[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 1 (Spring and Summer 2023) ::
FOP 2023, 8(1): 89-104 Back to browse issues page
Effects of different concentrations of Nitrogen and Potassium on morpho-physiological indices of ornamental kale
Masoud Ghasemi Ghehsareh *
Shahrekord University
Abstract:   (1643 Views)
Ornamental Kales are one of the most important plants of the autumn season, they are the only ornamental plants in the green space in the cold season due to their tolerance to cold and frost. Nutrition and temperature are important factors affecting plant quality, especially in terms of plant height, canopy size and color, and leaf size and number. An experiment was conducted to investigate the interaction effect of different concentrations of nitrogen and potassium fertilizers on morpho-physiological indices of ornamental kale. The treatments include the interaction of concentrations of 125, 175 and 225 mg L-1 of nitrogen and potassium (from the source of urea and potassium sulfate, K2SO4) in the form of N:K ratios including 125:125, 125:175, 125:225, 175:125, 175:175, 175:225, 225:125, 2 25:175 and 225:225 and distilled water (as control). The results showed that the treatments had a significant effect on all the measured indices. The highest fresh and dry weight of the shoot was belonged to N:K treatment equal to 175:175. The highest number of leaves in the 125:125 treatment, the highest crown diameter in the 225:225 treatment, and the highest leaf chlorophyll content was belonged to 175 mg L-1 nitrogen along with different concentrations of potassium. The highest soluble sugar was observed in the treatments containing 175 and 225 mg L-1 of nitrogen and potassium, and the highest proline was observed in the 225:225 treatment. The highest amount of anthocyanin was belonged to the control and among the fertilization treatments, it was belonged to the level of 125 mg L-1 of potassium. Based on these observations and also considering the importance of canopy diameter in ornamental kale, the amount of 175 to 225 mg L-1 of nitrogen along with 225 mg L-1 of potassium can be suggested for the optimal growth of this plant.
 
Keywords: Anthocyanin, Chlorophyll, Crown size, Fertilizing, Flowering Kale
Full-Text [PDF 875 kb]   (372 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/07/23 | Accepted: 2023/10/30 | Published: 2023/12/17
References
1. Ábrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L. (2010). Methods for determination of proline in plants. In: Sunkar R. (ed.). Plant stress tolerance: methods and protocols, Springer New York Dordrecht Heidelberg London, pp 317-331. [DOI:10.1007/978-1-60761-702-0_20]
2. American Takii. (1992). Cultural Information on Flowering kale (p. 4).
3. Arena, M.E., Pastur, G.M., Lencinas, M.V., Soler, R., Bustamante, G. (2020). Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon, 6(1) https://doi.org/10.1016/j.heliyon.2020.e03264 [DOI:10.1016/j.heliyon.2020.e03264..]
4. Armengaud, P., Sulpice, R., Miller, A. J., Stitt, M., Amtmann, A., Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol, 150, 772-785. [DOI:10.1104/pp.108.133629]
5. Benincasa, P., Guiducci, M., Tei, F. (2011). The nitrogen use efficiency: meaning and sources of variation - case studies on three vegetable crops in central Italy. HortTechnology, 21(3), 266-273. [DOI:10.21273/HORTTECH.21.3.266]
6. Blank, F. (1947). The anthocyanin pigments of plants. The Botanical Review, 13(5), 241-317. [DOI:10.1007/BF02861798]
7. Boroujerdnia, M., Ansari, N.A. (2007). Effect of Different Levels of Nitrogen Fertilizer and Cultivars on Growth, Yield and Yield Components of Romaine Lettuce (Lactuca sativa L.). Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(2), 47-53.
