[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 4، شماره 2 - ( پاییز-زمستان 1398 ) ::
جلد 4 شماره 2 صفحات 100-87 برگشت به فهرست نسخه ها
اثر نانوذره های تیتانیوم دی‌اکسید بر تنژگی و شاخص های رشد بذر بلوت در تنش خشکی
مریم حشمتی ، مژگان کوثری* ، حسن فیضی
بخش بیوتکنولوژی میکروبی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، ترویج و آموزش کشاورزی، کرج
چکیده:   (4468 مشاهده)
در سال‌‌های اخیر بخش‌‌های بزرگی از جنگل‌‌های زاگرس به دلیل بحران زوال بلوت از بین رفته و موجودیت بخش‌‌های بیشتری از آن به مخاطره افتاده و ساختار توده‌‌های جنگل دستخوش تغییرهایی ناخوشایند شده است. یافتن راهکارهایی برای افزایش توان استقرار نهال‌های جدید در عرصه می تواند کمکی در زمینه احیای دوباره جنگل باشد. در این پژوهش از پتانسیل نانوذره‌های تیتانیوم دی‌‌اکسید برای کاهش اثرهای مخرب تنش خشکی بر بذر بلوت استفاده شد. تنش خشکی یکی از مهم‌‌ترین عوامل در محدودیت تنژگی گیاهان است. تیمارهای اعمال شده شامل 4 سطح نانوذره های تیتانیوم (صفر، 10، 50 و 100 میلی‌‌گرم در لیتر) و 4 سطح تنش خشکی (صفر، 3-، 6- و 9- بار) اعمال شده توسط پلی‌‌اتیلن‌‌گلایکول 6000، بود. سطح صفر در هردو تیمار به‌‌عنوان تیمار شاهد درنظرگرفته شد. آزمایش به صورت فاکتوریل و در قالب طرح کامل تصادفی با دو عامل و سه تکرار انجام شد. نتایج نشان داد که تنش خشکی به‌ویژه در سطوح بالا بر بیشتر فاکتورهای رشدی اثر منفی داشته است. تنش خشکی بالای ۶- بار اثر منفی بر رشد ریشه داشت و تیمار ۵۰ میلی گرم در لیتر تیتانیوم دی اکسید با تنش خشکی ۳- بار بیشترین وزن تر ریشه (۳/۷۲۲۸ میلی گرم) و بیشترین طول ریشه(۳۳/۱۲۷ میلی متر) را ایجاد کرد. سطوح بالای تنش خشکی شمار و سطح برگ‌ها را کاهش داد. اگرچه بین تیمارهای نانوذره اختلاف آماری معنی‌داری در طول ساقه‌چه و شمار برگ‌ها وجود نداشت اما تیمار ۵۰ میلی گرم در لیتر نانوذره مقدار عددی بیشتری نسبت به دیگر تیمارها داشت. یافته‌ها نشان داد که بیشترین درصد تنژگی و پیدایش گیاهچه در غلظت ۵۰ میلی گرم در لیتر نانوذره و سطوح صفر و ۳- بار تنش خشکی و کم ترین درصد پیدایش در تیمار بدون نانوذره و سطح ۹- بار تنش خشکی حاصل شد. برهمکنش نانوذره ها و تنش خشکی در سطح یک درصد بر تغییرات قطر طوقه معنی‌دار بود. غلظت ۵۰ میلی گرم در لیتر نانوذره در سطح ۶- بار تنش خشکی قطر طوقه را به‌طور میانگین ۶۳/۲ میلی متر نسبت به شاهد افزایش داد. بیشترین شمار ریشه‌های جانبی در غلظت ۵۰ میلی گرم در لیتر و سطح ۳- بار تنش خشکی به‌دست آمد. یافته‌ها نشان داد زمانی که تیمار نانوذره همراه با تنش خشکی به کار رفته است گیاه آستانه تحمل تنش خود را برای زیوایی بهتر در شرایط تنش افزایش داده است. بر اساس یافته‌های این پژوهش می توان بیان نمود که غلظت 50 میلی گرم در لیتر نانو ذره مناسب ترین تیمار برای بهبود مشخصات ریشه و کاهش اثر تنش خشکی در گیاه بلوت است. پژوهش حاضر نخستین پژوهش انجام شده روی اثر تیمار نانو ذره بر ویژگی‌های رویشی بذر بلوت است.
واژه‌های کلیدی: تنش خشکی، جنگل، تیتانیوم دی‌اکسید، زوال بلوت
متن کامل [PDF 462 kb]   (1438 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/11/15 | پذیرش: 1399/1/9 | انتشار: 1399/8/29
فهرست منابع
1. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
2. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
3. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
4. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
5. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
6. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
7. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
8. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
9. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
10. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
11. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
12. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
13. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
14. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
15. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
16. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
17. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
18. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
19. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
20. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
21. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
22. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
23. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
24. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
25. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
26. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
27. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
28. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
29. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
30. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
31. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
32. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
33. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
34. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
35. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
36. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
37. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
38. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
39. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
40. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
41. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
42. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
43. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
44. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
45. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
46. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
47. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
48. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
49. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
50. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
51. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
52. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
53. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
54. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
55. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
56. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
57. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
58. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
59. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
60. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
61. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
62. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
63. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
64. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
65. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
66. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
67. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
68. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
69. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
70. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
71. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
72. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
73. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
74. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
75. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
76. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
77. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
78. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
79. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
80. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
81. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
82. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
83. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
84. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
85. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
86. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
87. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
88. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
89. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
90. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
91. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
92. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
93. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
94. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
95. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
96. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
97. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
98. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
99. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
100. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
101. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
102. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
103. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
104. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
105. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
106. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
107. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
108. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
109. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
110. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
111. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
112. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
113. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
114. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
115. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
116. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
117. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
118. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
119. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
120. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
121. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
122. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
123. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
124. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
125. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
126. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
127. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
128. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
129. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
130. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
131. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
132. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
133. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
134. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
135. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
136. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
137. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
138. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
139. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
140. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
141. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
142. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
143. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
144. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
145. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
146. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
147. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
148. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heshmati M, Kowsari M, Feizi H. Effects of titanium dioxide nanoparticles on germination and growth indices of oak acorns under drought stress. FOP 2020; 4 (2) :87-100
URL: http://flowerjournal.ir/article-1-158-fa.html

حشمتی مریم، کوثری مژگان، فیضی حسن. اثر نانوذره های تیتانیوم دی‌اکسید بر تنژگی و شاخص های رشد بذر بلوت در تنش خشکی. گل و گیاهان زینتی. 1398; 4 (2) :87-100

URL: http://flowerjournal.ir/article-1-158-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 4، شماره 2 - ( پاییز-زمستان 1398 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4660