[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 9، شماره 2 - ( پاییز و زمستان 1403 ) ::
جلد 9 شماره 2 صفحات 396-375 برگشت به فهرست نسخه ها
اثرهای جلبک اسپیرولینا و جلبک قهوه‌‌ای بر تحمل به تنش شوری کلم زینتی رقم Kamome (Brassica oleraceae L.)
سجاد راشیدی کردکندی ، میترا اعلائی* ، زهرا قهرمانی ، فهیمه صالحی
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان
چکیده:   (1765 مشاهده)
کلم زینتی (Brassica oleraceae L.) از تیره Brassicaceae می­باشد. افزایش بیش از اندازه نمک‌‌ها یکی از مهم­ترین تنش‌‌های محیطی است که بر رشد و نمو گیاهان اثر می‌‌گذارد. بنابراین یافتن راهی برای کاهش این تنش و امکان کشت در این نوع خاک‌‌ها ضروری است. بدین منظور جهت بررسی اثر عصاره جلبک اسپیرولینا (Arthrospira platensis) و جلبک قهوه‌‌ای (Polycladia indica) بر کاهش اثر تنش شوری در گیاه کلم زینتی، پژوهشی در گلخانه دانشکده کشاورزی زنجان به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی انجام گرفت. فاکتور اول تنش شوری آب در دو سطح (چهار و هشت دسی­زیمنس بر متر) به همراه عدم تنش شوری و فاکتور دوم شامل عدم کاربرد جلبک، جلبک قهوه‌ای و جلبک اسپیرولینا به میزان دو درصد در چهار تکرار انجام شد. صفات مورفوفیزیولوژیک شامل: تعداد برگ، شاخص سطح برگ، وزن تر و خشک ریشه، وزن تر بوته، کلروفیل کل، آنتی‌‌اکسیدان، فنول کل، درصد نشت یونی، پرولین، آنزیم پراکسیداز، درصد سدیم و پتاسیم اندازه‌‌گیری شد. نتایج این پژوهش نشان داد که اثر اصلی تنش شوری و جلبک بر تمامی صفات و برهمکنش شوری و جلبک نیز در برخی صفات نظیر تعداد برگ، وزن تر و خشک ریشه، فنول کل، میزان سدیم و پتاسیم معنی‌‌دار شد. براساس نتایج مقایسه میانگین‌‌ طی تیمار جلبک شاخص سطح برگ با میانگین 52/42 سانتی‌‌متر و وزن تر بوته با میانگین 33/153 گرم در بوته و وزن تر و خشک ریشه به ترتیب با میانگین‌‌های 42/17 و 44/6 گرم در بوته بیش­ترین میزان را نسبت به تیمار شاهد نشان دادند. همچنین در شرایطی که گیاه تحت تنش شوری قرار گرفت، میزان سدیم اندام هوایی افزایش یافت ولی با کاربرد جلبک اثرات تجمع سدیم در گیاه تعدیل و غلظت این عنصر تا حدی کاهش یافت. این در حالی بود که در همین سطح شوری، کاربرد جلبک اسپرولینا و قهوه‌‌ای به طور معنی‌‌داری میزان سدیم اندام هوایی را کاهش داد. نتایج این پژوهش نشان داد که شوری موجب القای اثرات منفی بر خصوصیات مورفوفیزیولوژیکی در کلم زینتی شد. در بین دو نوع جلبک، جلبک اسپیرولینا واکنش بهتری در کلم زینتی نشان داد و اثر تنش شوری را کاهش داد. به عبارتی در سطوح بالای تنش شوری می‌توان با کاربرد جلبک از خسارت ناشی از تنش شوری جلوگیری کرد.
واژه‌های کلیدی: اسپرولینا، پراکسیداز، تنش شوری، جلبک، کلم‌زینتی
متن کامل [PDF 686 kb]   (521 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/6/24 | پذیرش: 1402/11/23 | انتشار: 1404/1/30
فهرست منابع
1. Abu-Taweel, G.M., Mohsen, A.M., Antonisamy, P., Arokiyaraj, S., Kim, H.J., Kim, S.J., Park, K.H., Kim, Y.O. (2019). Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. Journal of Infection and Public Health, 12(6), 777-782. [DOI:10.1016/j.jiph.2019.04.014]
2. Aelaei, M., Salehi, F., Bahrami, M., Sanikjani, M. (2021). Effects of plant growth promoting rhizobacteria on salinity tolerance of ornamental cabbage (Brassica oleraceae L. cv. Kamome), Iranian Journal of Horticultural Science, 53(20), 423-438. (In Persian).
3. Agarwal, S., Pandey, V. (2004). Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. [DOI:10.1023/B:BIOP.0000047152.07878.e7]
4. Afonso, S., Arrobas, M., Angelo Rodrigues, M. (2021). Response of hops to algae-based and nutrient-rich foliar sprays. Agriculture, 11, 798. doi.org/10.3390/agriculture11080798. [DOI:10.3390/agriculture11080798]
5. Ahmad, Y.M., Shalaby, E. (2012). Effect of different seaweed extracts and compost on vegetative growth, yield and fruit quality of cucumber, Journal of Horticultural Science & Ornamental Plants, 4(3), 235-240.
6. Ahmadpour, R., Salimi, A., Zeidi, H., Armand, N., Hosseinzadeh, S.R. (2019). Effect of seaweed extract (Ascophyllum nodosum) on the stimulation of germination indices of chickpea (Cicer arietinum L.) under drought stress. Nova Biologica Reperta, 6(2), 206-216. (In Persian). [DOI:10.29252/nbr.6.2.206]
7. Alqarawi, A.A., Abd Allah, E.F., Hashem, A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 9(1), 802-810. [DOI:10.1080/17429145.2014.949886]
8. Amini Fard, M.H., Khandan, S. (2017). Investigating the effect of different concentrations of seaweed extract (Ascophyllum nodosum) on the growth, yield and biochemical traits of bitter gourd (Momordica charantia L.), Journal of Plant Environmental Physiology, 13(52), 56-66. (In Persian).
