|
1. Ahmadi, Tayyaba. Shebani, Leila. and Sabze Alian. Mohammad Reza. (2016). Investigating the effect of different LED light spectrums on growth indicators and rosmarinic acid content in Melissa officinalis L. Journal of plant process and function. 6 (21):213-222. 2. Bayat, Leila, Arab, Mustafa. and Ali Niyaifard, Sasan. (2018). The effectiveness of different light spectrums on inhibiting intense light stress in samurai roses. Plant process and function. 9 (36): 103-93. 3. Scholars, Iman. Jalali, Gholam Ali. Etbati, Hamid. Zarafshar, Mehrdad and Satarian, Ali. (2015). Comparison of carbon nanotubes treatments with chemical and physical treatments for seed dormancy failure of the case species (Myrtus communis L.). Plant Research Journal. 29 (2): 308-300. 4. Tajpileh, golden crown. Mahmoudzadeh Akhrat, Homa. and Ishaghi, Ali. (2013). Investigating the effect of carbon nanotubes on the germination and growth characteristics of chicory plant (Cichorium intybus L.). The second national conference on medicinal plants and sustainable agriculture. 1-12. 5. Heydarizadeh, Parisa. Zahedi, Morteza. and Sabzealian, Mohammadreza. (2013). The effect of LED light on plant performance, percentage of essential oil and activity of antioxidant enzymes in peppermint (Mentha piperita). Plant Process and Function, 3(8), 13-24. 6. Khazaei, Mustafa. Rafii, Fariba. Sabzealian, Mohammadreza. And smart, Saadullah. (1400). The effect of different LED light spectrums on the morphophysiological traits of three types of mint. Journal of Horticultural Sciences of Iran. 52 (2): 471-461. 7. Dehkhodaei, Priya. Rizi, Saeed. and Ghasemi Ghassara, Massoud. (2018). The effect of LED light spectrum compared to natural light in the greenhouse on the quality of seedlings of Hassan Youssef (Solenostemon escutellariodes Wizard Scarlet) and Petunia × Hybrida Scarlet Eye. Journal of Horticultural Sciences (Agricultural Sciences and Industries). 33 (3). 548-537. 8. Ghasemi Ghasare, M. and Kafi, M. (1390). Scientific and practical floriculture. Razavi printing. Mahdavifard, Mehri. Rezainejad, Abdul Hossein. and Mousavifard, Sadegh. (2016). Effect of light intensity on morphophysiological characteristics and flowering of African and French parsley in late cultivation. Journal of Horticultural Sciences (Agricultural Sciences and Industries). 32(2): 325-311. 9. Adams, S.R., Valdes, V.M. and Langton, F.A. 2008. Why does low intensity, long-day lighting promote growth in petunia, impatiens, and tomato. The Journal of Horticultural Science and Biotechnology. 83(5), 609-615. [ DOI:10.1080/14620316.2008.11512431] 10. Arnon, D. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology, V.24 (1), pp. 1-15. [ DOI:10.1104/pp.24.1.1] 11. Canas, J.E., Long, M., Nations, Sh., Vadan, R. and Dai, L. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Nanomaterials in the Environment. 27 (9): 1922-1931. [ DOI:10.1897/08-117.1] 12. Cao, G., Zhang, G., Yu, J. and Ma, Y.( 2013). Effects of different led light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultura Sinica, 46(6), 1297-1304. 13. Chia, P.L., C. Kubota.(2010). End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. Horticultural Science. 45: 1501-1506. [ DOI:10.21273/HORTSCI.45.10.1501] 14. Heo, J.W., Kang, D.H., Bang, H.S., Hong, S.G., Chun, C.H. and Kang, K.K. (2012). Early growth, pigmentation, protein content, and phenyl alanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology. 