1. Aron D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. [ DOI:10.1104/pp.24.1.1] 2. Barrs, H.D., Weatherley, P.E. (1962). A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428. doi: 10.1071/BI9620413. [ DOI:10.1071/BI9620413] 3. Bates, L.S. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. doi: 10.1007/BF00018060. [ DOI:10.1007/BF00018060] 4. Beard, J.B., Sifers S.I. (1997). Genetic diversity in dehydration avoidance and drought resistance within the Cynodon and Zoysia species. International Turfgrass Society, 8, 603-610. 5. Bian, S., Jiang, Y. (2009). Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 120, 264-270. doi: 10.1016/j.scienta.2008.10.014. [ DOI:10.1016/j.scienta.2008.10.014] 6. Bozkurt, C., Yazar, A., Alghory, A., Tekin, S. (2021) Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrigation Science, 39, 81-100. doi:10.1007/s00271-020-00681-4 [ DOI:10.1007/s00271-020-00681-4] 7. Buckley, T., Sack, L. (2019). The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. American Journal of Botany, 106, 618-621. doi: 10.1002/ajb2.1282. [ DOI:10.1002/ajb2.1282] 8. Buysse, J., Merck, R. (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629. doi:10.1093/jxb/44.10.1627 [ DOI:10.1093/jxb/44.10.1627] 9. Chen, T.H.H., Murata, N. (2000). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250-257. doi: 10.1016/s1369-266(02)00255-8. [ DOI:10.1016/S1369-5266(02)00255-8] 10. Cohen, I., Netzer, Y., Sthein, I., Gilichinsky, M., Tel-Or, E. (2019). Plant growth regulators improve drought tolerance, reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions. Plant Growth Regulation, 88, 9-17. doi: 10.1007/s10725-019-00484-4. [ DOI:10.1007/s10725-019-00484-4] 11. Emadi, M., Noshadi, M., Ghaemi, A.A. (2021). Investigation of the effect dryness stress and deficit irrigation on water use efficiency and morphophysiological factors in two Festuca grass varieties. Journal of Water and Soil, 35, 227-236. doi: 10.22067/JSW.2021.67723.1002. (In Persian) 12. Etemadi, N., Sheikh-Mohammadi, M.H., Nikbakht, A., Sabzalian, M.R., Pessarakli, M. (2015). Influence of trinexapac-ethyl in improving drought resistance of wheatgrass and tall fescue. Acta Physiologiae Plantarum, 37, 53. doi: 10.1007/s11738-015-1799-6. [ DOI:10.1007/s11738-015-1799-6] 13. Foyer, C.H., Lelandais, M., Kunert, K.J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92, 696-717. doi: 10.1111/j.1399-3054.1994.tb03042.x [ DOI:10.1111/j.1399-3054.1994.tb03042.x] 14. Fu, J., Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool season grasses to localized drought stress. Environmental and Experimental Botany, 45,105-114. doi: 10.1016/s0098-8472(00)00084-8. [ DOI:10.1016/S0098-8472(00)00084-8] 15. Gao, C.J., Xing, D., Li, L., Zhang, L.R. (2008). Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta, 227, 755-767. doi: 10.1007/s00425-007-0654-4. [ DOI:10.1007/s00425-007-0654-4] 16. Heath, R.L., Parker, L., (1968). Photoperoxidation in isolated chloroplasts: I. kinetics and stiochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. doi: 10.1016/0003-9861(68)90654-1. [ DOI:10.1016/0003-9861(68)90654-1] 17. Jiang, H., Fry, J. (1998). Drought responses of perennial ryegrass treated with plant growth regulators. HortScience, 33, 270-273. doi:10.21273/hortsci.33.2.0270 [ DOI:10.21273/HORTSCI.33.2.0270] 18. Jiang, Y., Huang, B. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolisms and lipid peroxidation. Crop Science, 41, 436-442. doi: 10.2135/cropsci2001.412436x. [ DOI:10.2135/cropsci2001.412436x] 19. Jordan, J.E., White, R.H., Thomas, J.C., Hale, T.C., Vietor, D.M. (2005). Irrigation frequency effects on turgor pressure of creeping bentgrass and soil air composition. Hortscience, 40, 232-236. doi: 10.21273/HORTSCI.40.1.232, [ DOI:10.21273/HORTSCI.40.1.232] 20. Keshavars, L., Farahbakhsh, H., Golkar, P. (2012). The effects of drought stress and absorbent polymer on morph-physiological traits of Pear Millet. International Research Journal of Applied and Basic Sciences, 3, 148-154. 21. Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139-158. doi: 10.1016/j.abb.2005.10.018. [ DOI:10.1016/j.abb.2005.10.018] 22. Maness, N.O. (2010). Extraction and Analysis of Soluble Carbohydrates. Methods in Molecular Biology, 639, 341-370. doi: 10.1007/978-1-60761-702-022. [ DOI:10.1007/978-1-60761-702-0_22] 23. Minavi, H., Salehi Salmi, M.R., Heidari, M., Khaleghi, E. (2017). Investigation on morpho-physiological and biochemical characteristics of three common turfgrasses in xeriscaping. Journal of Arid Biome, 7, 43-56. doi: 10.29252/ARIDBIOM.7.2.43 (In Persian). [ DOI:10.29252/aridbiom.7.2.43] 24. Montillet, J.L., Chamnongpol, S., Rusterucci, C., Dat, J., Van de Cotte, B., Agnel, J.P., Battesti, C., Inze, D., Van Breusegem, F., Triantaphylides, C. (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, 138, 1516-1526. doi: 10.1104/pp.105.059907. [ DOI:10.1104/pp.105.059907] 25. Morris, K.N. (2002). A guide to NTEP turfgrass rating. A publication of the National Turfgrass Evaluation Program, NETP, 11, 30-39. 26. Nilsen, E.T., Orcutt, D.M. (1996). Physiology of plants under stress. Abiotic factors. John Wiley & Sons, New York. 704 p. 27. Peng, X., Ma, Y., Sun, J., Chen, D., Zhen, J., Zhang, Zh., Hu, X., Wang, Y. (2024). Lawn leaf moisture prediction from UAVs using multimodal data fusion and machine learning. Precision Agriculture, 25, 1609-1635. doi:10.1007/s11119-024-10127-y. [ DOI:10.1007/s11119-024-10127-y] 28. Pessarakli, M. (2008). Hand book of turfgrass management and physiology. CRC Press, pp, 431-442. [ DOI:10.1201/9781420006483] 29. Reddy, A.R., Chaitanya, K.V., Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202. doi: 10.1016/j.jplph.2004.01.013 [ DOI:10.1016/j.jplph.2004.01.013] 30. Richardson, M.D., Karcher, D.E., Hignight, K., Rush, D. (2008). Drought tolerance and rooting capacity of Kentucky bluegrass cultivars. Crop Science, 48, 2429-2436. doi:10.2135/cropsci2008.01.0034. [ DOI:10.2135/cropsci2008.01.0034] 31. Safari, F., Salehi Salmi, M. (2022). Effect of magnetic field on the morphophysiological characteristics of pot marigold under different levels of drought stress. Iranian Journal of Horticultural Science and Technology, 23, 567-584. doi: 20.1001.1.16807154.1401.23.4.2.6 (In Persian) 32. Salehi, M.R., Salehi, H., Niazi, A., Ghobadi, C. (2013). Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 56, 248-257. doi:10.1007/s12033-013-9703-3. [ DOI:10.1007/s12033-013-9703-3] 33. Sharma, P., Dubey, R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209-221. doi:10.1007/s10725-005-0002-2. [ DOI:10.1007/s10725-005-0002-2] 34. Sheikh-Mohammadi, M.H., Etemadi, N., Arab, M.M., Aalifar, M., Arab, M., Pessarakli, M. (2017). Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac-ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry, 111, 129-143. doi: 10.1016/j.plaphy.2016.11.014. [ DOI:10.1016/j.plaphy.2016.11.014] 35. Sinniah, U.R., Ellis R.H., John, P. (1998). Irrigation and seed quality development in rapid-cycling Brassica: soluble carbohydrates and heat-stable proteins. Annals of Botany, 82, 647-655. doi:10.1006/anbo.1998.0738. [ DOI:10.1006/anbo.1998.0738] 36. Trovato, M., Mattioli, R., Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19, 325-346. doi:10.1007/s12210-008-0022-8. [ DOI:10.1007/s12210-008-0022-8] 37. Turkan, I., Bor, M., Ozdemir, F., Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223-231. doi: 10.1016/j.plantsci.2004.07.032 [ DOI:10.1016/j.plantsci.2004.07.032] 38. Zadehbagheri, M., Salehi Salmi, M.R., Hedayat, S. (2016). The physiological, morphological and bio-chemical comparison of the current grass Shiraz city's landscape with tall fescue (Festuca arundinacea Schreb). Journal of Crop Production and Processing, 5, 15-25. doi: 10.18869/acadpub.jcpp.5.18.15. (In Persian). [ DOI:10.18869/acadpub.jcpp.5.18.15] 39. Zhang Y.P., Zhang, Y.H., Xue, Q.W., Wanga, Z.M. (2013). Remobilization of water-soluble carbohydrates in non-leaf organs and contribution to grain yield in winter wheat under reduced irrigation. International Journal of Plant Production, 7, 97-117. doi: 10.22069/IJPP.2012.924 40. Aron D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. [ DOI:10.1104/pp.24.1.1] 41. Barrs, H.D., Weatherley, P.E. (1962). A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428. doi: 10.1071/BI9620413. [ DOI:10.1071/BI9620413] 42. Bates, L.S. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. doi: 10.1007/BF00018060. [ DOI:10.1007/BF00018060] 43. Beard, J.B., Sifers S.I. (1997). Genetic diversity in dehydration avoidance and drought resistance within the Cynodon and Zoysia species. International Turfgrass Society, 8, 603-610. 44. Bian, S., Jiang, Y. (2009). Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 120, 264-270. doi: 10.1016/j.scienta.2008.10.014. [ DOI:10.1016/j.scienta.2008.10.014] 45. Bozkurt, C., Yazar, A., Alghory, A., Tekin, S. (2021) Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrigation Science, 39, 81-100. doi:10.1007/s00271-020-00681-4 [ DOI:10.1007/s00271-020-00681-4] 46. Buckley, T., Sack, L. (2019). The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. American Journal of Botany, 106, 618-621. doi: 10.1002/ajb2.1282. [ DOI:10.1002/ajb2.1282] 47. Buysse, J., Merck, R. (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629. doi:10.1093/jxb/44.10.1627 [ DOI:10.1093/jxb/44.10.1627] 48. Chen, T.H.H., Murata, N. (2000). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250-257. doi: 10.1016/s1369-266(02)00255-8. [ DOI:10.1016/S1369-5266(02)00255-8] 49. Cohen, I., Netzer, Y., Sthein, I., Gilichinsky, M., Tel-Or, E. (2019). Plant growth regulators improve drought tolerance, reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions. Plant Growth Regulation, 88, 9-17. doi: 10.1007/s10725-019-00484-4. [ DOI:10.1007/s10725-019-00484-4] 50. Emadi, M., Noshadi, M., Ghaemi, A.A. (2021). Investigation of the effect dryness stress and deficit irrigation on water use efficiency and morphophysiological factors in two Festuca grass varieties. Journal of Water and Soil, 35, 227-236. doi: 10.22067/JSW.2021.67723.1002. (In Persian) 51. Etemadi, N., Sheikh-Mohammadi, M.H., Nikbakht, A., Sabzalian, M.R., Pessarakli, M. (2015). Influence of trinexapac-ethyl in improving drought resistance of wheatgrass and tall fescue. Acta Physiologiae Plantarum, 37, 53. doi: 10.1007/s11738-015-1799-6. [ DOI:10.1007/s11738-015-1799-6] 52. Foyer, C.H., Lelandais, M., Kunert, K.J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92, 696-717. doi: 10.1111/j.1399-3054.1994.tb03042.x [ DOI:10.1111/j.1399-3054.1994.tb03042.x] 53. Fu, J., Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool season grasses to localized drought stress. Environmental and Experimental Botany, 45,105-114. doi: 10.1016/s0098-8472(00)00084-8. [ DOI:10.1016/S0098-8472(00)00084-8] 54. Gao, C.J., Xing, D., Li, L., Zhang, L.R. (2008). Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta, 227, 755-767. doi: 10.1007/s00425-007-0654-4. [ DOI:10.1007/s00425-007-0654-4] 55. Heath, R.L., Parker, L., (1968). Photoperoxidation in isolated chloroplasts: I. kinetics and stiochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. doi: 10.1016/0003-9861(68)90654-1. [ DOI:10.1016/0003-9861(68)90654-1] 56. Jiang, H., Fry, J. (1998). Drought responses of perennial ryegrass treated with plant growth regulators. HortScience, 33, 270-273. doi:10.21273/hortsci.33.2.0270 [ DOI:10.21273/HORTSCI.33.2.0270] 57. Jiang, Y., Huang, B. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolisms and lipid peroxidation. Crop Science, 41, 436-442. doi: 10.2135/cropsci2001.412436x. [ DOI:10.2135/cropsci2001.412436x] 58. Jordan, J.E., White, R.H., Thomas, J.C., Hale, T.C., Vietor, D.M. (2005). Irrigation frequency effects on turgor pressure of creeping bentgrass and soil air composition. Hortscience, 40, 232-236. doi: 10.21273/HORTSCI.40.1.232, [ DOI:10.21273/HORTSCI.40.1.232] 59. Keshavars, L., Farahbakhsh, H., Golkar, P. (2012). The effects of drought stress and absorbent polymer on morph-physiological traits of Pear Millet. International Research Journal of Applied and Basic Sciences, 3, 148-154. 60. Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139-158. doi: 10.1016/j.abb.2005.10.018. [ DOI:10.1016/j.abb.2005.10.018] 61. Maness, N.O. (2010). Extraction and Analysis of Soluble Carbohydrates. Methods in Molecular Biology, 639, 341-370. doi: 10.1007/978-1-60761-702-022. [ DOI:10.1007/978-1-60761-702-0_22] 62. Minavi, H., Salehi Salmi, M.R., Heidari, M., Khaleghi, E. (2017). Investigation on morpho-physiological and biochemical characteristics of three common turfgrasses in xeriscaping. Journal of Arid Biome, 7, 43-56. doi: 10.29252/ARIDBIOM.7.2.43 (In Persian). [ DOI:10.29252/aridbiom.7.2.43] 63. Montillet, J.L., Chamnongpol, S., Rusterucci, C., Dat, J., Van de Cotte, B., Agnel, J.P., Battesti, C., Inze, D., Van Breusegem, F., Triantaphylides, C. (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, 138, 1516-1526. doi: 10.1104/pp.105.059907. [ DOI:10.1104/pp.105.059907] 64. Morris, K.N. (2002). A guide to NTEP turfgrass rating. A publication of the National Turfgrass Evaluation Program, NETP, 11, 30-39. 65. Nilsen, E.T., Orcutt, D.M. (1996). Physiology of plants under stress. Abiotic factors. John Wiley & Sons, New York. 704 p. 66. Peng, X., Ma, Y., Sun, J., Chen, D., Zhen, J., Zhang, Zh., Hu, X., Wang, Y. (2024). Lawn leaf moisture prediction from UAVs using multimodal data fusion and machine learning. Precision Agriculture, 25, 1609-1635. doi:10.1007/s11119-024-10127-y. [ DOI:10.1007/s11119-024-10127-y] 67. Pessarakli, M. (2008). Hand book of turfgrass management and physiology. CRC Press, pp, 431-442. [ DOI:10.1201/9781420006483] 68. Reddy, A.R., Chaitanya, K.V., Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202. doi: 10.1016/j.jplph.2004.01.013 [ DOI:10.1016/j.jplph.2004.01.013] 69. Richardson, M.D., Karcher, D.E., Hignight, K., Rush, D. (2008). Drought tolerance and rooting capacity of Kentucky bluegrass cultivars. Crop Science, 48, 2429-2436. doi:10.2135/cropsci2008.01.0034. [ DOI:10.2135/cropsci2008.01.0034] 70. Safari, F., Salehi Salmi, M. (2022). Effect of magnetic field on the morphophysiological characteristics of pot marigold under different levels of drought stress. Iranian Journal of Horticultural Science and Technology, 23, 567-584. doi: 20.1001.1.16807154.1401.23.4.2.6 (In Persian) 71. Salehi, M.R., Salehi, H., Niazi, A., Ghobadi, C. (2013). Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 56, 248-257. doi:10.1007/s12033-013-9703-3. [ DOI:10.1007/s12033-013-9703-3] 72. Sharma, P., Dubey, R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209-221. doi:10.1007/s10725-005-0002-2. [ DOI:10.1007/s10725-005-0002-2] 73. Sheikh-Mohammadi, M.H., Etemadi, N., Arab, M.M., Aalifar, M., Arab, M., Pessarakli, M. (2017). Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac-ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry, 111, 129-143. doi: 10.1016/j.plaphy.2016.11.014. [ DOI:10.1016/j.plaphy.2016.11.014] 74. Sinniah, U.R., Ellis R.H., John, P. (1998). Irrigation and seed quality development in rapid-cycling Brassica: soluble carbohydrates and heat-stable proteins. Annals of Botany, 82, 647-655. doi:10.1006/anbo.1998.0738. [ DOI:10.1006/anbo.1998.0738] 75. Trovato, M., Mattioli, R., Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19, 325-346. doi:10.1007/s12210-008-0022-8. [ DOI:10.1007/s12210-008-0022-8] 76. Turkan, I., Bor, M., Ozdemir, F., Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223-231. doi: 10.1016/j.plantsci.2004.07.032 [ DOI:10.1016/j.plantsci.2004.07.032] 77. Zadehbagheri, M., Salehi Salmi, M.R., Hedayat, S. (2016). The physiological, morphological and bio-chemical comparison of the current grass Shiraz city's landscape with tall fescue (Festuca arundinacea Schreb). Journal of Crop Production and Processing, 5, 15-25. doi: 10.18869/acadpub.jcpp.5.18.15. (In Persian). [ DOI:10.18869/acadpub.jcpp.5.18.15] 78. Zhang Y.P., Zhang, Y.H., Xue, Q.W., Wanga, Z.M. (2013). Remobilization of water-soluble carbohydrates in non-leaf organs and contribution to grain yield in winter wheat under reduced irrigation. International Journal of Plant Production, 7, 97-117. doi: 10.22069/IJPP.2012.924
|