9. Anantharaj, M., Venkatesalu, V. (2001). Effect of seaweed liquid fertilizer on Vigna calajung. Seaweed Research Utiln, 23, 33-39.
10. Anisimov, M.M., Skriptsova, A.V., Chaikina, E.L., Klykov, A.G. (2013). Effect of water extracts of seaweeds on the growth of seedling roots of buckwheat (Fagopyrum esculentum Moench). International Journal of Research and Reviews in Applied Sciences, 16(2), 282-287.
11. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidases in Beta vulgaris. Plant Physiology, 24, 1-15. [DOI:10.1104/pp.24.1.1]
12. Arora, N.K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2, 95-96. [DOI:10.1007/s42398-019-00078-w]
13. Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnology Advances, 27(1), 84-93. [DOI:10.1016/j.biotechadv.2008.09.003]
14. Ashraf, M., McNeilly, T. (2004). Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2), 157-174. [DOI:10.1080/07352680490433286]
15. Azmat, R., Haider, S., Hajra, N., Farha, A. (2009). A viable alternative mechanism in adapting the plants to heavy metal environment. Pakistan Journal of Botany, 41(6), 2729-2738.
16. Bajji, M., Kinet, J., Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70. [DOI:10.1023/A:1014732714549]
17. Bandeoğlu, E., Eyidogan, F., Yücel, M., Oktem, H. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regulation, 42(1), 69-77. DOI: 10.1023/B:GROW.0000014891.35427.7b. [DOI:10.1023/B:GROW.0000014891.35427.7b]
18. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. [DOI:10.1007/BF00018060]
19. Bais, H.P., Fall, R., Vivanco J.M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production, Plant Physiology, 134(1), 307-319. [DOI:10.1104/pp.103.028712]
20. Bedreag, C.F.G., Trifan, A., Bucur, L.A., Arcus, M., Tebrencu, C., Miron, A., Costache, I.I. (2014). Chemical and antioxidant studies on Crataegus pentagyna leaves and flowers. Romanian Biotechnological Letters, 19(6), 98-59.
21. Ben Hamed, K.B., Castagna, A., Salem, E., Ranieri, A., Abdelly, C. (2007). Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53(3), 185-194. [DOI:10.1007/s10725-007-9217-8]
22. Blunden, G., Jenkins, T., Liu, Y. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of Applied Phycology, 8, 535-543. [DOI:10.1007/BF02186333]
23. Bohnert, H.J., Jensen. R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14(3), 89-97. [DOI:10.1016/0167-7799(96)80929-2]
24. Chango, G., McVetty, P.B.E. (2001). Relationship of physiological characters to yield parameters in oilseed rape. Canadian Journal of Plant Science, 81,1-6. [DOI:10.4141/P00-012]
25. Chapman, H.D., Pratt, F.P. (1982). Determination of minerals by titration method. Methods of Analysis for Soils, Plants and Water. Ph.D. Thiesis. Oakland, CA: Agriculture Division, California University.
26. Craigie, J.S. (2011). Seaweed extracts stimuli in plant science and agriculture. Journal of Applied Phycology, 23, 371-393. [DOI:10.1007/s10811-010-9560-4]
27. Crouch, I., Van Staden, J. (1993). Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation, 13, 21-29. [DOI:10.1007/BF00207588]
28. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of member permeability and peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. [DOI:10.1093/jxb/32.1.93]
29. Ding, Y., Liu, Y., Zhao, L., Zhou, M., Zhang, L., Wang, G., Jia, J. (2023). Effects of salt stress on nutritional quality of orange-heading Chinese cabbage seedlings. Pakistan Journal of Botany, 55(3), 837-841. [DOI:10.30848/PJB2023-3(32)]
30. El kaoaua, M., Chernane, H., Benaliat, A., Neamallah, L. (2013). Seaweed liquid extracts effect on Salvia officinalis growth, biochemical compounds and water deficit tolerance. African Journal of Biotechnology, 72(28), 4481-4589. [DOI:10.5897/AJB2013.12807]
31. Fahimi, H. (2016). Plant growth regulators. Tehran University Publications. 172 Pp. (In Persian)
32. Fan, D., Hodges, D.M., Critchley, A.T., Prithiviraj. B. (2013). A commercial extract of Brown Macroalgae (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communication in Soil Science Plant Analysis, 44, 1873-1884. [DOI:10.1080/00103624.2013.790404]
33. Faten, S.A., Shaheen, A.M., Ahmed, A.A., Mahmoud, A.R. (2010). Effect of foliar application of amino acids as antioxidants on growth, yield and characteristics of Squash. Research Journal of Agriculture and Biological Science, 6(5), 583-588.
34. Gandhiyappan, K., Perumal, P. (2001). Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant. Seaweed Res. Utiln. 23(1&2), 23-25.
35. Ghafarizadeh, A, Seyednejad, S.M., Gilani, A. 2015. Effect of foliar spray of aqueous extract of brown algae (Nizamuddinia zanardinii) at different levels of nitrogen on some physiological, biochemical traits and yield of wheat. Journal of Plant Environmental Physiology, 11(41), 13-25.
