1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید
-------------Abbaszadeh Faruji, R., Shoor, M., Tehranifar, A., Abedy, B., Safari, N. (2018). Effects of Humic Acid and Fulvic Acid on some Morphological Characteristics of Geranium. Journal of Horticultural Science, 32(1), 35-50. (In Persian with English abstract). 2. Askari, M., Amirjani, M., Saberi, T. (2014). Evaluation of the effects of iron nanofertilizer on leaf growth, antioxidants and carbohydrate contents of Catharanthus roseus. Journal of Plant Process and Function, 3(7), 43-56. (In Persian with English abstract). 3. Bagi, H., Chamani, E. (2016). Effects of iron nanoparticles and humic acid on growth, development and vase life of cut rose flower cv. White Nablus under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture, 7(3), 103-112. (In Persian). [ DOI:10.18869/acadpub.ejgcst.7.27.103] 4. Bastani, S., Hajiboland, R., Khatamian, M., Saket Oskou, M. (2018). Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition, 18(2), 524-541. [ DOI:10.4067/S0718-95162018005001602] 5. Borlotti, A., Vigani, G., Zocchi, G. (2012). Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biology, 12, 189-195. [ DOI:10.1186/1471-2229-12-189] 6. Cataldo, D.A., Maroon, M., Schrader, L.E., Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80. [ DOI:10.1080/00103627509366547] 7. Cha, J.Y., Kim, T.W., Choi, J.H., Jang, K.S., Khaleda, L., Kim, W.Y., Jeon, J.R. (2017). Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: A green route for synthesizing humic-like fertilizers. Journal of Agriculture and Food Chemistry, 65, 1167-1177. [ DOI:10.1021/acs.jafc.6b04700] 8. Chinnamuthu, C.R., Boopathi, M.P. (2009). Nanotechnology and agroecosystem. Plant Nutrition and Soil Science, 168, 558-573. 9. Clapp, C.E., Chen, Y., Hayes, M.H.B., Cheng, H.H. (2001). Plant growth promoting activity of humic substances. In: Swift, R.S., Sparks, K.M. (Eds.), understanding and managing organic matter in Soils, sediments and waters. International Humic Science Society, Madison, pp. 243-255. 10. Dastyaran, M. (2015). Effect of humic acid and exogenous putrescine on vase life and leaf macro elements status of hydroponic cultured Rose. Agricultural Communications, 3(1), 43-49. 11. De Hita, D., Fuentes, M., Fernández, V., Olaetxea, M., García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: Emerging role of jasmonic acid. Frontiers in Plant Science, 11, 493. [ DOI:10.3389/fpls.2020.00493] 12. De Santiago, A., Delgado, A. (2007). Effects of humic substances on iron nutrition of lupin. Biology and Fertility of Soils, 43, 829-836. [ DOI:10.1007/s00374-007-0191-0] 13. Denre, M., Ghanti, G., Sarkar, K. (2014). Effect of humic acids application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). International Journal of Biotechnology and Molecular Biology Research, 5, 7-12. [ DOI:10.5897/IJBMBR2014.0186] 14. Dole, J.M., Wilkins, F.H. (2005). Floriculture, principles and species. Prentice Hall Upper Saddle River New Jersey. Pp. 356-360. 15. El-Mohamedy, R.S.R., Ahmed, M.A. (2009). Effect of biofertilizers and humic acid on control of dry root rot disease and improvement yield quality of Mandarin (Citrus reticulate Blanco). Research Journal of Agriculture and Biological Sciences, 5(2), 127- 137. 16. El-Shazly, S.M., Dris, R. (2004). Response of 'Anna' apple trees to foliar sprays of chelated iron, manganese and zinc. Journal of Food, Agriculture and Environment, 2, 126-130. 17. Ersingu, A., Sezen, I., Aytatli, B., Ercisli, S. (2015). Effect of humic and fulvic acid application on growth parameters in Impatiens walleriana L. Akademik Ziraat Dergisi, 4(1), 37-42. 18. Forghani, A., Javanmard, A. (2005). Effect of several additives on humic and fulvic acid of different soils. Ninth Congress of Soil Science of Iran. Karaj. (In Persian). 