[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 4, Issue 2 (Fall-Winter 2020) ::
FOP 2020, 4(2): 87-100 Back to browse issues page
Effects of titanium dioxide nanoparticles on germination and growth indices of oak acorns under drought stress
Maryam Heshmati , Mojgan Kowsari * , Hassan Feizi
Agricultural Research, Education and Extension Organization (AREEO)
Abstract:   (4467 Views)
 The crisis of oak decline in recent years has destroyed big sections of the Zagros forests, and altering the structure of the forest masses. Finding ways to restore deforested forests and increase the ability to deploy new seedlings in the field can help reforest. In this study, the potential of titanium dioxide nanoparticles was used to modify the damaging effects of drought stress on oak seed. Drought stress is one of the most important factors in limiting the seed germination of plants. Treatments consisted of 4 levels of titanium nanoparticles (0, 10, 50 and 100 mg L-1) and 4 levels of drought stress (0, -3, -6 and -9 bar) applied by polyethylene glycol 6000. Zero levels in both treatments were considered as the control treatment. The experiment was conducted as a factorial experiment in a completely randomized design with two factors and three replications. Analysis of variance showed that drought stress had a negative effect on most growth factors, especially at high levels. Drought stress above -6 bar, had a negative effect on root growth and treatment of 50 mg L-1  titanium dioxide with -2 bar of drought stress caused the highest root fresh weight (7228.3 mg) and maximum root length of 127.33 mm. High drought stress levels decreased leaf number and leaf area. Although there were no significant differences between the treatments of nanoparticles on stem length and number of leaves, treatment with 50 mg L-1 nanoparticles had higher numerical value than others. The results showed that the highest germination percentage and seedling emergence were obtained at the concentration of 50 mg L-1 of TiO2 and drought stress in 0 and -3 bar, and the lowest germination percentage was observed at no-treatment and drought stress in -9 bar. The interactions between nanoparticles and drought stress at the 1% level were significant for the crown diameter changes. The concentration of 50 mg L-1 nanoparticles at the drought stress in -6 bar, increased the crown diameter by about 2.63 mm on average. The highest number of lateral roots was obtained at a concentration of 50 mg L-1  and a -3 bar of drought stress. The results showed that when the nanoparticles were treated with drought stress, the plant increased its stress tolerance threshold for better survival under stress conditions. Based on the findings of this study, it can be concluded that a concentration of 50 mg L-1 nanoparticles is the most suitable treatment for improving root characteristics and moderating drought stress effect on oak. The present study is the first study of nanoparticle treatment on vegetative characteristics of oak seed.
 
Keywords: Oak decline, Drought stress, Titanium dioxide, Forest.
Full-Text [PDF 462 kb]   (1438 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/02/4 | Accepted: 2020/03/28 | Published: 2020/11/19
References
1. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
2. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
3. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
4. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
5. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
6. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
7. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
8. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
9. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
10. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
11. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
12. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
13. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
14. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
15. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
16. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
17. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
18. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
19. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
20. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
21. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
22. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
23. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
24. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
25. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
26. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
27. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
28. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
29. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
30. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
31. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
32. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
33. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
34. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
35. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
36. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
37. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
38. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
39. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
40. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
41. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
42. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
43. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
44. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
45. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
46. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
47. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
48. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
49. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
50. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
51. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
52. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
53. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
54. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
55. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
56. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
57. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
58. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
59. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
60. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
61. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
62. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
63. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
64. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
65. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
66. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
67. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
68. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
69. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
70. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
71. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
72. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
73. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
74. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
75. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
76. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
77. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
78. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
79. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
80. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
81. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
82. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
83. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
84. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
85. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
86. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
87. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
88. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
89. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
90. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
91. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
92. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
93. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
94. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
95. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
96. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
97. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
98. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
99. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
100. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
101. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
102. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
103. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
104. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
105. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
106. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
107. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
108. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
109. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
110. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
111. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
112. Ahmadi, E., Kowsari, M., Azadfar, D., Salehi Jouzani, G.R. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Persian oak decline in Zagros forests (Iran). Forest Pathology, 49, 1-16. [DOI:10.1111/efp.12541]
113. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A., Salehi Jouzani, G.R. (2019). Deniquelata quercina sp. nov.; a new endophyte species from Persian oak in Iran. Phytotaxa, 405, 187-194. [DOI:10.11646/phytotaxa.405.4.2]
114. Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Salehi Jouzani, G.R., Ebrahimi Rastaghi, M. (2019). New pathogenic and endophytic fungal species associated with Persian oak in Iran. European Journal of Plant Pathology, 155, 1017-1032. [DOI:10.1007/s10658-019-01830-y]
115. Asghari, F., Dreajhshani, Z., Delkani, M. (2010). Effect of water stress derived of PEG on germination properties of Cone Flower Echinacea purpurea (L.). Proceeding of Articles 6th Iranian Congress of Horticultural Sciences 13-16 July, Gilan, Iran.