30(1), 6-12. [ DOI:10.7235/hort.2012.11118] 15. Hernández, R. and Kubota. C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121:66-74. [ DOI:10.1016/j.envexpbot.2015.04.001] 16. plantarum. 84:55-60. 17. Johkan, M., Shoji, K., Goto, F., Hashida, S. and Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 45(12), 1809-1814. [ DOI:10.21273/HORTSCI.45.12.1809] 18. Jung, E.S., Lee, S., Lim, Sh. Ha, Sh., Liu, Kh., Lee, Ch. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Science. 210: 61- 69. [ DOI:10.1016/j.plantsci.2013.05.004] 19. Kim, H.H., Goins, G.D., Wheeler, R.M. and Sager, J.C. (2004). Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Horticultural Science. 39: 1617-1622 [ DOI:10.21273/HORTSCI.39.7.1617] 20. Koksal, N., İncesu, M. and Teke, A. (2015). Supplemental LED lighting increases pansy growth. Horticultura Brasileira. 33: 428-433. [ DOI:10.1590/S0102-053620150000400004] 21. Kreslavski, V.D., Lyubimov, V.Y., Shirshikova, G.N., Shmarev, A.N., Kosobryukhov, A.A., Schmitt, F.J., Friedrich, T. and Allakhverdiev, S.I. (2013). Preillumination of lettuce seedlings with red lightenhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry Photobiology B: Biology. 122(1),1-6. [ DOI:10.1016/j.jphotobiol.2013.02.016] 22. Lanoue, J., Leonardos, E. D. and Grodzinski, B. (2018). Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Frontiers in Plant Science. 9, 756. [ DOI:10.3389/fpls.2018.00756] 23. Mani, R. (2015). The effects of LEDs on plants. Maximum Yield. Available at http ://maximumyield. com/blog/2015/06/01/the-effects-of-leds-on-plants (visited 12 January 2018). 24. Massa, G.D., Kim H.H., Wheeler, R.M. and Mitchell, C.A.(2008). Plant productivity in response to LED lighting. Hortscience. 43, 1951- 1956. [ DOI:10.21273/HORTSCI.43.7.1951] 25. Food Chemistry. 91: 571-577. 26. Miao, Y.X, Wang, X.Z, Gao, L.H, Chen, Q.Y. and Qu, M. (2016). Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture. 15(1): 87-100. [ DOI:10.1016/S2095-3119(15)61202-3] 27. Morrow, R.C. (2008). LED Lighting in Horticulture. HortScience. 43, 1947-1950. [ DOI:10.21273/HORTSCI.43.7.1947] 28. Runkle, E.S. and Heins, R.D. (2001). Specific Functions of Red, Far Red, and Blue Light in Flowering and Stem Extension of Long-day Plants. Journal of the American Society for Horticultural Science. 126 (3): 275-282. [ DOI:10.21273/JASHS.126.3.275] 29. Sage, L.C. (1992). Pigment of the imagination: a history of phytochrome research. Academic Press, London. [ DOI:10.1016/B978-0-12-614445-1.50022-6] 30. Soltani, F., Hassanpour, H. and Hekmati, M.(2021). Study of light spectrums effects on some gr owth parameters and antioxidant capacity of Anthemis gilanica. Space Science and Technology. 14(1), 15-22. [ DOI:10.1155/2021/8730234] 31. Son, K.H. and Oh, M.M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Horticulture Science. 48(8), 988-995. [ DOI:10.21273/HORTSCI.48.8.988] 32. Song, J.X., Meng, Q.W., Du, W.F. and He, D.X. (2017). Effects of light quality on growth and development of cucumber seedlings in controlled environment. International Journal of Agricultural and Biological Engineering. 10(3): 312-318. 33. Wang, G., Chen, Y., Fan, H. and Huang, P. (2021). Effects of Light-Emitting Diode (LED) Red and Blue Light on the Growth and Photosynthetic Characteristics of Momordica charantia L. Journal of Agricultural Chemistry and Environment. 