19. Ghosh, S.Ch., Asanuma, K.A., Kusutani, A., Toyota, M. (2000). Nitrogen distribution and uptake eefficiency traits of potato under different nitrogen regimes. Pakistan Journal of Biological Sciences, 3(6), 943-948. [ DOI:10.3923/pjbs.2000.943.948] 20. Haghighi M., Nikbakht A., Xia Y.P., Pessarakli M. (2014). Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis, 45, 177-188. [ DOI:10.1080/00103624.2013.848885] 21. Jamali Moghadam, H., Hassanpour Asil, M. (2021). Improving morpho-physiological characteristics and extending vase life of Lily (Lilium LA Hybrid) cv. Original Love using gibberellic acid and humic [ DOI:10.52547/flowerjournal.6.1.49] 22. acid. Flower and Ornamental Plants, 6(1), 49-70. (In Persian with English abstract). 23. Jung, H., Kwon, S., Kim, J-H., Jeon, J-R. (2021). Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules, 26(3), 760-770. [ DOI:10.3390/molecules26030760] 24. Khoshkalam, A., Talebi Atouee, M., Bakhshi Ganjeh, M., Ahmadi Gol, F.A., Meftahi, M. (2015). Nano technology and its development in agriculture. Nanotechnology, 45(1), 1-12. (In Persian). 25. Lee, J.G., Yoon, H.Y., Cha, J.Y., Kim, W.Y., Kim, P.J., Jeon, J.R. (2019). Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnology Advances, 37, 107-116. [ DOI:10.1016/j.biotechadv.2019.107416] 26. Liu, R., Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. [ DOI:10.1016/j.scitotenv.2015.01.104] 27. Lu P., He Sh., Li H., Cao J., Xu H.L. (2010). Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. Journal of Food, Agriculture and Environment, 8(2), 1118-1122. 28. Mackowiak, C.L., Gross, P.K., Bugbee, B.G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of America Journal, 65, 1744-1750. [ DOI:10.2136/sssaj2001.1744] 29. Maghsoudi, M.R., Najafi, N.A. (2016). Investigation the effect of nano-fertilizers microelements on plant nutrition. Journal of Arears Management, 4(2), 115-132. (In Persian with English abstract). 30. Maleki Farahani S., Khalesi A., Sharghi Y. (2015). Effect of nano iron chelate fertilizer on iron absorption and saffron (Crocus sativus L.) quantitative and qualitative characteristics. Asian Journal of Biological Science, 8(2), 72-82. [ DOI:10.3923/ajbs.2015.72.82] 31. Marschner, H. (2012). Mineral nutrition of higher plants. 3rd ed. New York, USA. 672p. 32. Mizukoshi, K., Nishiwaki, T., Ohtake, N., Minagawa, R., Kobayashi, K., Ikarashi, T., Ohayama, T. (1994). Determination of tungstate concentration in plant materials by HNO3-HClO4 digestion and colorimetric method using thiocyanate. Plant Analysis and Methods, 46, 51-56. 33. Mohamadipoor, R., Sedaghathoor, S., Mahboub-Khomami, A. (2013). Effect of application of iron fertilizers in two methods 'foliar and soil application' on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology, 3, 232-240. 34. Morard P., Eyheraguibel B., Morard M., Silvestre J. (2011). Direct effects of humic- like substances on growth, water and mineral nutrition of various species. Journal of Plant Nutrition, 34, 46-59. [ DOI:10.1080/01904167.2011.531358] 35. Naderi, M.R., Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5(19), 2229-2232. 36. Nardi, S., Schiavon, M., Francioso, O. (2021). Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules, 26(8), 2256-2276. [ DOI:10.3390/molecules26082256] 37. Ohayama, T., Ito, M., Kobayashi, K., Araki, S., Yasuyoshi, S., Sasaki, O., Yamazaki, T., Sayoma, K., Tamemura, R., Izuno, Y., Ikarashi, T. (1991). Analytical procedures of N, P and K content in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion Method. Bulletin of the Faculty of Agriculture, Niigata University. Food and Agriculture Organization of the United Nations, 43, 111-120. 38. Parandian, F. (2011). Investigation the effect of fulvic and humic acid on qualitative and quantitative indices of lilium cv. Birindisi. MSc Thesis, Islamic Azad University of Garmsar. (In Persian). 