8. Cakmak, I., Hengeler, C., Marschner, H. (1994). Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency, Journal of Experimental Botany, 45, 1245-1250. [DOI:10.1093/jxb/45.9.1245]
9. Cardarelli, M., Rouphael, Y., Muntean, D., Colla, G. (2015). Growth, quality index, and mineral composition of five ornamental cabbage cultivars grown under different nitrogen fertilization rates. HortScience, 50(5), 688-693. [DOI:10.21273/HORTSCI.50.5.688]
10. Chenard, C.H., Kopsell, D.A., Kopsell, D.E. (2005). Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. Journal of Plant Nutrition, 28(2), 285-297. [DOI:10.1081/PLN-200047616]
11. Delgado, R., González, M.R., Martín, P. (2006). Interaction effects of nitrogen and potassium fertilization on anthocyanin composition and chromatic features of Tempranillo grapes. Journal International des Sciences de la Vigne et du Vin, 40(3), 141. [DOI:10.20870/oeno-one.2006.40.3.870]
12. Delgado, R., Martín, P., Del Álamo, M., González, M.R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. Journal of the Science of Food and Agriculture, 84(7), 623-630. https://doi.org/10.1002/jsfa.1685 [DOI:10.1002/jsfa.1685.]
13. Everaarts, A.P., & De Moel, C.P. (1998). The effect of nitrogen and the method of application on yield and quality of white cabbage. European Journal of Agronomy, 9(2-3), 203-211. [DOI:10.1016/S1161-0301(98)00038-0]
14. Freyman, S., Toivonen, P.M., Lin, W.C., Perrin, P.W., Hall, J.W. (1991). Effect of nitrogen fertilization on yield, storage losses and chemical composition of winter cabbage. Canadian journal of plant science, 71(3), 943-946. [DOI:10.4141/cjps91-135]
15. Ghasemi Ghehsareh, M., Kafi, M. (2016). General floriculture. Author publication, 215p. (In Persian).
16. Gibson, J.L., Whipker, B.E. (2001). Revising the fertilization strategy for ornamental cabbage. https://gpnmag.com/article/revising-fertilizer-strategy-ornamental-cabbage. Accessed August 2001.
17. Gibson, J.L., Whipker, B.E. (2003). Ornamental cabbage quality improved by continual fertilization through center-head coloration. HortScience, 38(7), 1381-1384. [DOI:10.21273/HORTSCI.38.7.1381]
18. Glass, A.D.M. (2003). Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 22(5), 453-470. [DOI:10.1080/07352680390243512]
19. Gülser, F. (2005). Effects of ammonium sulphate and urea on NO3- and NO2- accumulation, nutrient contents and yield criteria in spinach. Scientia Horticulturae. Scientia Horticulturae, 106(3), 330-340. [DOI:10.1016/j.scienta.2005.05.007]
20. Guttormsen G. (1996). Virkningen av nitrogengjödsling paÊ avling, kvalitet og lagringsevne hos kinakaÊl. Norsk Dindbruksforsking, 10, 74-80.
21. Hirsch, R.E., Sussman, M.R. (1999). Improving nutrient capture from soil by the genetic manipulation of crop plants. Trends in Biotechnology, 17(9), 356-361. [DOI:10.1016/S0167-7799(99)01332-3]
22. Jin, S.W., Rahim, M.A., Kim, H.T., Park, J.I., Kang, J.G., Nou, I.S. (2018). Molecular analysis of anthocyanin-related genes in ornamental cabbage. Genome, 61(2), 111-120. [DOI:10.1139/gen-2017-0098]
23. Keller, M., Hrazdina, G. (1998). Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. American Journal of Enology and Viticulture, 49(3), 341-349. [DOI:10.5344/ajev.1998.49.3.341]
24. Khoshgoftarmanesh, A.H. (2014). Principles of Plant Nutrition (2nd ed.). Isfahan University of Technology. 540p. (In Persian).
25. Kliewer, W.M. (1977). Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. American Journal of Enology and Viticulture, 28(2), 96-103. [DOI:10.5344/ajev.1977.28.2.96]
26. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 591-592. [DOI:10.1042/bst0110591]
27. Luczai, R.T. (1992). Flowering cabbage and kale: Ideal for use in late fall landscapes. PPGA News, 23(4), 2-3.
28. MacDonald, W.N., Blom, T.J., Tsujita, M.J., Shelp, B.J. (2013). Improving nitrogen use efficiency of potted chrysanthemum: Strategies and benefits. Canadian Journal of Plant Science, 93(6), 1009-1016. [DOI:10.4141/cjps2013-098]
29. Maness, N. (2010). Extraction and analysis of soluble carbohydrates. In: Sunkar R. (ed.). Plant stress tolerance: methods and protocols, Springer New York Dordrecht Heidelberg London, pp. 341-370. [DOI:10.1007/978-1-60761-702-0_22]
30. Marquardt, B., Schlemmer, R. (1996). Flowering kale: Fall color for late sales. GrowerTalks, 60(3), 68-69.
31. Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press. 651p.
