., et al. (2019). Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. Journal of Food and Drug Analysis, 27(4), 849-859, doi: 10.1016/j.jfda.2019.05.005. [ DOI:10.1016/j.jfda.2019.05.005] 70. Mota, A.H., Andrade, J.M., Rodrigues, M.J., Custodio, ' L., Bronze, M.R., Duarte, N., et al. (2020). Synchronous insight of in vitro and in vivo biological activities of Sambucus nigra L. extracts for industrial uses. Industrial Crops and Products, 154, Article 112709, doi: 10.1016/j.indcrop.2020.112709. [ DOI:10.1016/j.indcrop.2020.112709] 71. Nanda, B.L. (2019). Antioxidant and anticancer activity of edible flowers. Journal of Drug Delivery and Therapeutics, 9(3), 290-295, doi: 10.22270/jddt.v9i3- s.2996. 72. Navarro-Gonzalez, I., Gonz' alez-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B., Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. International Journal of Molecular Sciences, 16(1), 805-822, doi: 10.3390/ ijms16010805. [ DOI:10.3390/ijms16010805] 73. Ngoitaku, C., Kwannate, P., Riangwong, K. (2016). Total phenolic content and antioxidant activities of edible flower tea products from Thailand. International Food Research Journal, 23(5), 2286. 74. Niizu, P.Y., Rodriguez-Amaya, D.B. (2005). Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. Journal of Food Science, 70(9), S605-S609, doi: 10.1111/j.1365-2621.2005.tb08336.x. [ DOI:10.1111/j.1365-2621.2005.tb08336.x] 75. Ojulari, O.V., Lee, S.G., Nam, J. O. (2019). Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules, 24(1), 210, doi: 10.3390/molecules24010210. [ DOI:10.3390/molecules24010210] 76. Olennikov, D.N., Kashchenko, N.I., Chirikova, N.K., Akobirshoeva, A., Zilfikarov, I.N., Vennos, C. (2017). Isorhamnetin and quercetin derivatives as antiacetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. International Journal of Molecular Sciences, 18(8), 1685, doi: 10.3390/ijms18081685. [ DOI:10.3390/ijms18081685] 77. Park, C.H., Chae, S.C., Park, S.Y., Kim, J.K., Kim, Y.J., Chung, S.O., et al. (2015). Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules, 20(6), 11090-11102, doi: 10.3390/molecules200611090. [ DOI:10.3390/molecules200611090] 78. Pasukamonset, P., Pumalee, T., Sanguansuk, N., Chumyen, C., Wongvasu, P., Adisakwattana, S., et al. (2018). Physicochemical, antioxidant and sensory characteristics of sponge cakes fortified with Clitoria ternatea extract. Journal of Food Science and Technology, 55(8), 2881-2889, doi: 10.1007/s13197-018-3204-0. [ DOI:10.1007/s13197-018-3204-0] 79. Pavelkova, P., Krmela, A., Schulzov' a, V. (2020). Determination of carotenoids in flowers and food supplements by HPLC-DAD. Acta Chimica Slovaca, 13(1), 6-12, doi: 10.2478/acs-2020-0002. [ DOI:10.2478/acs-2020-0002] 80. Petrova, I., Petkova, N., Ivanov, I. (2016). Five edible flowers-valuable source of antioxidants in human nutrition. International Journal of Pharmacognosy and Phytochemical Research, 8(4), 604-610. 81. Pinakin, D.J., Kumar, V., Suri, S., Sharma, R., Kaushal, M. (2020). Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Research International, 127, Article 108724, doi: 10.1016/j.foodres.2019.108724. [ DOI:10.1016/j.foodres.2019.108724] 82. Pinedo-Espinoza, J. M., Guti' errez-Tlahque, J., Santiago-Saenz, Y. O., AguirreMancilla, C. L., Reyes-Fuentes, M., Lopez-Palestina, ' C.U. (2020). Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Foods for Human Nutrition, 75, 413-419, doi: 10.1007/s11130-020-00822-2. [ DOI:10.1007/s11130-020-00822-2] 83. Pintea, A., Bele, C., Andrei, S., Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. 84. Pires, T.C.S.P., Dias, M.I., Barros, L., Ferreira, I.C.F.R. (2017). Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chemistry, 220, 337-343, doi: 10.1016/j. foodchem.2016.10.026. [ DOI:10.1016/j.foodchem.2016.10.026] 85. Prior, R. L., & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40(10), 1014-1028, doi: 10.1080/10715760600758522. [ DOI:10.1080/10715760600758522] 86. Rivas-García, L., Navarro-Hortal, M.D., Romero-Márquez, J.M., Forbes-Hernández, T.Y., Varela-López, A., Llopis, J., Quiles, J. L. (2021). Edible flowers as a health promoter: An evidence-based review. Trends in Food Science & Technology, 117, 46-59, doi: 10.1016/j.tifs.2020.12.007 [ DOI:10.1016/j.tifs.2020.12.007] 87. Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., Vabkova, J. (2012). Edible flowers-a new promising source of mineral elements in human nutrition. Molecules, 17(6), 6672-6683, doi: 10.3390/molecules17066672. [ DOI:10.3390/molecules17066672] 88. Ryu, J., Nam, B., Kim, B.R., Kim, S.H., Jo, Y.D., Ahn, J.W., et al. (2019). Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium. Molecules, 24(16), 3003, doi: 10.3390/ molecules24163003. [ DOI:10.3390/molecules24163003] 89. Skowyra, M., Calvo, M.I., Gallego Iradi, M.G., Azman, N.A.B.M., Almajano Pablos, M.P. (2014). Characterization of phytochemicals in petals of different colours from Viola× wittrockiana Gams and their correlation with antioxidant activity. Journal of Agricultural Science, 6(9), 93-105, doi: 10.5539/jas. v6n9p93. [ DOI:10.5539/jas.v6n9p93] 90. Skrajda-Brdak, M., Dąbrowski, G., Konopka, I. (2020). Edible flowers, a source of valuable phytonutrients and their pro-healthy effects-A review. Trends in Food Science & Technology, doi: 10.1016/j.tifs.2020.06.016. [ DOI:10.1016/j.tifs.2020.06.016] 91. Sotelo, A., Lopez-García, S., Basurto-Pena, F. (2007). Content of nutrient and antinutrient in edible flowers of [ DOI:10.1007/s11130-007-0053-9] 92. wild plants in Mexico. Plant Foods for Human Nutrition, 62(3), 133-138, doi: 10.1007/s11130-007-0053-9. [ DOI:10.1007/s11130-007-0053-9] 93. Stefaniak, A., Grzeszczuk, M.E. (2019). Nutritional and biological value of five edible flower species. Notulae Botanicae Horticultural Agrobotanici Cluj-Napoca, 47(1), 128-134, doi: 10.15835/nbha47111136. [ DOI:10.15835/nbha47111136] 94. Sun, J., Liu, W., Zhang, M., Geng, P., Shan, Y., Li, G., et al. (2018). The analysis of phenolic compounds in daylily using UHPLC-HRMSn and evaluation of drying processing method by fingerprinting and metabolomic approaches. Journal of Food Processing and Preservation, 42(1), Article e13325, doi: 10.1111/ jfpp.13325. [ DOI:10.1111/jfpp.13325] 95. Sun, Q.L., Hua, S., Ye, J.H., Zheng, X.Q., Liang, Y.R. (2010). Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from Tongxiang County in China. African Journal of Biotechnology, 9(25), 3817-3821, doi: 10.5897/AJB2010.000-3252. 96. Tanaka, Y., Sasaki, N., Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749, doi: 10.1111/j.1365-313X.2008.03447.x. [ DOI:10.1111/j.1365-313X.2008.03447.x] 97. Varzakas, T., Kiokias, S. (2016). HPLC analysis and determination of carotenoid pigments in commercially available plant extracts. Current Research in Nutrition and Food Science Journal, 4, 1-14, doi: 10.12944/CRNFSJ.4.SpecialIssue1.01. [ DOI:10.12944/CRNFSJ.4.Special-Issue1.01] 98. Villavicencio, A.L., Heleno, S.A., Calhelha, R.C., Santos-Buelga, C., Barros, L., Ferreira, I.C. (2018). The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chemistry, 241, 163-170, doi: 10.1016/j.foodchem.2017.08.093. [ DOI:10.1016/j.foodchem.2017.08.093] 99. Wan, H., Yu, C., Han, Y., Guo, X., Ahmad, S., Tang, A., et al. (2018). Flavonols and carotenoids in yellow petals of rose cultivar (Rosa 'Sun City'): A possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 66(16), 4171-4181, doi: 10.1021/acs.jafc.8b01509. [ DOI:10.1021/acs.jafc.8b01509] 100. Wan, H., Yu, C., Han, Y., Guo, X., Luo, L., Pan, H., et al. (2019). Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Frontiers Plant Science, 10, 123, doi: 10.3389/ fpls.2019.00123. [ DOI:10.3389/fpls.2019.00123] 101. Wu, Y.Q., Wei, M.R., Zhao, D.Q., Jun, T.A.O. (2016). Flavonoid content and expression analysis of flavonoid biosynthetic genes in herbaceous peony (Paeonia lactiflora pall.) with double colors. Journal of Integrative Agriculture, 15(9), 2023-2031, doi: 10.1016/S2095-3119(15)61318-1. [ DOI:10.1016/S2095-3119(15)61318-1] 102. Xu, L.W., Juan, C., Qi, H.Y., Shi, Y.P. (2012). Phytochemicals and their biological activities of plants in Tagetes L. Chinese Herbal Medicines, 4(2), 103-117, doi: 10.3969/j.issn.1674-6384.2012.02.004. 103. Yasukawa, K., Kasahara, Y. (2013). Effects of flavonoids from French Marigold (Florets of Tagetes patula L.) on acute inflammation model. International Journal of Inflammation, 2013. https, doi: 10.1155/2013/309493. [ DOI:10.1155/2013/309493] 104. Yuan, A., Li, Z., Li, X., Yi, S., Wang, S., Shi, K., et al. (2009). Distinct effect of Chrysanthemum indicum Linn' e extracts on isoproterenol-induced growth of human hepatocellular carcinoma cells. Oncology Reports, 22(6), 1357-1363, 10.3892/. [ DOI:10.3892/or_00000575] 105. Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., Dong, M. (2014). Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 42, 125-131, doi: 10.1016/j.foodcont. 2014.02.001. [ DOI:10.1016/j.foodcont.2014.02.001] 106. Zheng, J., Meenu, M., Xu, B. (2019). A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. Journal of Pharmaceutical and Biomedical Analysis, 172, 268-277, doi: 10.1016/j. jpba.2019.05.007. [ DOI:10.1016/j.jpba.2019.05.007]
|