39. Pinto, A.P., Mota, A.M., Varennes, A., Pinto, F.C. (2004). Influence of organic matter on the uptake of cadmium , zinc, copper and iron by Sorghom plants. Science of the Total Environment, 326(1-3), 239-247. [ DOI:10.1016/j.scitotenv.2004.01.004] 40. Rahmani, A., Mirza, M., Tabaei Aghdai, S. (2014). Effects of different fertilizers (macro and micro elements) on quantity and quality of essential oil and other byproducts of Rosa damascena Mill. In Iran. Iranian Journal of Medicinal and aromatic plants, 29(4 (62)), 747-759. (in Persian with English abstract). 41. Rasouli, M., Khodabakhshzadeh, S., Ahmadi Ghoureh Jilee, E., Afrouzi, Kh. (2014). Investigation the applications and effects of nano fertilizers in improved production of agricultural products. Special study: effect of iron nano chelate on Vitis production and garden plants. First National Conference on Nanotechnology; Advances and Applications. Hamedan, Iran. (In Persian). 42. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498. [ DOI:10.1021/jf104517j] 43. Russell, L., Stokes, A.R., Macdonald, H., Muscolo, A., Nardi, S. (2006). Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant and Soil, 283, 175-185. [ DOI:10.1007/s11104-006-0011-6] 44. Ryan, J., Estefan, G., Rashid, A. (2001). Soil and plant Analysis: Laboratory Manual. ICARDA, ALEPPO. 45. Saffar, M., Jami Moeini, M. (2016). Effect of organic acid spray on sorghum growth characteristics and protein content of aerial organs. Third National Congress of Environmental and Agricultural Research of Iran. Hamedan. (In Persian). 46. Sanchez, A.S., Andreu, J.S., Juarez, M., Jorda, J., Bermudez, D. (2006). Improvement of Iron uptake in table grape by addition of humic substances. Journal of Plant Nutrition, 29, 259-272. [ DOI:10.1080/01904160500476087] 47. Selim, E.M., Mosa, A.A. (2012). Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 175, 273-281. [ DOI:10.1002/jpln.201100062] 48. Shahrekizad, M., Gholamalizadeh Ahangar, A., Mir, N. (2015). EDTA-coated Fe3O4 nanoparticles: a novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus annuus). Journal of Nano Structures, 5, 117-127. 49. Shi, R., Weber, G., Koster, J., Reza-Hajirezaei, M., Zou, C., Zhang, F. (2012). Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants. New Phytologist, 195, 372-383. [ DOI:10.1111/j.1469-8137.2012.04165.x] 50. Suh, H.Y., Yoo, K.S., Suh, S.G. (2014). Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Horticulture, Environment and Biotechnology, 55, 183-189. [ DOI:10.1007/s13580-014-0005-x] 51. Taha, A A., Omar, M., Ghazy, M.A. (2016). Effect of humic and fulvic acids on growth and yield of lettuce plant. Journal of Soil Sciences and Agricultural Engineering, 7(8), 517-522. [ DOI:10.21608/jssae.2016.39782] 52. Tahiri, A., Delporte, F., Muhovski, Y., Ongena, M., Thonart, P., Druart, P. (2016). Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. Plant Physiology and Biochemistry, 98, 25-38. [ DOI:10.1016/j.plaphy.2015.11.004] 53. Yazdani B. (2010). Effect of different concentrations of humic acid and fulvic acid on the qualitative and quantitative characteristics of Gerbera jamesonii. Master's Thesis. Isfahan University of Agricultural Sciences. (In Persian). 54. Zandonadi, D.B., Santos, M.P., Dobbss, L.B., Olivares, F.L., Canellas, L.P., Binzel, M.L., Okorokova-Facanha, A.L., Facanha, A.R. (2010). Nitric oxide mediates humic acid-induced root development and plasma membrane H+-ATPase activation. Planta, 231, 1025-1036. [ DOI:10.1007/s00425-010-1106-0] 55. Zimbovskaya, M.M., Polyakov, A.Y., Volkov, D.S., Kulikova, N.A., Lebedev, V.A., Pankratov, D.A., Konstantinov, A.I., Parfenova, A.M., Zhilkibaev, O.T., Perminova, I.V. (2020). Foliar application of humic-stabilized nanoferrihydrite resulted in an increase in the content of iron in wheat leaves. Agronomy, 10,1891. [ DOI:10.3390/agronomy10121891] 56. Abbaszadeh Faruji, R., Shoor, M., Tehranifar, A., Abedy, B., Safari, N. (2018). Effects of Humic Acid and Fulvic Acid on some Morphological Characteristics of Geranium. Journal of Horticultural Science, 32(1), 35-50. (In Persian with English abstract). 