36. Goñi, O., Fort, A., Quille, P., McKeown, P.C., Spillane, C., O'Connell. S. (2016). Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different, Journal of Agricultural and Food Chemistry, 64, 2980-2989. [DOI:10.1021/acs.jafc.6b00621]
37. Guinan, K.J., Sujeeth, N., Copeland, R.B., Jones, P.W., O'Brien, N.M., Sharma, H.S.S., Prouteau, P.J.F., O'Sullivan, J.T. (2013). Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stress. Acta Horticulturae, 1009, 127-135. [DOI:10.17660/ActaHortic.2013.1009.15]
38. Gupta, S., Schillaci, M., Walker, R., Smith, P., Watt, M., Roessner, U. 2021. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461(1), 44-219. [DOI:10.1007/s11104-020-04618-w]
39. Haghparast, M., Maleki-Farahani, S., Sinaki, J.M., Zarei, G. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. Crop Production in Environmental Stress, 4, 59-71.
40. Hasanuzzaman, M., Fujita, M, (2022). Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions, Molecular Science, 23, 4810. [DOI:10.3390/ijms23094810]
41. Hawrylak-Nowak, B., Dresler, S., Stasinska-Jakubas, M., Wojciak, M., Sowa, I., Matraszek-Gawron, R. (2021). NaCl-Induced Elicitation Alters Physiology and Increases Accumulation of Phenolic Compounds in Melissa officinalis L. International Journal of Molecular Sciences, 22 (13), 6844. [DOI:10.3390/ijms22136844]
42. Hooshmand. A., Aelaei, M., Arghavani, M., Salehi, F. (2022). Effect of Spirulina and Brown Algae and Lead Levels on some Morphophysiological Characteristics of Ornamental Cabbage. Journal of Horticultural Science, 37(1), 245-259. (In Persian).
43. Jamil, M., Lee, D.B., Jung, K.Y., Ashraf, M., Lee, S.C., Rha, E.S. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetable species. Journal of Central European Agriculture, 7, 273-282.
44. Jebara, S., Jebara, M., Limam, F., Aouani, M.E. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8):36- 929. [DOI:10.1016/j.jplph.2004.10.005]
45. Kaya, C., Higges, D., Kirnak, H. (2001). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgican. Journal of Plant Physiology, 27, 47-59.
46. Khalid, K.A., Da Silva, J.A.T. (2010). Yield, essential oil and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 126 (2), 297-305. [DOI:10.1016/j.scienta.2010.07.023]
47. Koyro, H.W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136-146. [DOI:10.1016/j.envexpbot.2005.02.001]
48. Kumari, R., Kaur, I., Bhatnagar, A.K. (2011). Effect of aqueous extract of Sargassum John-stonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal Applied Phycology, 23, 623-633. [DOI:10.1007/s10811-011-9651-x]
49. Laiq, M., Pioust, G.A., Samizadeh, H.A., Khasousi, M. (2018). Effect of saline solution on growth, action Quality characteristics of tomato in soilless cultivation system, Iranian Journal of Horticultural Sciences, 40(4), 21. (In Persian).
50. Lola-Luz, T., Hennequart, F., Gaffney. M. (2014). Effects on yield, total phenolic, total flavonoids and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae) following the application of a commercial brown seaweed extracts (Ascophyllum nodosum). Agricultural and Food Science, 23, 28-37. [DOI:10.23986/afsci.8832]
51. MacKinnon, S.A., Craft. C.A., Hiltz, D., Ugarte, R. (2010). Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. Journal of Applied Phycology, 22, 489-494. [DOI:10.1007/s10811-009-9483-0]
52. Meda, A., Lamien, C. E., Romito, M., Millogo, J., Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. [DOI:10.1016/j.foodchem.2004.10.006]
53. Mortazavi, N., KhodabandehLu, F., Azimi, M.H. (2015). The effect of different concentrations of cyclocel and salicylic acid on the morphophysiological traits of ornamental cabbage, Journal of Gardening Sciences (Agricultural Sciences and Industries), 30(4), 590-596. (In Persian).
54. Munns, R., Gilliham, M. (2015). Salinity tolerance of crops-what is the cost? New Phytologist, 208(3), 668-673. [DOI:10.1111/nph.13519]
55. Munns, R. (2011). Plant adaptations to salt and water stress: Differences and commonalities. Advances in Botanical Research, 57, 1-32. [DOI:10.1016/B978-0-12-387692-8.00001-1]
56. Neily, W., Shishkov, L., Nickerson, S., Titus, D., Norrie, J. (2010). Commercial extracts from the brown seaweed Ascophyllum nodosum (Acadian) improves early establishment and helps resist water stress in vegetable and flower seedlings. HortScience, 45, 234-240.
57. Noorani Azad, H., Haji Bagheri, M.R. (2017). The effect of salinity stress on some physiological characteristics of dill (Anethum graveolens L). Journal of Modern Agricultural Science, 4(12), 93-100. (In Persian).
58. Ozen, T., Demirtas, I., Aksit, H. (2011). Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chemistry, 124(1), 58-64. [DOI:10.1016/j.foodchem.2010.05.103]
59. Parida, A.K., Das, A.B., Mittra, B., Mohanty, P. (2004). Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift für Naturforschung C, 59(5-6), 408-414. [DOI:10.1515/znc-2004-5-622]
60. Parida, A.K., and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
61. Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075. [DOI:10.1007/s11356-014-3739-1]
62. Parr, A.J., Bolwell, G.P. (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture, 80, 985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7 [DOI:10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-7]
63. Paul, J., Shridevi, S.D.K. (2014). Effect of seaweed liquid fertilizer of Gracilaria dura (AG.) J. AG. (Red seaweed) on Pennisetum glaucum (L.) R.Br., in Thoothukudi, Tamil Nadu, India. Indo American Journal of Pharmaceutical Research, 4(4), 2231-6876.
64. Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M. (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 26, 673-684. [DOI:10.1007/s00572-016-0704-5]
65. Prakash, P.S., Medhi, S., Saikia, G., Narendrakumar, A., Thirugnanasambandam, L., Abraham, S. (2014). Production, formulation and application of seaweed liquid fertilizer using humic acid on growth of Arachis hypogaea. Biosciences Biotechnology Research Asia, 11(3), 1515-1519. [DOI:10.13005/bbra/1546]
66. Rathore, S.S., Chaudhary, D.R., Boricha, G.N., Ghosh, A., Bhatt, B.P., Zodape, S.T., Patolia, J.S. (2009). Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2), 351-355. [DOI:10.1016/j.sajb.2008.10.009]
67. Sabura, A., Ahmadi, A., Zinali, A., Parsa, M. 2013. Comparison of the content of phenolic compounds, flavonoids and antioxidant activity of aerial parts of two populations of Scutellaria pinnatifida in Northern Iran. Journal of Rafsanjan University of Medical Sciences, 13(3), 120-134. (In Persian).
68. Sayari zahan, M.H., Sayadi Anari, M.H., Zamani, GH., Mahmodi, S., Gholestanifar, F. (2022). The effect of two types of algae on the growth characteristics of wheat and basil plants under salinity stress conditions. Environmental Stresses in Crop Sciences, 15(3), 731-740.
69. Selvam, G.G., Sivakumar, K. (2013). Effect of foliar spray from seaweed liquid fertilizer of Ulva reticulata (Forsk.) on Vigna mungo L. and their elemental composition using SEM- energy dispersive spectroscopic analysis, Asian Pacific Journal of Reproduction, 2(2), 119-125. [DOI:10.1016/S2305-0500(13)60131-1]
70. Shahbazi, F., Seyyed nejad, M., Salimi, A., Gilani, A. (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. International Journal of Agriculture and Crop Sciences, 8(3), 283-287.
71. Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. [DOI:10.1590/S1677-04202005000100004]
72. Sharma, M.K. (2023). Plant stress: Salt stress and mechanisms of stress tolerance. Current Agriculture Research Journal, 11(2), 380-400. [DOI:10.12944/CARJ.11.2.03]
73. Shen, Q., Jensen, R. (2008), Approximation-based feature selection and application for algae population estimation, Applied Intelligence, 28, 167-181. [DOI:10.1007/s10489-007-0058-y]
74. Shim, I.S., Momose, Y., Yamamoto, A., Kim, D.W., Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39, 285-92. [DOI:10.1023/A:1022861312375]
75. Singh, S., Singh, N.B. (2014). Effect of salicylic acid on cabbage (Brassica oleracea var. Capitata) grown under salinity stress. Iranian Journal of Plant Physiology, 4(4), 1109-1118.
76. Siddiqui, Md.N., Mostofa, M.G., Akter, M.M., Srivastava, A., Abu Sayed, MD, Hasan, S., Tran, L.S. (2017). Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere, 187, 385-394. [DOI:10.1016/j.chemosphere.2017.08.078]
77. Spann, T.M., Little, H.A. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increase drought tolerance in container-grown 'Hamlin' sweet orange nursery trees. HortScience. 46, 577-582. [DOI:10.21273/HORTSCI.46.4.577]
78. Sridhar, S., Rengasamy. R. (2011). Potential of seaweed liquid fertilizers (SLFS) on some agricultural crop with special reference to protein profile of seedlings. International Journal of Development Research, 7, 55-57.
79. Sofy, M.R., Elmone, M., Sharaf, M.A., Osman, S., Sofy, A.R. (2017). Physiological changes, antioxidant activity, lipid peroxidation and yield characters of salt stressed barely plant in response to treatment with Sargassum extract. International Journal of Advanced Research in Biological Sciences, 4(2), 90-109.
80. Stirk, W.A., Rengasamy, K.R.R., Kulkarni, M.G., Van Staden, J. (2020). Plant Biostimulants from Seaweed. In: The Chemical Biology of Plant Biostimulants; John Wiley & Sons: Hoboken, NJ, USA,31-55 Pp. [DOI:10.1002/9781119357254.ch2]
81. Su, J., Wu, R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 166(4), 8-941. [DOI:10.1016/j.plantsci.2003.12.004]
82. Suárez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans (L.). Brazilian Journal of Plant Physiology, 20, 131-140. [DOI:10.1590/S1677-04202008000200005]
83. Sudhakar, C., Lakshmi, A., Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613-619. [DOI:10.1016/S0168-9452(01)00450-2]
84. Sunarpi., P., Jupri, A., Kurnianingsih, R., Julisaniah, N.I. Nikmatullah, A. 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience, 2(2): 73-77. [DOI:10.13057/nusbiosci/n020204]
85. Sunarpi., Jupri, A., Kurnianingsih, R., Julisaniah, N.I., Nikmatullah, A. 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience, 2(2), 73-77. [DOI:10.13057/nusbiosci/n020204]
86. Taghi zadeh, M., Solgi, M. (2014). Introduction of commercial protocol for in vitro propagation of ornamental cabbage (Brassica oleraceae L.). Horticultural Sciences, 45(4), 484-475. (In Persian).
87. Taqdesi, M., Hassani, N., Masoudsinki, J. (2013). The stress of irrigation and spraying with humic acid and algae extract on the level of antioxidant enzymes and proline in forage sorghum. Journal of Agricultural Plant Production under Environmental Stress Conditions, 4, 12-1.
88. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123(2), 272-279. [DOI:10.1016/j.scienta.2009.09.006]
89. Thambiraj, J., Lingakumar, K., Paulsamy, S. (2012). Effect of seaweed liquid fertilizer (SLF) prepared from Sargassum wightii and Hypnea musciformis on the growth and biochemical constituents of the pulse, Cyamopsis tetragonoloba (L). Journal of Research in Agriculture, 1(1), 65-70.