10: 1-15. [ DOI:10.4236/jacen.2021.101001] 34. Yeh, N. and Chung, J.P. (2009). High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews. 13: 2175-2180. [ DOI:10.1016/j.rser.2009.01.027] 35. Ahmadi, Tayyaba. Shebani, Leila. and Sabze Alian. Mohammad Reza. (2016). Investigating the effect of different LED light spectrums on growth indicators and rosmarinic acid content in Melissa officinalis L. Journal of plant process and function. 6 (21):213-222. 36. Bayat, Leila, Arab, Mustafa. and Ali Niyaifard, Sasan. (2018). The effectiveness of different light spectrums on inhibiting intense light stress in samurai roses. Plant process and function. 9 (36): 103-93. 37. Scholars, Iman. Jalali, Gholam Ali. Etbati, Hamid. Zarafshar, Mehrdad and Satarian, Ali. (2015). Comparison of carbon nanotubes treatments with chemical and physical treatments for seed dormancy failure of the case species (Myrtus communis L.). Plant Research Journal. 29 (2): 308-300. 38. Tajpileh, golden crown. Mahmoudzadeh Akhrat, Homa. and Ishaghi, Ali. (2013). Investigating the effect of carbon nanotubes on the germination and growth characteristics of chicory plant (Cichorium intybus L.). The second national conference on medicinal plants and sustainable agriculture. 1-12. 39. Heydarizadeh, Parisa. Zahedi, Morteza. and Sabzealian, Mohammadreza. (2013). The effect of LED light on plant performance, percentage of essential oil and activity of antioxidant enzymes in peppermint (Mentha piperita). Plant Process and Function, 3(8), 13-24. 40. Khazaei, Mustafa. Rafii, Fariba. Sabzealian, Mohammadreza. And smart, Saadullah. (1400). The effect of different LED light spectrums on the morphophysiological traits of three types of mint. Journal of Horticultural Sciences of Iran. 52 (2): 471-461. 41. Dehkhodaei, Priya. Rizi, Saeed. and Ghasemi Ghassara, Massoud. (2018). The effect of LED light spectrum compared to natural light in the greenhouse on the quality of seedlings of Hassan Youssef (Solenostemon escutellariodes Wizard Scarlet) and Petunia × Hybrida Scarlet Eye. Journal of Horticultural Sciences (Agricultural Sciences and Industries). 33 (3). 548-537. 42. Ghasemi Ghasare, M. and Kafi, M. (1390). Scientific and practical floriculture. Razavi printing. Mahdavifard, Mehri. Rezainejad, Abdul Hossein. and Mousavifard, Sadegh. (2016). Effect of light intensity on morphophysiological characteristics and flowering of African and French parsley in late cultivation. Journal of Horticultural Sciences (Agricultural Sciences and Industries). 32(2): 325-311. 43. Adams, S.R., Valdes, V.M. and Langton, F.A. 2008. Why does low intensity, long-day lighting promote growth in petunia, impatiens, and tomato. The Journal of Horticultural Science and Biotechnology. 83(5), 609-615. [ DOI:10.1080/14620316.2008.11512431] 44. Arnon, D. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology, V.24 (1), pp. 1-15. [ DOI:10.1104/pp.24.1.1] 45. Canas, J.E., Long, M., Nations, Sh., Vadan, R. and Dai, L. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Nanomaterials in the Environment. 27 (9): 1922-1931. [ DOI:10.1897/08-117.1] 46. Cao, G., Zhang, G., Yu, J. and Ma, Y.( 2013). Effects of different led light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultura Sinica, 46(6), 1297-1304. 47. Chia, P.L., C. Kubota.(2010). End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. Horticultural Science. 45: 1501-1506. [ DOI:10.21273/HORTSCI.45.10.1501] 48. Heo, J.W., Kang, D.H., Bang, H.S., Hong, S.G., Chun, C.H. and Kang, K.K. (2012). Early growth, pigmentation, protein content, and phenyl alanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology. 