57. Askari, M., Amirjani, M., Saberi, T. (2014). Evaluation of the effects of iron nanofertilizer on leaf growth, antioxidants and carbohydrate contents of Catharanthus roseus. Journal of Plant Process and Function, 3(7), 43-56. (In Persian with English abstract). 58. Bagi, H., Chamani, E. (2016). Effects of iron nanoparticles and humic acid on growth, development and vase life of cut rose flower cv. White Nablus under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture, 7(3), 103-112. (In Persian). [ DOI:10.18869/acadpub.ejgcst.7.27.103] 59. Bastani, S., Hajiboland, R., Khatamian, M., Saket Oskou, M. (2018). Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition, 18(2), 524-541. [ DOI:10.4067/S0718-95162018005001602] 60. Borlotti, A., Vigani, G., Zocchi, G. (2012). Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biology, 12, 189-195. [ DOI:10.1186/1471-2229-12-189] 61. Cataldo, D.A., Maroon, M., Schrader, L.E., Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80. [ DOI:10.1080/00103627509366547] 62. Cha, J.Y., Kim, T.W., Choi, J.H., Jang, K.S., Khaleda, L., Kim, W.Y., Jeon, J.R. (2017). Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: A green route for synthesizing humic-like fertilizers. Journal of Agriculture and Food Chemistry, 65, 1167-1177. [ DOI:10.1021/acs.jafc.6b04700] 63. Chinnamuthu, C.R., Boopathi, M.P. (2009). Nanotechnology and agroecosystem. Plant Nutrition and Soil Science, 168, 558-573. 64. Clapp, C.E., Chen, Y., Hayes, M.H.B., Cheng, H.H. (2001). Plant growth promoting activity of humic substances. In: Swift, R.S., Sparks, K.M. (Eds.), understanding and managing organic matter in Soils, sediments and waters. International Humic Science Society, Madison, pp. 243-255. 65. Dastyaran, M. (2015). Effect of humic acid and exogenous putrescine on vase life and leaf macro elements status of hydroponic cultured Rose. Agricultural Communications, 3(1), 43-49. 66. De Hita, D., Fuentes, M., Fernández, V., Olaetxea, M., García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: Emerging role of jasmonic acid. Frontiers in Plant Science, 11, 493. [ DOI:10.3389/fpls.2020.00493] 67. De Santiago, A., Delgado, A. (2007). Effects of humic substances on iron nutrition of lupin. Biology and Fertility of Soils, 43, 829-836. [ DOI:10.1007/s00374-007-0191-0] 68. Denre, M., Ghanti, G., Sarkar, K. (2014). Effect of humic acids application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). International Journal of Biotechnology and Molecular Biology Research, 5, 7-12. [ DOI:10.5897/IJBMBR2014.0186] 69. Dole, J.M., Wilkins, F.H. (2005). Floriculture, principles and species. Prentice Hall Upper Saddle River New Jersey. Pp. 356-360. 70. El-Mohamedy, R.S.R., Ahmed, M.A. (2009). Effect of biofertilizers and humic acid on control of dry root rot disease and improvement yield quality of Mandarin (Citrus reticulate Blanco). Research Journal of Agriculture and Biological Sciences, 5(2), 127- 137. 71. El-Shazly, S.M., Dris, R. (2004). Response of 'Anna' apple trees to foliar sprays of chelated iron, manganese and zinc. Journal of Food, Agriculture and Environment, 2, 126-130. 72. Ersingu, A., Sezen, I., Aytatli, B., Ercisli, S. (2015). Effect of humic and fulvic acid application on growth parameters in Impatiens walleriana L. Akademik Ziraat Dergisi, 4(1), 37-42. 73. Forghani, A., Javanmard, A. (2005). Effect of several additives on humic and fulvic acid of different soils. Ninth Congress of Soil Science of Iran. Karaj. (In Persian). 