90. Vojodi Mehrabani, L., Valizadeh Kamran, R. (2021), In-soil organic fertilizer and foliar use of salicylic acid and sea algae extract (Ascophyllum nodosum) on the growth and yield of two native pumpkin clones (Cucurbita pepo). Scientific Research Journal of Agricultural Knowledge and Sustainable Production, 32(3), 115-132.
91. Vjoudi Mehrabani, L., Hasanpour Aghdam, M.B., Ebrahimzadeh, A., Valizadeh Kamran, R. (2017). The effects of organic fertilizers and cover beds on yield and some physiological traits of Calendula officinalis L. treated with brown algae extract foliar application, Journal of Plant Ecophysiology, 10(35), 212-220.
92. Warwick, S.I. (2011). Brassicaceae in Agriculture. In: R. Schmidt & I. Bancroft (Eds). Genetics and Genomics of the Brassicaceae. (9, 33-66). Springer Verlag, New York. [DOI:10.1007/978-1-4419-7118-0_2]
93. Xu, C., Leskovar. D. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae, 183, 39-47. [DOI:10.1016/j.scienta.2014.12.004]
94. Zanganeh, N., Barzegar, H., Alizadeh Behbahani, B., Mehrnia, M.A. (2020). Investigation of the effect of different Spirulina platensis levels on nutritional, physicochemical and sensory properties of sponge cake. Iranian Food Science and Technology Research Journal, 16 (2), 207-220. (In Persian).
95. Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C. (2021). Wang, P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22, 4609. [DOI:10.3390/ijms22094609]
96. Zodape, S.T. (2001). Seaweed as A biofertilizer. Journal of Scientific and Industrial Research, 60, 378-382.
97. Abu-Taweel, G.M., Mohsen, A.M., Antonisamy, P., Arokiyaraj, S., Kim, H.J., Kim, S.J., Park, K.H., Kim, Y.O. (2019). Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. Journal of Infection and Public Health, 12(6), 777-782. [DOI:10.1016/j.jiph.2019.04.014]
98. Aelaei, M., Salehi, F., Bahrami, M., Sanikjani, M. (2021). Effects of plant growth promoting rhizobacteria on salinity tolerance of ornamental cabbage (Brassica oleraceae L. cv. Kamome), Iranian Journal of Horticultural Science, 53(20), 423-438. (In Persian).
99. Agarwal, S., Pandey, V. (2004). Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. [DOI:10.1023/B:BIOP.0000047152.07878.e7]
100. Afonso, S., Arrobas, M., Angelo Rodrigues, M. (2021). Response of hops to algae-based and nutrient-rich foliar sprays. Agriculture, 11, 798. doi.org/10.3390/agriculture11080798. [DOI:10.3390/agriculture11080798]
101. Ahmad, Y.M., Shalaby, E. (2012). Effect of different seaweed extracts and compost on vegetative growth, yield and fruit quality of cucumber, Journal of Horticultural Science & Ornamental Plants, 4(3), 235-240.
102. Ahmadpour, R., Salimi, A., Zeidi, H., Armand, N., Hosseinzadeh, S.R. (2019). Effect of seaweed extract (Ascophyllum nodosum) on the stimulation of germination indices of chickpea (Cicer arietinum L.) under drought stress. Nova Biologica Reperta, 6(2), 206-216. (In Persian). [DOI:10.29252/nbr.6.2.206]
103. Alqarawi, A.A., Abd Allah, E.F., Hashem, A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 9(1), 802-810. [DOI:10.1080/17429145.2014.949886]
104. Amini Fard, M.H., Khandan, S. (2017). Investigating the effect of different concentrations of seaweed extract (Ascophyllum nodosum) on the growth, yield and biochemical traits of bitter gourd (Momordica charantia L.), Journal of Plant Environmental Physiology, 13(52), 56-66. (In Persian).
105. Anantharaj, M., Venkatesalu, V. (2001). Effect of seaweed liquid fertilizer on Vigna calajung. Seaweed Research Utiln, 23, 33-39.
106. Anisimov, M.M., Skriptsova, A.V., Chaikina, E.L., Klykov, A.G. (2013). Effect of water extracts of seaweeds on the growth of seedling roots of buckwheat (Fagopyrum esculentum Moench). International Journal of Research and Reviews in Applied Sciences, 16(2), 282-287.
107. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidases in Beta vulgaris. Plant Physiology, 24, 1-15. [DOI:10.1104/pp.24.1.1]
108. Arora, N.K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2, 95-96. [DOI:10.1007/s42398-019-00078-w]
109. Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnology Advances, 27(1), 84-93. [DOI:10.1016/j.biotechadv.2008.09.003]
110. Ashraf, M., McNeilly, T. (2004). Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2), 157-174. [DOI:10.1080/07352680490433286]
111. Azmat, R., Haider, S., Hajra, N., Farha, A. (2009). A viable alternative mechanism in adapting the plants to heavy metal environment. Pakistan Journal of Botany, 41(6), 2729-2738.
112. Bajji, M., Kinet, J., Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70. [DOI:10.1023/A:1014732714549]
113. Bandeoğlu, E., Eyidogan, F., Yücel, M., Oktem, H. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regulation, 42(1), 69-77. DOI: 10.1023/B:GROW.0000014891.35427.7b. [DOI:10.1023/B:GROW.0000014891.35427.7b]
114. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. [DOI:10.1007/BF00018060]
115. Bais, H.P., Fall, R., Vivanco J.M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production, Plant Physiology, 134(1), 307-319. [DOI:10.1104/pp.103.028712]
116. Bedreag, C.F.G., Trifan, A., Bucur, L.A., Arcus, M., Tebrencu, C., Miron, A., Costache, I.I. (2014). Chemical and antioxidant studies on Crataegus pentagyna leaves and flowers. Romanian Biotechnological Letters, 19(6), 98-59.