30(1), 6-12. [ DOI:10.7235/hort.2012.11118] 49. Hernández, R. and Kubota. C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121:66-74. [ DOI:10.1016/j.envexpbot.2015.04.001] 50. plantarum. 84:55-60. 51. Johkan, M., Shoji, K., Goto, F., Hashida, S. and Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 45(12), 1809-1814. [ DOI:10.21273/HORTSCI.45.12.1809] 52. Jung, E.S., Lee, S., Lim, Sh. Ha, Sh., Liu, Kh., Lee, Ch. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Science. 210: 61- 69. [ DOI:10.1016/j.plantsci.2013.05.004] 53. Kim, H.H., Goins, G.D., Wheeler, R.M. and Sager, J.C. (2004). Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Horticultural Science. 39: 1617-1622 [ DOI:10.21273/HORTSCI.39.7.1617] 54. Koksal, N., İncesu, M. and Teke, A. (2015). Supplemental LED lighting increases pansy growth. Horticultura Brasileira. 33: 428-433. [ DOI:10.1590/S0102-053620150000400004] 55. Kreslavski, V.D., Lyubimov, V.Y., Shirshikova, G.N., Shmarev, A.N., Kosobryukhov, A.A., Schmitt, F.J., Friedrich, T. and Allakhverdiev, S.I. (2013). Preillumination of lettuce seedlings with red lightenhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry Photobiology B: Biology. 122(1),1-6. [ DOI:10.1016/j.jphotobiol.2013.02.016] 56. Lanoue, J., Leonardos, E. D. and Grodzinski, B. (2018). Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Frontiers in Plant Science. 9, 756. [ DOI:10.3389/fpls.2018.00756] 57. Mani, R. (2015). The effects of LEDs on plants. Maximum Yield. Available at http ://maximumyield. com/blog/2015/06/01/the-effects-of-leds-on-plants (visited 12 January 2018). 58. Massa, G.D., Kim H.H., Wheeler, R.M. and Mitchell, C.A.(2008). Plant productivity in response to LED lighting. Hortscience. 43, 1951- 1956. [ DOI:10.21273/HORTSCI.43.7.1951] 59. Food Chemistry. 91: 571-577. 60. Miao, Y.X, Wang, X.Z, Gao, L.H, Chen, Q.Y. and Qu, M. (2016). Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture. 15(1): 87-100. [ DOI:10.1016/S2095-3119(15)61202-3] 61. Morrow, R.C. (2008). LED Lighting in Horticulture. HortScience. 43, 1947-1950. [ DOI:10.21273/HORTSCI.43.7.1947] 62. Runkle, E.S. and Heins, R.D. (2001). Specific Functions of Red, Far Red, and Blue Light in Flowering and Stem Extension of Long-day Plants. Journal of the American Society for Horticultural Science. 126 (3): 275-282. [ DOI:10.21273/JASHS.126.3.275] 63. Sage, L.C. (1992). Pigment of the imagination: a history of phytochrome research. Academic Press, London. [ DOI:10.1016/B978-0-12-614445-1.50022-6] 64. Soltani, F., Hassanpour, H. and Hekmati, M.(2021). Study of light spectrums effects on some gr owth parameters and antioxidant capacity of Anthemis gilanica. Space Science and Technology. 14(1), 15-22. [ DOI:10.1155/2021/8730234] 65. Son, K.H. and Oh, M.M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Horticulture Science. 48(8), 988-995. [ DOI:10.21273/HORTSCI.48.8.988] 66. Song, J.X., Meng, Q.W., Du, W.F. and He, D.X. (2017). Effects of light quality on growth and development of cucumber seedlings in controlled environment. International Journal of Agricultural and Biological Engineering. 10(3): 312-318. 67. Wang, G., Chen, Y., Fan, H. and Huang, P. (2021). Effects of Light-Emitting Diode (LED) Red and Blue Light on the Growth and Photosynthetic Characteristics of Momordica charantia L. Journal of Agricultural Chemistry and Environment. 10: 1-15. [ DOI:10.4236/jacen.2021.101001] 68. Yeh, N. and Chung, J.P. (2009). High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews. 13: 2175-2180. [ DOI:10.1016/j.rser.2009.01.027]
|