74. Ghosh, S.Ch., Asanuma, K.A., Kusutani, A., Toyota, M. (2000). Nitrogen distribution and uptake eefficiency traits of potato under different nitrogen regimes. Pakistan Journal of Biological Sciences, 3(6), 943-948. [ DOI:10.3923/pjbs.2000.943.948] 75. Haghighi M., Nikbakht A., Xia Y.P., Pessarakli M. (2014). Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis, 45, 177-188. [ DOI:10.1080/00103624.2013.848885] 76. Jamali Moghadam, H., Hassanpour Asil, M. (2021). Improving morpho-physiological characteristics and extending vase life of Lily (Lilium LA Hybrid) cv. Original Love using gibberellic acid and humic [ DOI:10.52547/flowerjournal.6.1.49] 77. acid. Flower and Ornamental Plants, 6(1), 49-70. (In Persian with English abstract). 78. Jung, H., Kwon, S., Kim, J-H., Jeon, J-R. (2021). Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules, 26(3), 760-770. [ DOI:10.3390/molecules26030760] 79. Khoshkalam, A., Talebi Atouee, M., Bakhshi Ganjeh, M., Ahmadi Gol, F.A., Meftahi, M. (2015). Nano technology and its development in agriculture. Nanotechnology, 45(1), 1-12. (In Persian). 80. Lee, J.G., Yoon, H.Y., Cha, J.Y., Kim, W.Y., Kim, P.J., Jeon, J.R. (2019). Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnology Advances, 37, 107-116. [ DOI:10.1016/j.biotechadv.2019.107416] 81. Liu, R., Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. [ DOI:10.1016/j.scitotenv.2015.01.104] 82. Lu P., He Sh., Li H., Cao J., Xu H.L. (2010). Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. Journal of Food, Agriculture and Environment, 8(2), 1118-1122. 83. Mackowiak, C.L., Gross, P.K., Bugbee, B.G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of America Journal, 65, 1744-1750. [ DOI:10.2136/sssaj2001.1744] 84. Maghsoudi, M.R., Najafi, N.A. (2016). Investigation the effect of nano-fertilizers microelements on plant nutrition. Journal of Arears Management, 4(2), 115-132. (In Persian with English abstract). 85. Maleki Farahani S., Khalesi A., Sharghi Y. (2015). Effect of nano iron chelate fertilizer on iron absorption and saffron (Crocus sativus L.) quantitative and qualitative characteristics. Asian Journal of Biological Science, 8(2), 72-82. [ DOI:10.3923/ajbs.2015.72.82] 86. Marschner, H. (2012). Mineral nutrition of higher plants. 3rd ed. New York, USA. 672p. 87. Mizukoshi, K., Nishiwaki, T., Ohtake, N., Minagawa, R., Kobayashi, K., Ikarashi, T., Ohayama, T. (1994). Determination of tungstate concentration in plant materials by HNO3-HClO4 digestion and colorimetric method using thiocyanate. Plant Analysis and Methods, 46, 51-56. 88. Mohamadipoor, R., Sedaghathoor, S., Mahboub-Khomami, A. (2013). Effect of application of iron fertilizers in two methods 'foliar and soil application' on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology, 3, 232-240. 89. Morard P., Eyheraguibel B., Morard M., Silvestre J. (2011). Direct effects of humic- like substances on growth, water and mineral nutrition of various species. Journal of Plant Nutrition, 34, 46-59. [ DOI:10.1080/01904167.2011.531358] 90. Naderi, M.R., Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5(19), 2229-2232. 91. Nardi, S., Schiavon, M., Francioso, O. (2021). Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules, 26(8), 2256-2276. [ DOI:10.3390/molecules26082256] 92. Ohayama, T., Ito, M., Kobayashi, K., Araki, S., Yasuyoshi, S., Sasaki, O., Yamazaki, T., Sayoma, K., Tamemura, R., Izuno, Y., Ikarashi, T. (1991). Analytical procedures of N, P and K content in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion Method. Bulletin of the Faculty of Agriculture, Niigata University. Food and Agriculture Organization of the United Nations, 43, 111-120. 93. Parandian, F. (2011). Investigation the effect of fulvic and humic acid on qualitative and quantitative indices of lilium cv. Birindisi. MSc Thesis, Islamic Azad University of Garmsar. (In Persian). 