117. Ben Hamed, K.B., Castagna, A., Salem, E., Ranieri, A., Abdelly, C. (2007). Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53(3), 185-194. [DOI:10.1007/s10725-007-9217-8]
118. Blunden, G., Jenkins, T., Liu, Y. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of Applied Phycology, 8, 535-543. [DOI:10.1007/BF02186333]
119. Bohnert, H.J., Jensen. R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14(3), 89-97. [DOI:10.1016/0167-7799(96)80929-2]
120. Chango, G., McVetty, P.B.E. (2001). Relationship of physiological characters to yield parameters in oilseed rape. Canadian Journal of Plant Science, 81,1-6. [DOI:10.4141/P00-012]
121. Chapman, H.D., Pratt, F.P. (1982). Determination of minerals by titration method. Methods of Analysis for Soils, Plants and Water. Ph.D. Thiesis. Oakland, CA: Agriculture Division, California University.
122. Craigie, J.S. (2011). Seaweed extracts stimuli in plant science and agriculture. Journal of Applied Phycology, 23, 371-393. [DOI:10.1007/s10811-010-9560-4]
123. Crouch, I., Van Staden, J. (1993). Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation, 13, 21-29. [DOI:10.1007/BF00207588]
124. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A. (1981). Leaf senescence: correlated with increased levels of member permeability and peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. [DOI:10.1093/jxb/32.1.93]
125. Ding, Y., Liu, Y., Zhao, L., Zhou, M., Zhang, L., Wang, G., Jia, J. (2023). Effects of salt stress on nutritional quality of orange-heading Chinese cabbage seedlings. Pakistan Journal of Botany, 55(3), 837-841. [DOI:10.30848/PJB2023-3(32)]
126. El kaoaua, M., Chernane, H., Benaliat, A., Neamallah, L. (2013). Seaweed liquid extracts effect on Salvia officinalis growth, biochemical compounds and water deficit tolerance. African Journal of Biotechnology, 72(28), 4481-4589. [DOI:10.5897/AJB2013.12807]
127. Fahimi, H. (2016). Plant growth regulators. Tehran University Publications. 172 Pp. (In Persian)
128. Fan, D., Hodges, D.M., Critchley, A.T., Prithiviraj. B. (2013). A commercial extract of Brown Macroalgae (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communication in Soil Science Plant Analysis, 44, 1873-1884. [DOI:10.1080/00103624.2013.790404]
129. Faten, S.A., Shaheen, A.M., Ahmed, A.A., Mahmoud, A.R. (2010). Effect of foliar application of amino acids as antioxidants on growth, yield and characteristics of Squash. Research Journal of Agriculture and Biological Science, 6(5), 583-588.
130. Gandhiyappan, K., Perumal, P. (2001). Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant. Seaweed Res. Utiln. 23(1&2), 23-25.
131. Ghafarizadeh, A, Seyednejad, S.M., Gilani, A. 2015. Effect of foliar spray of aqueous extract of brown algae (Nizamuddinia zanardinii) at different levels of nitrogen on some physiological, biochemical traits and yield of wheat. Journal of Plant Environmental Physiology, 11(41), 13-25.
132. Goñi, O., Fort, A., Quille, P., McKeown, P.C., Spillane, C., O'Connell. S. (2016). Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different, Journal of Agricultural and Food Chemistry, 64, 2980-2989. [DOI:10.1021/acs.jafc.6b00621]
133. Guinan, K.J., Sujeeth, N., Copeland, R.B., Jones, P.W., O'Brien, N.M., Sharma, H.S.S., Prouteau, P.J.F., O'Sullivan, J.T. (2013). Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stress. Acta Horticulturae, 1009, 127-135. [DOI:10.17660/ActaHortic.2013.1009.15]
134. Gupta, S., Schillaci, M., Walker, R., Smith, P., Watt, M., Roessner, U. 2021. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461(1), 44-219. [DOI:10.1007/s11104-020-04618-w]
135. Haghparast, M., Maleki-Farahani, S., Sinaki, J.M., Zarei, G. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. Crop Production in Environmental Stress, 4, 59-71.
136. Hasanuzzaman, M., Fujita, M, (2022). Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions, Molecular Science, 23, 4810. [DOI:10.3390/ijms23094810]
137. Hawrylak-Nowak, B., Dresler, S., Stasinska-Jakubas, M., Wojciak, M., Sowa, I., Matraszek-Gawron, R. (2021). NaCl-Induced Elicitation Alters Physiology and Increases Accumulation of Phenolic Compounds in Melissa officinalis L. International Journal of Molecular Sciences, 22 (13), 6844. [DOI:10.3390/ijms22136844]
138. Hooshmand. A., Aelaei, M., Arghavani, M., Salehi, F. (2022). Effect of Spirulina and Brown Algae and Lead Levels on some Morphophysiological Characteristics of Ornamental Cabbage. Journal of Horticultural Science, 37(1), 245-259. (In Persian).
139. Jamil, M., Lee, D.B., Jung, K.Y., Ashraf, M., Lee, S.C., Rha, E.S. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetable species. Journal of Central European Agriculture, 7, 273-282.
140. Jebara, S., Jebara, M., Limam, F., Aouani, M.E. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8):36- 929. [DOI:10.1016/j.jplph.2004.10.005]
141. Kaya, C., Higges, D., Kirnak, H. (2001). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgican. Journal of Plant Physiology, 27, 47-59.
142. Khalid, K.A., Da Silva, J.A.T. (2010). Yield, essential oil and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 126 (2), 297-305. [DOI:10.1016/j.scienta.2010.07.023]
143. Koyro, H.W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136-146. [DOI:10.1016/j.envexpbot.2005.02.001]
144. Kumari, R., Kaur, I., Bhatnagar, A.K. (2011). Effect of aqueous extract of Sargassum John-stonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal Applied Phycology, 23, 623-633. [DOI:10.1007/s10811-011-9651-x]
145. Laiq, M., Pioust, G.A., Samizadeh, H.A., Khasousi, M. (2018). Effect of saline solution on growth, action Quality characteristics of tomato in soilless cultivation system, Iranian Journal of Horticultural Sciences, 40(4), 21. (In Persian).