32. McAvoy, R. (1994). Cultural tips for ornamental cabbage and kale. CT Greenhouse Newsletter, 180, 13-15.
33. McDougall, G.J., Fyffe, S., Dobson, P., Stewart, D. (2007). Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion. Phytochemistry, 68(9), 1285-1294. [DOI:10.1016/j.phytochem.2007.02.004]
34. Mohammed, S., Singh, D., Ahlawat, V.P. (1993). Growth, yield and quality of grapes as affected by pruning and basal application of potassium. Haryana Journal of Horticultural Sciences, 22, 179-183.
35. Nitsos, R.E. and Evans, H.J. (1969). Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiol. 44, 1260-1266. [DOI:10.1104/pp.44.9.1260]
36. Piccaglia, R., Marotti, M., Baldoni, G. (2002). Factors influencing anthocyanin content in red cabbage (Brassica oleracea var. capitata L. f rubra (L) Thell). Journal of the Science of Food and Agriculture, 82(13), 1504-1509. [DOI:10.1002/jsfa.1226]
37. Pirie, A., Mullins, M.G. (1977). Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. American Journal of Enology and viticulture, 28(4), 204-209. [DOI:10.5344/ajev.1977.28.4.204]
38. Reay, P.F., Fletcher, R.H. and Thomas, V.J.G. (1998). Chlorophylls, carotenoids and anthocyanin concentrations in the skin of 'Gala' apples during maturation and the influence of foliar applications of nitrogen and magnesium. Journal of the Science of Food and Agriculture, 76(1), 63-71. https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<63::AID-JSFA908>3.0.CO;2-K [DOI:10.1002/(SICI)1097-0010(199801)76:13.0.CO;2-K]
39. Shaikh, N.P., Adjei, M.B., Scholberg, J.M. (2008). Interactive effect of phosphorus and nitrogen on leaf anthocyanins, tissue nutrient concentrations, and dry-matter yield of Floralta limpograss during short day length. Communications in Soil Science and Plant Analysis, 39(7-8), 1006-1015. [DOI:10.1080/00103620801925414]
40. Sorgona, A., Abenavoli, M.R., Gringeri, P.G., Cacco, G. (2006). A comparison of nitrogen use efficiency definitions in Citrus rootstocks. Scientia Horticulturae, 109(4), 389-393. [DOI:10.1016/j.scienta.2006.06.001]
41. Spayd, S.E., Wample, R.L., Evans, R.G., Stevens, R.G., Seymour, B.J., Nagel, C.W. (1994). Nitrogen fertilization of White Riesling grapes in Washington. Must and wine composition. American Journal of Enology and Viticulture, 45(1), 34-42. [DOI:10.5344/ajev.1994.45.1.34]
42. Takki Seed, A. (2017). Flowering Kale F1. http://www.takii.com/wp-content/uploads/2016/05/Flowering-Kale-F1-Feather-and-Fringe-Leaf-Rev-B-.pdf
43. Tjhia, B., Aziz, S.A., Suketi, K. (2018). Correlations between leaf nitrogen, phosphorus and potassium and leaf chlorophyll, anthocyanins and carotenoids content at vegetative and generative stage of Bitter Leaf (Vernonia amygealina Del.). Journal of Tropical Crop Science, 5(1), 23-53. [DOI:10.29244/jtcs.5.1.25-33]
44. Turan, M., Sevimli, F. (2005). Influence of different nitrogen sources and levels on ion content of cabbage (Brassica oleracea var. capitate). New Zealand Journal of Crop and Horticultural Science, 33(3), 241-249. [DOI:10.1080/01140671.2005.9514356]
45. Whipker, B.E., Gibson, J.L., Cloyd, R.A., Campbell, C.R., Jones, R. (1998). Success with ornamental cabbage and kale. Horticulture Information Leaflet, 507, 1-9.
