[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 4, Issue 2 (Fall-Winter 2020) ::
FOP 2020, 4(2): 143-156 Back to browse issues page
Effect of ethyl methane sulfonate and gamma ray on physiological and phytochemical characteristics of papaver (Papaver macrostomum Boiss. and A. Huet)
Fatemeh Minaee , Abolfazl Jowkar * , Mehdi Zehtabian
Shiraz University
Abstract:   (3599 Views)
Papaver macrostomum Boiss. and A. Huet is a herbaceous ornamental plant that grows as a wild flower in different areas of Iran. It produces different medicinal compounds. Experiment was conducted to study the effect of ethyl methane sulfonate and gamma ray on physiological and phytochemical characteristics of papaver. The experiment was carried out as a factorial experiment based on completely randomized design with three replications in greenhouse conditions from 2017-2018. Experimental treatments included ethyl methane sulfonate at four levels (0, 0.1, 0.2 and 0.3%) and Gamma ray at four levels (0, 10, 50 and 100 Gy). Characteristics of chlorophyll, carotenoid, flavonoid, phenol, and sugar content as well as antioxidant activity were measured. The results showed that treatments had a significant effect on the studied factors. Mutation treatments increased the characteristics and the highest amount of chlorophyll, carotenoids, antioxidant activity, and sugar were belonged to the treatment of 0.1% ethyl methane sulfonate and the highest amount of phenol and flavonoid was observed in the treatment of 0.3% ethyl methane sulfonate. Overall, the results showed that the use of mutagenic agents can affect the physiological and phytochemical traits of P. macrostomum. However, the mutagenic agent of ethyl methane sulfonate alone was more effective than the other treatments.
Keywords: Chemical mutagens, Mutation induction, Papaver flower, Papaver macrostomum, Radiation
Full-Text [PDF 1613 kb]   (1081 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/11/16 | Accepted: 2020/11/19 | Published: 2020/12/7
References
1. Abu, J.O., Müller, K., Duodu, K.G., Minnaar, A. (2006). Gamma irradiation of cowpea (Vigna unguiculata L. Walp) flours and pastes: Effects on functional, thermal and molecular properties of isolated proteins. Food Chemistry, 95(1), 138-147. [DOI:10.1016/j.foodchem.2004.12.040]
2. Ahloowalia, B., Maluszynski M., Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135(2), 187-204. [DOI:10.1023/B:EUPH.0000014914.85465.4f]
3. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. [DOI:10.1104/pp.24.1.1]
4. Austin C. (2005). Irises. A Gardener's Encyclopedia: Timber Press, Inc.
5. Baytop, T. (1999). Therapy with Medicinal Plants in Turkey (Past and Present). Publication of the Istanbul University.
6. Borzouei, A., Kafi, M., Sayahi, R., Rabiei, E., Sayad, P. (2013). Biochemical response of two wheat cultivars (Triticum aestivum L.) to gamma radiation. Pakistan Journal Botany, 45, 473-477.
7. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. [DOI:10.1016/S0023-6438(95)80008-5]
8. Broertjes, C. (2012). Application of Mutation Breeding Methods in the Improvement of Vegetatively Propagated Crops (Vol. 2): Elsevier.
9. Chatterjee, A., Shukla, S., Mishra, B.K., Rastogi, A., Singh, S.P. (2012). Induction of variability through mutagenesis in opium poppy (Papaver somniferum L.). Turkish Journal of Agriculture and Forestry, 36(1), 1-11.
10. Chung, B., Lee, Y.B., Baek, M.H., Kim, J.H., Wi, S., Kim, J.S. (2006). Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiation Physics and Chemistry, 75(9), 1018-1023. [DOI:10.1016/j.radphyschem.2005.11.001]
11. Dadkhah, A., Khalafi, H., Rajaee, R., Allameh, A., Rezaei, M., Seyhoon, M. (2009). Study of the effects of gamma-irradiation on microbial load and efficient extracts of caraway seeds. Journal of Nuclear Science and Technology, 27-34.
12. Dao, T., Linthorst, H., Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10(3), 397. [DOI:10.1007/s11101-011-9211-7]
13. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. [DOI:10.1021/ac60111a017]
14. El-Beltagi, H.S., Ahmed, O.K., El-Desouky, W. (2011). Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiation Physics and Chemistry, 80(9), 968-976. [DOI:10.1016/j.radphyschem.2011.05.002]
15. Fatemi, F., Asri, Y. Naji, Y. (2015). The effect of gamma irradiation on the biological property of hydroalcoholic extract and essential oils derived from Chelidonium majus L. Journal of Plant Research, 29 (3), 567-577. ( In Persian with English abstract).
16. Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling and Behavior, 6(5), 709-711. [DOI:10.4161/psb.6.5.15069]
17. Fu, H.W., Li, Y.F., Shu, Q.-Y. (2008). A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Molecular Breeding, 22(2), 281-288. [DOI:10.1007/s11032-008-9173-7]
18. Gumus, T., Albayrak, S., Sagdic, O., Arici, M. (2011). Effect of gamma irradiation on total phenolic contents and antioxidant activities of Satureja hortensis, Thymus vulgaris, and Thymbra spicata from Turkey. International Journal of Food Properties, 14(4), 830-839. [DOI:10.1080/10942910903453397]
19. Jalili, Sh., Ehsanpour, A., Asghari, Gh,R., Abdi, M.R. (2017). Effect of Gamma radiation on physiologic and antioxidant factor on and Artemisia aucheri Boiss. Journal of Plant Research, 29 (4), 741-750 ( In Persian with English abstract).
20. Joz-Ghasemi, S., Rabiei, V. (2016). Detection and Feasibility of Iranian Iris Correction Using Gamma ray. Breeding Agronomic and Horticultural Crop, 4 (1), 89-75. ( In Persian with English abstract).
21. Kafi, M., Borzouei, A., Salehi, M., Kamandi, A., Masoumi, A., Nabati, C. (2009). Physiology of Environmental Stresses in Plants. Mashhad University Press Publications. ( In Persian).
22. Khalighi-Sigaroodi, F. Ahvazi, M. Yazdani, D., Kashefi, M. (2012). Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. Journal Medicinal Plants, 11(43), 41-53.
23. Kharkwal, M., Pandey, R., Pawar, S. (2004). Mutation Breeding for Crop Improvement. In Plant Breeding, Springer. [DOI:10.1007/978-94-007-1040-5_26]
24. Kim, D.O., Jeong, S.W., Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326. [DOI:10.1016/S0308-8146(02)00423-5]
25. Kim, J.H., Shin, M.H., Hwang, Y.J., Srinivasan, P., Kim, J.K., Park, H.J., Lee, J. W. (2009). Role of gamma irradiation on the natural antioxidants in cumin seeds. Radiation Physics and Chemistry, 78(2), 153-157. [DOI:10.1016/j.radphyschem.2008.08.008]
26. Kiong, A.L.P., Lai, A.G., Hussein, S., Harun, A.R. (2008). Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian journal of sustainable agriculture, 2(2), 135-149.
27. Koseki, P.M., Villavicencio, A.L.C., Brito, M.S., Nahme, L.C., Sebastião, K.I., Rela, P.R., Freitas, P.C. (2002). Effects of irradiation in medicinal and eatable herbs. Radiation Physics and Chemistry, 63(3-6), 681-684. [DOI:10.1016/S0969-806X(01)00658-2]
28. Kovacs, E., Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210. [DOI:10.1016/S0968-4328(01)00012-9]
29. Lee, M.B., Kim, D.Y., Jeon, W.B., Hong, M.J., Lee, Y.J., Bold, O., Kim, D.S. (2013). Effect of gamma radiation on growth and lignin content in Brachypodium distachyon. Journal of Crop Science and Biotechnology, 16(2), 105-110. [DOI:10.1007/s12892-013-0022-9]
30. Li, L., Staden, J.V., Jäger, A. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regulation, 25(2), 81-87. [DOI:10.1023/A:1010774725695]
31. Moghaddam, S.S., Jaafar, H., Ibrahim, R., Rahmat, A., Aziz, M.A., Philip, E. (2011). Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules, 16(6), 4994-5007. [DOI:10.3390/molecules16064994]
32. Musa, H.A.A., Ahmed, E.E., Osman, G., Ali, H., Müller, J. (2010). Microbial load and phytochemicals stability of camel hay (Cymbopogon schoenanthus L.) leaves as affected by gamma irradiation. Agriculture and Biology Journal of North America, 1(4), 662-670.
33. Naderi Shahab, M.A., Mehrpor, Sh., Jebeli, M., Jafari, A.A. (2007). Mutagenesis effects of EMS and UV-C eradiation doses on Medicago sativa L. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 15(3), 183-195 (In Persian with English abstract).