146. Lola-Luz, T., Hennequart, F., Gaffney. M. (2014). Effects on yield, total phenolic, total flavonoids and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae) following the application of a commercial brown seaweed extracts (Ascophyllum nodosum). Agricultural and Food Science, 23, 28-37. [DOI:10.23986/afsci.8832]
147. MacKinnon, S.A., Craft. C.A., Hiltz, D., Ugarte, R. (2010). Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. Journal of Applied Phycology, 22, 489-494. [DOI:10.1007/s10811-009-9483-0]
148. Meda, A., Lamien, C. E., Romito, M., Millogo, J., Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. [DOI:10.1016/j.foodchem.2004.10.006]
149. Mortazavi, N., KhodabandehLu, F., Azimi, M.H. (2015). The effect of different concentrations of cyclocel and salicylic acid on the morphophysiological traits of ornamental cabbage, Journal of Gardening Sciences (Agricultural Sciences and Industries), 30(4), 590-596. (In Persian).
150. Munns, R., Gilliham, M. (2015). Salinity tolerance of crops-what is the cost? New Phytologist, 208(3), 668-673. [DOI:10.1111/nph.13519]
151. Munns, R. (2011). Plant adaptations to salt and water stress: Differences and commonalities. Advances in Botanical Research, 57, 1-32. [DOI:10.1016/B978-0-12-387692-8.00001-1]
152. Neily, W., Shishkov, L., Nickerson, S., Titus, D., Norrie, J. (2010). Commercial extracts from the brown seaweed Ascophyllum nodosum (Acadian) improves early establishment and helps resist water stress in vegetable and flower seedlings. HortScience, 45, 234-240.
153. Noorani Azad, H., Haji Bagheri, M.R. (2017). The effect of salinity stress on some physiological characteristics of dill (Anethum graveolens L). Journal of Modern Agricultural Science, 4(12), 93-100. (In Persian).
154. Ozen, T., Demirtas, I., Aksit, H. (2011). Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chemistry, 124(1), 58-64. [DOI:10.1016/j.foodchem.2010.05.103]
155. Parida, A.K., Das, A.B., Mittra, B., Mohanty, P. (2004). Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift für Naturforschung C, 59(5-6), 408-414. [DOI:10.1515/znc-2004-5-622]
156. Parida, A.K., and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
157. Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075. [DOI:10.1007/s11356-014-3739-1]
158. Parr, A.J., Bolwell, G.P. (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture, 80, 985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7 [DOI:10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-7]
159. Paul, J., Shridevi, S.D.K. (2014). Effect of seaweed liquid fertilizer of Gracilaria dura (AG.) J. AG. (Red seaweed) on Pennisetum glaucum (L.) R.Br., in Thoothukudi, Tamil Nadu, India. Indo American Journal of Pharmaceutical Research, 4(4), 2231-6876.
160. Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M. (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 26, 673-684. [DOI:10.1007/s00572-016-0704-5]
161. Prakash, P.S., Medhi, S., Saikia, G., Narendrakumar, A., Thirugnanasambandam, L., Abraham, S. (2014). Production, formulation and application of seaweed liquid fertilizer using humic acid on growth of Arachis hypogaea. Biosciences Biotechnology Research Asia, 11(3), 1515-1519. [DOI:10.13005/bbra/1546]
162. Rathore, S.S., Chaudhary, D.R., Boricha, G.N., Ghosh, A., Bhatt, B.P., Zodape, S.T., Patolia, J.S. (2009). Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2), 351-355. [DOI:10.1016/j.sajb.2008.10.009]
163. Sabura, A., Ahmadi, A., Zinali, A., Parsa, M. 2013. Comparison of the content of phenolic compounds, flavonoids and antioxidant activity of aerial parts of two populations of Scutellaria pinnatifida in Northern Iran. Journal of Rafsanjan University of Medical Sciences, 13(3), 120-134. (In Persian).
164. Sayari zahan, M.H., Sayadi Anari, M.H., Zamani, GH., Mahmodi, S., Gholestanifar, F. (2022). The effect of two types of algae on the growth characteristics of wheat and basil plants under salinity stress conditions. Environmental Stresses in Crop Sciences, 15(3), 731-740.
165. Selvam, G.G., Sivakumar, K. (2013). Effect of foliar spray from seaweed liquid fertilizer of Ulva reticulata (Forsk.) on Vigna mungo L. and their elemental composition using SEM- energy dispersive spectroscopic analysis, Asian Pacific Journal of Reproduction, 2(2), 119-125. [DOI:10.1016/S2305-0500(13)60131-1]
166. Shahbazi, F., Seyyed nejad, M., Salimi, A., Gilani, A. (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. International Journal of Agriculture and Crop Sciences, 8(3), 283-287.
167. Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. [DOI:10.1590/S1677-04202005000100004]
168. Sharma, M.K. (2023). Plant stress: Salt stress and mechanisms of stress tolerance. Current Agriculture Research Journal, 11(2), 380-400. [DOI:10.12944/CARJ.11.2.03]
169. Shen, Q., Jensen, R. (2008), Approximation-based feature selection and application for algae population estimation, Applied Intelligence, 28, 167-181. [DOI:10.1007/s10489-007-0058-y]
170. Shim, I.S., Momose, Y., Yamamoto, A., Kim, D.W., Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39, 285-92. [DOI:10.1023/A:1022861312375]
171. Singh, S., Singh, N.B. (2014). Effect of salicylic acid on cabbage (Brassica oleracea var. Capitata) grown under salinity stress. Iranian Journal of Plant Physiology, 4(4), 1109-1118.