46. Wilson, C., Albano, J., Mozdzen, M., Riiska, C. (2010). Irrigation water and nitrate-nitrogen loss characterization in southern Florida nurseries: Cumulative volumes, runoff rates, nitrate-nitrogen concentrations and loadings, and implications for management. HortTechnology, 20(2), 325-330. [DOI:10.21273/HORTTECH.20.2.325]
47. Wu, L., Li, P., Jia, H., Phillip, F.O., Bao, X., Zhao, F., Yu, K. (2021). The effect of foliar application of K2SO4 or KH2PO4 on skin color of the 'Kyoho' Grape. Agronomy, 11(11), 2361. [DOI:10.3390/agronomy11112361]
48. Zhao, D., Oosterhuis, D.M., Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39(1), 103-109. [DOI:10.1023/A:1012404204910]
49. Zhao, D., Reddy, K.R., Kakani, V.G., Read, J.J., Carter, G.A. (2003). Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257(1), 205-218. [DOI:10.1023/A:1026233732507]
50. Ábrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L. (2010). Methods for determination of proline in plants. In: Sunkar R. (ed.). Plant stress tolerance: methods and protocols, Springer New York Dordrecht Heidelberg London, pp 317-331. [DOI:10.1007/978-1-60761-702-0_20]
51. American Takii. (1992). Cultural Information on Flowering kale (p. 4).
52. Arena, M.E., Pastur, G.M., Lencinas, M.V., Soler, R., Bustamante, G. (2020). Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon, 6(1) https://doi.org/10.1016/j.heliyon.2020.e03264 [DOI:10.1016/j.heliyon.2020.e03264..]
53. Armengaud, P., Sulpice, R., Miller, A. J., Stitt, M., Amtmann, A., Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol, 150, 772-785. [DOI:10.1104/pp.108.133629]
54. Benincasa, P., Guiducci, M., Tei, F. (2011). The nitrogen use efficiency: meaning and sources of variation - case studies on three vegetable crops in central Italy. HortTechnology, 21(3), 266-273. [DOI:10.21273/HORTTECH.21.3.266]
55. Blank, F. (1947). The anthocyanin pigments of plants. The Botanical Review, 13(5), 241-317. [DOI:10.1007/BF02861798]
56. Boroujerdnia, M., Ansari, N.A. (2007). Effect of Different Levels of Nitrogen Fertilizer and Cultivars on Growth, Yield and Yield Components of Romaine Lettuce (Lactuca sativa L.). Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(2), 47-53.
57. Cakmak, I., Hengeler, C., Marschner, H. (1994). Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency, Journal of Experimental Botany, 45, 1245-1250. [DOI:10.1093/jxb/45.9.1245]
58. Cardarelli, M., Rouphael, Y., Muntean, D., Colla, G. (2015). Growth, quality index, and mineral composition of five ornamental cabbage cultivars grown under different nitrogen fertilization rates. HortScience, 50(5), 688-693. [DOI:10.21273/HORTSCI.50.5.688]
59. Chenard, C.H., Kopsell, D.A., Kopsell, D.E. (2005). Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. Journal of Plant Nutrition, 28(2), 285-297. [DOI:10.1081/PLN-200047616]
60. Delgado, R., González, M.R., Martín, P. (2006). Interaction effects of nitrogen and potassium fertilization on anthocyanin composition and chromatic features of Tempranillo grapes. Journal International des Sciences de la Vigne et du Vin, 40(3), 141. [DOI:10.20870/oeno-one.2006.40.3.870]
61. Delgado, R., Martín, P., Del Álamo, M., González, M.R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. Journal of the Science of Food and Agriculture, 84(7), 623-630. https://doi.org/10.1002/jsfa.1685 [DOI:10.1002/jsfa.1685.]