34. Okamura, M., Umemoto, N., Onishi, N. (2012). Breeding glittering carnations by an efficient mutagenesis system. Plant Biotechnology, 12.0104 a. 29(3), 1-6). [DOI:10.5511/plantbiotechnology.12.0104a]
35. Patil, B., Rane, G. (2015). Gamma radiation induced chlorophyll mutations in cluster bean Cyamopsis tetragonoloba L. Taub Var. NCB-12. International Journal of Allied, Practice Research and Review, 2(2), 75-85.
36. Rajurkar, N., Gaikwad, K. (2012). Effect of gamma irradiation on antioxidant activity of Amoora rohituka. Journal of Radioanalytical and Nuclear Chemistry, 293(1), 409-413. [DOI:10.1007/s10967-012-1759-1]
37. Salehi, F., Khairi, A.S.E., Eskandari, A.S., Satisfaction, M.B. (2015). Effect of gamma irradiation on morphological and phytochemical traits of medicinal plant Thymus vulgaris L. Journal of Ecophytochemistry of Medicinal Plants, 3 (3), 21-10. (in Persian)
38. Sarıyar, G., Mat, A., Ünsal, Ç., Özhatay, N. (2002). Biodiversity in the Alkaloids of 7 Annual Papaver species of Turkish origin. Acta Pharmaceutica Sciencia, 44(3), 159-168.
39. Seddik, K., Nadjet, I., Daoud, B.A.H., Lekhmici, A. (2010). Antioxidant and antibacterial activities of extracts from Artemisia herba alba Asso. leaves and some phenolic compounds. Journal of Medicinal Plants Research, 4(13), 1273-1280.
40. Sharifnia, F., Heydarian, S., Salimpour, F. (2010). Biosystematic study of some Papaver (Papaveraceae) species from Iran. The Iranian Journal of Botany,16(1), 54-68 .
41. Shu, Q.Y., Lagoda, P.J.L. (2007). Mutation techniques for gene discovery and crop improvement. Molecular Plant Breeding. 2: 193-195.
42. Siddiqui, B., Khan, S. (1999). Breeding in crop plants, mutations and in vitro mutation breeding. Journal of Cytological and Genetical, 34(1), 75-78.
43. Sood, S., Jambhulkar, S., Singh, Y., Gupta, N., Sharma, S. (2017). Induced chlorophyll mutations in bell pepper (Capsicum annuum L. var. grossum). Journal of Applied and Natural Science, 9(2), 1085-1089. [DOI:10.31018/jans.v9i2.1326]
44. Stamo, I., Ylli, A., Dodbiba, A. (2007). Induced mutations for improving production on bread and durum wheat. Paper presented at the American Institute of Physics Conference Proceedings, 899(1), 747-747. [DOI:10.1063/1.2733488]
45. Strid, Å., Chow, W., Anderson, J. M. (1990). Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1020(3), 260-268. [DOI:10.1016/0005-2728(90)90156-X]
46. Sujay, R., Kanzaki, H., Matsumura, H., Arunita, R., Fujibe, T., Okuyama, Y., Utsushi, H. (2010). Use of TILLING for reverse and forward genetics of rice. The handbook of plant mutation screening: mining of natural and induced alleles, 187-197.
47. Tulmann, N., Ando, A., Figueira, A., Latado, R., Dos Santos, P., Correa, L., Ishiy, T. (2011). Genetic improvement of crops by mutation techniques in Brazil. Plant Mutation Reports, 2(3), 24-37.
48. Variyar, P.S., Limaye, A., Sharma, A. (2004). Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). Journal of Agricultural and Food Chemistry, 52(11), 3385-3388. [DOI:10.1021/jf030793j]
49. Wi, S.G., Chung, B.Y., Kim, J.S., Kim, J.H., Baek, M.H., Lee, J.W., Kim, Y.S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553 - 564. [DOI:10.1016/j.micron.2006.11.002]
50. Yoo, K.M., Lee, C.H., Lee, H., Moon, B., Lee, C.Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chemistry, 106(3), 929-936. [DOI:10.1016/j.foodchem.2007.07.006]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Minaee F, Jowkar A, Zehtabian M. Effect of ethyl methane sulfonate and gamma ray on physiological and phytochemical characteristics of papaver (Papaver macrostomum Boiss. and A. Huet). FOP 2020; 4 (2) :143-156
URL: http://flowerjournal.ir/article-1-145-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 4, Issue 2 (Fall-Winter 2020) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645