116. Ashley, M.V., Backs, J.R, Kindsvater, L., Abraham, S.T. (2018). Genetic variation and structure in an endemic island oak, Quercus tomentella and mainland canyon oak, Quercus chrysolepis. International Journal of Plant Sciences, 179, 151-161. [DOI:10.1086/696023]
117. Bigler, Ch., Ulrich Braker, O., Bugmann, H., Dobbertin, M. Rigling, A. (2006). Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 9, 330-343. [DOI:10.1007/s10021-005-0126-2]
118. Boykov, I. N., Shuford, E., Zhang, B. (2019). Nanoparticle titanium dioxide affects the growth and micro RNA expressionof switchgrass (Panicum virgatum). Genomics, 111, 450-456. [DOI:10.1016/j.ygeno.2018.03.002]
119. Clement, L., Hurel, C., Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- Effects of size and crystalline structure. Chemosphere, 90, 1083-1090. [DOI:10.1016/j.chemosphere.2012.09.013]
120. Feizi, H., Rezvanimoghaddam, P., Fotovat, A., Shahtahmasebi, N. (2012). Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146,101-106. [DOI:10.1007/s12011-011-9222-7]
121. Hipp, A., Manos, P., Cavender-Bares, J. (2020). Ascent of the Oaks: How they evolved to rule the forests of the Northern Hemisphere. Scientific American.
122. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effects of Nano Tio2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research, 105, 269-279. [DOI:10.1385/BTER:105:1-3:269]
123. Hosseinzadeh, J., Aazami, A., Mohammadpour, M. (2015). Influence of topography on Brant's oak decline in Meleh- Siah Forest, Ilam Province. Iranian Journal of Forest and Poplar Research, 23, 190-197. (In Persian).
124. Jenkins, M.A., Pallardy, S.G. (1995). The influence of drought on red oak group species growth and mortality in in the Missuri Ozarks. Canadian Journal of Forest Research, 25, 1119-1127. [DOI:10.1139/x95-124]
125. Khote, LR., Sankaran, S., Mari, J., Schuster, E.W. (2012). Applications of nanomaterials in agriculture production and crop protection; A review. Crop Protection, 35, 64-70. [DOI:10.1016/j.cropro.2012.01.007]
126. Kremer, A., Hipp, A.L. (2019). Oaks: An evolutionary success story. New Phytologist, 226, 987-1011. [DOI:10.1111/nph.16274]
127. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P., Van, P.N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Journal of Biological Trace Element Reasearch, 91, 179-190. [DOI:10.1385/BTER:91:2:179]
128. Larue, C., Laurette, J., Herlin-Boime N., Khodja H., Fayad B.F., Lank, A.M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat Triticum aestivum ssp.; influence of diameter and crystal phase. Science of the Total Enviroment 431,197-208. [DOI:10.1016/j.scitotenv.2012.04.073]
129. Lu, C.M., Zhang, C.Y., Wu, J.Q., Tao, M.X. (2002). Reasearch of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
130. Ma, M., Geiser, L., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants; Phytotoxicity, uptake and accumulation. Science of the Total Enviroment, 408, 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
131. Maleknia, R., Namiranian, M., Feghhi, J. (2006). Investigation on the effective factors in agricultural lands selection in zagros forest and their influence on forest stands status (Case study; cheshmeh khazaneh rural boundary Ilam). Forest & Rangeland, 71, 22-25 (In Persian).