94. Pinto, A.P., Mota, A.M., Varennes, A., Pinto, F.C. (2004). Influence of organic matter on the uptake of cadmium , zinc, copper and iron by Sorghom plants. Science of the Total Environment, 326(1-3), 239-247. [ DOI:10.1016/j.scitotenv.2004.01.004] 95. Rahmani, A., Mirza, M., Tabaei Aghdai, S. (2014). Effects of different fertilizers (macro and micro elements) on quantity and quality of essential oil and other byproducts of Rosa damascena Mill. In Iran. Iranian Journal of Medicinal and aromatic plants, 29(4 (62)), 747-759. (in Persian with English abstract). 96. Rasouli, M., Khodabakhshzadeh, S., Ahmadi Ghoureh Jilee, E., Afrouzi, Kh. (2014). Investigation the applications and effects of nano fertilizers in improved production of agricultural products. Special study: effect of iron nano chelate on Vitis production and garden plants. First National Conference on Nanotechnology; Advances and Applications. Hamedan, Iran. (In Persian). 97. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498. [ DOI:10.1021/jf104517j] 98. Russell, L., Stokes, A.R., Macdonald, H., Muscolo, A., Nardi, S. (2006). Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant and Soil, 283, 175-185. [ DOI:10.1007/s11104-006-0011-6] 99. Ryan, J., Estefan, G., Rashid, A. (2001). Soil and plant Analysis: Laboratory Manual. ICARDA, ALEPPO. 100. Saffar, M., Jami Moeini, M. (2016). Effect of organic acid spray on sorghum growth characteristics and protein content of aerial organs. Third National Congress of Environmental and Agricultural Research of Iran. Hamedan. (In Persian). 101. Sanchez, A.S., Andreu, J.S., Juarez, M., Jorda, J., Bermudez, D. (2006). Improvement of Iron uptake in table grape by addition of humic substances. Journal of Plant Nutrition, 29, 259-272. [ DOI:10.1080/01904160500476087] 102. Selim, E.M., Mosa, A.A. (2012). Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 175, 273-281. [ DOI:10.1002/jpln.201100062] 103. Shahrekizad, M., Gholamalizadeh Ahangar, A., Mir, N. (2015). EDTA-coated Fe3O4 nanoparticles: a novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus annuus). Journal of Nano Structures, 5, 117-127. 104. Shi, R., Weber, G., Koster, J., Reza-Hajirezaei, M., Zou, C., Zhang, F. (2012). Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants. New Phytologist, 195, 372-383. [ DOI:10.1111/j.1469-8137.2012.04165.x] 105. Suh, H.Y., Yoo, K.S., Suh, S.G. (2014). Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Horticulture, Environment and Biotechnology, 55, 183-189. [ DOI:10.1007/s13580-014-0005-x] 106. Taha, A A., Omar, M., Ghazy, M.A. (2016). Effect of humic and fulvic acids on growth and yield of lettuce plant. Journal of Soil Sciences and Agricultural Engineering, 7(8), 517-522. [ DOI:10.21608/jssae.2016.39782] 107. Tahiri, A., Delporte, F., Muhovski, Y., Ongena, M., Thonart, P., Druart, P. (2016). Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. Plant Physiology and Biochemistry, 98, 25-38. [ DOI:10.1016/j.plaphy.2015.11.004] 108. Yazdani B. (2010). Effect of different concentrations of humic acid and fulvic acid on the qualitative and quantitative characteristics of Gerbera jamesonii. Master's Thesis. Isfahan University of Agricultural Sciences. (In Persian). 109. Zandonadi, D.B., Santos, M.P., Dobbss, L.B., Olivares, F.L., Canellas, L.P., Binzel, M.L., Okorokova-Facanha, A.L., Facanha, A.R. (2010). Nitric oxide mediates humic acid-induced root development and plasma membrane H+-ATPase activation. Planta, 231, 1025-1036. [ DOI:10.1007/s00425-010-1106-0] 110. Zimbovskaya, M.M., Polyakov, A.Y., Volkov, D.S., Kulikova, N.A., Lebedev, V.A., Pankratov, D.A., Konstantinov, A.I., Parfenova, A.M., Zhilkibaev, O.T., Perminova, I.V. (2020). Foliar application of humic-stabilized nanoferrihydrite resulted in an increase in the content of iron in wheat leaves. Agronomy, 10,1891. [ DOI:10.3390/agronomy10121891]
|