172. Siddiqui, Md.N., Mostofa, M.G., Akter, M.M., Srivastava, A., Abu Sayed, MD, Hasan, S., Tran, L.S. (2017). Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere, 187, 385-394. [DOI:10.1016/j.chemosphere.2017.08.078]
173. Spann, T.M., Little, H.A. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increase drought tolerance in container-grown 'Hamlin' sweet orange nursery trees. HortScience. 46, 577-582. [DOI:10.21273/HORTSCI.46.4.577]
174. Sridhar, S., Rengasamy. R. (2011). Potential of seaweed liquid fertilizers (SLFS) on some agricultural crop with special reference to protein profile of seedlings. International Journal of Development Research, 7, 55-57.
175. Sofy, M.R., Elmone, M., Sharaf, M.A., Osman, S., Sofy, A.R. (2017). Physiological changes, antioxidant activity, lipid peroxidation and yield characters of salt stressed barely plant in response to treatment with Sargassum extract. International Journal of Advanced Research in Biological Sciences, 4(2), 90-109.
176. Stirk, W.A., Rengasamy, K.R.R., Kulkarni, M.G., Van Staden, J. (2020). Plant Biostimulants from Seaweed. In: The Chemical Biology of Plant Biostimulants; John Wiley & Sons: Hoboken, NJ, USA,31-55 Pp. [DOI:10.1002/9781119357254.ch2]
177. Su, J., Wu, R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 166(4), 8-941. [DOI:10.1016/j.plantsci.2003.12.004]
178. Suárez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans (L.). Brazilian Journal of Plant Physiology, 20, 131-140. [DOI:10.1590/S1677-04202008000200005]
179. Sudhakar, C., Lakshmi, A., Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613-619. [DOI:10.1016/S0168-9452(01)00450-2]
180. Sunarpi., P., Jupri, A., Kurnianingsih, R., Julisaniah, N.I. Nikmatullah, A. 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience, 2(2): 73-77. [DOI:10.13057/nusbiosci/n020204]
181. Sunarpi., Jupri, A., Kurnianingsih, R., Julisaniah, N.I., Nikmatullah, A. 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience, 2(2), 73-77. [DOI:10.13057/nusbiosci/n020204]
182. Taghi zadeh, M., Solgi, M. (2014). Introduction of commercial protocol for in vitro propagation of ornamental cabbage (Brassica oleraceae L.). Horticultural Sciences, 45(4), 484-475. (In Persian).
183. Taqdesi, M., Hassani, N., Masoudsinki, J. (2013). The stress of irrigation and spraying with humic acid and algae extract on the level of antioxidant enzymes and proline in forage sorghum. Journal of Agricultural Plant Production under Environmental Stress Conditions, 4, 12-1.
184. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123(2), 272-279. [DOI:10.1016/j.scienta.2009.09.006]
185. Thambiraj, J., Lingakumar, K., Paulsamy, S. (2012). Effect of seaweed liquid fertilizer (SLF) prepared from Sargassum wightii and Hypnea musciformis on the growth and biochemical constituents of the pulse, Cyamopsis tetragonoloba (L). Journal of Research in Agriculture, 1(1), 65-70.
186. Vojodi Mehrabani, L., Valizadeh Kamran, R. (2021), In-soil organic fertilizer and foliar use of salicylic acid and sea algae extract (Ascophyllum nodosum) on the growth and yield of two native pumpkin clones (Cucurbita pepo). Scientific Research Journal of Agricultural Knowledge and Sustainable Production, 32(3), 115-132.
187. Vjoudi Mehrabani, L., Hasanpour Aghdam, M.B., Ebrahimzadeh, A., Valizadeh Kamran, R. (2017). The effects of organic fertilizers and cover beds on yield and some physiological traits of Calendula officinalis L. treated with brown algae extract foliar application, Journal of Plant Ecophysiology, 10(35), 212-220.
188. Warwick, S.I. (2011). Brassicaceae in Agriculture. In: R. Schmidt & I. Bancroft (Eds). Genetics and Genomics of the Brassicaceae. (9, 33-66). Springer Verlag, New York. [DOI:10.1007/978-1-4419-7118-0_2]
189. Xu, C., Leskovar. D. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae, 183, 39-47. [DOI:10.1016/j.scienta.2014.12.004]
190. Zanganeh, N., Barzegar, H., Alizadeh Behbahani, B., Mehrnia, M.A. (2020). Investigation of the effect of different Spirulina platensis levels on nutritional, physicochemical and sensory properties of sponge cake. Iranian Food Science and Technology Research Journal, 16 (2), 207-220. (In Persian).
191. Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C. (2021). Wang, P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22, 4609. [DOI:10.3390/ijms22094609]
192. Zodape, S.T. (2001). Seaweed as A biofertilizer. Journal of Scientific and Industrial Research, 60, 378-382.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashidi Kurdkandi S, Aelaei M, Ghahremani Z, Salehi F. Effect of spirulina and brown algae on salinity tolerance of ornamental cabbage (Brassica oleraceae L. cv. Kamome). FOP 2024; 9 (2) :375-396
URL: http://flowerjournal.ir/article-1-287-fa.html

راشیدی کردکندی سجاد، اعلائی میترا، قهرمانی زهرا، صالحی فهیمه. اثرهای جلبک اسپیرولینا و جلبک قهوه‌‌ای بر تحمل به تنش شوری کلم زینتی رقم Kamome (Brassica oleraceae L.). گل و گیاهان زینتی. 1403; 9 (2) :375-396

URL: http://flowerjournal.ir/article-1-287-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 2 - ( پاییز و زمستان 1403 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 43 queries by YEKTAWEB 4735