132. Malik, C.P., Gupta. K., Sharma, S. (1986). Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica, 35, 11-16.
133. Martinez-Sanchez, F., Nunez, M., Amoros, A., Gimenez, J.L., Alcarez, C.F. (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annum L. Fruits. Journal PlantNutrition, 16, 975-981. [DOI:10.1080/01904169309364586]
134. Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X., Chen, L. (2007). Effects of nano-anatase Tio2 on absorption, distribution of light and photo reduction activities of choloroplast membrance of spinach, Biological Trace Element Research, 118, 120-130. [DOI:10.1007/s12011-007-0006-z]
135. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010).
136. Nanoparticulate material delivery to plants. Plant Science, 179, 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
137. Paris, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. [DOI:10.1080/01904168309363075]
138. Safarnejd, A. (2004). Characterization of somaclones of Medicago sativa L.for drought tolerance. Journal of Agricultural Science and Technology, 6,121-127.
139. Rop, K., Karuku, G.N., Mbui, D., Njomo, N., Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Science, 64, 9-19. [DOI:10.1016/j.aoas.2019.05.010]
140. Scrinis G., Lyons, K. (2007). The emerging nano corporate paradigm; Nanotecnology and the transformation of nature, food and Agri food systems. International Journal of Sociology of food and Agriculture, 15, 22-44.
141. Shabala, S., Babourina, O., Newman, I. (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 51, 1243-1253. [DOI:10.1093/jexbot/51.348.1243]
142. Sharma, V.K., Yngard R.A., Lin, Y. (2009). Silver nanoparticles; green syntesis and their antimicrobial activities, A dv. Journal of Colloid and Interface Science, 145, 83-96. [DOI:10.1016/j.cis.2008.09.002]
143. Singh, D., Kumar, S., Singh, S.C., Lal, B., Singh, N.B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata. Science of Advanced Materials, 4, 522-531. [DOI:10.1166/sam.2012.1313]
144. Singh, J., Lee, B.K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environtal Management, 170, 88-96. [DOI:10.1016/j.jenvman.2016.01.015]
145. Sresty, T.V.S., Rao, K.V.M. (1999). Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Enviromental and Experimental Botany, 41, 3-13. [DOI:10.1016/S0098-8472(98)00034-3]
146. Tiwari, E., Mondal, M., Singh, N., Khandelwal, N., Monikh, F.A., Darbha, G.K. (2020). Effect of the irrigation water type and other environmental parameters on CeO2 nanopesticide-clay colloid interactions. Environmental Science: Processes and Impacts, 22, 84-94. [DOI:10.1039/C9EM00428A]
147. Xu, N., Li, Z., Huangfu, X., Cheng, X., Christodoulatos, C., Qian, J., Chen, M., Chen, J., Su, C, Wang, D. (2020). Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. Science of the Total Environment, 713, 136589. [DOI:10.1016/j.scitotenv.2020.136589]
148. Zhang, L., Hong, F., Lu, S., Liu, S., Liu, C. (2005). Effect of nano -Tio2 on strenght of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105, 83-91. [DOI:10.1385/BTER:104:1:083]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heshmati M, Kowsari M, Feizi H. Effects of titanium dioxide nanoparticles on germination and growth indices of oak acorns under drought stress. FOP 2020; 4 (2) :87-100
URL: http://flowerjournal.ir/article-1-158-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 4, Issue 2 (Fall-Winter 2020) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4660