62. Everaarts, A.P., & De Moel, C.P. (1998). The effect of nitrogen and the method of application on yield and quality of white cabbage. European Journal of Agronomy, 9(2-3), 203-211. [DOI:10.1016/S1161-0301(98)00038-0]
63. Freyman, S., Toivonen, P.M., Lin, W.C., Perrin, P.W., Hall, J.W. (1991). Effect of nitrogen fertilization on yield, storage losses and chemical composition of winter cabbage. Canadian journal of plant science, 71(3), 943-946. [DOI:10.4141/cjps91-135]
64. Ghasemi Ghehsareh, M., Kafi, M. (2016). General floriculture. Author publication, 215p. (In Persian).
65. Gibson, J.L., Whipker, B.E. (2001). Revising the fertilization strategy for ornamental cabbage. https://gpnmag.com/article/revising-fertilizer-strategy-ornamental-cabbage. Accessed August 2001.
66. Gibson, J.L., Whipker, B.E. (2003). Ornamental cabbage quality improved by continual fertilization through center-head coloration. HortScience, 38(7), 1381-1384. [DOI:10.21273/HORTSCI.38.7.1381]
67. Glass, A.D.M. (2003). Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 22(5), 453-470. [DOI:10.1080/07352680390243512]
68. Gülser, F. (2005). Effects of ammonium sulphate and urea on NO3- and NO2- accumulation, nutrient contents and yield criteria in spinach. Scientia Horticulturae. Scientia Horticulturae, 106(3), 330-340. [DOI:10.1016/j.scienta.2005.05.007]
69. Guttormsen G. (1996). Virkningen av nitrogengjödsling paÊ avling, kvalitet og lagringsevne hos kinakaÊl. Norsk Dindbruksforsking, 10, 74-80.
70. Hirsch, R.E., Sussman, M.R. (1999). Improving nutrient capture from soil by the genetic manipulation of crop plants. Trends in Biotechnology, 17(9), 356-361. [DOI:10.1016/S0167-7799(99)01332-3]
71. Jin, S.W., Rahim, M.A., Kim, H.T., Park, J.I., Kang, J.G., Nou, I.S. (2018). Molecular analysis of anthocyanin-related genes in ornamental cabbage. Genome, 61(2), 111-120. [DOI:10.1139/gen-2017-0098]
72. Keller, M., Hrazdina, G. (1998). Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. American Journal of Enology and Viticulture, 49(3), 341-349. [DOI:10.5344/ajev.1998.49.3.341]
73. Khoshgoftarmanesh, A.H. (2014). Principles of Plant Nutrition (2nd ed.). Isfahan University of Technology. 540p. (In Persian).
74. Kliewer, W.M. (1977). Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. American Journal of Enology and Viticulture, 28(2), 96-103. [DOI:10.5344/ajev.1977.28.2.96]
75. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 591-592. [DOI:10.1042/bst0110591]
76. Luczai, R.T. (1992). Flowering cabbage and kale: Ideal for use in late fall landscapes. PPGA News, 23(4), 2-3.
77. MacDonald, W.N., Blom, T.J., Tsujita, M.J., Shelp, B.J. (2013). Improving nitrogen use efficiency of potted chrysanthemum: Strategies and benefits. Canadian Journal of Plant Science, 93(6), 1009-1016. [DOI:10.4141/cjps2013-098]
78. Maness, N. (2010). Extraction and analysis of soluble carbohydrates. In: Sunkar R. (ed.). Plant stress tolerance: methods and protocols, Springer New York Dordrecht Heidelberg London, pp. 341-370. [DOI:10.1007/978-1-60761-702-0_22]
79. Marquardt, B., Schlemmer, R. (1996). Flowering kale: Fall color for late sales. GrowerTalks, 60(3), 68-69.
80. Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press. 651p.
81. McAvoy, R. (1994). Cultural tips for ornamental cabbage and kale. CT Greenhouse Newsletter, 180, 13-15.
82. McDougall, G.J., Fyffe, S., Dobson, P., Stewart, D. (2007). Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion. Phytochemistry, 68(9), 1285-1294. [DOI:10.1016/j.phytochem.2007.02.004]
83. Mohammed, S., Singh, D., Ahlawat, V.P. (1993). Growth, yield and quality of grapes as affected by pruning and basal application of potassium. Haryana Journal of Horticultural Sciences, 22, 179-183.
84. Nitsos, R.E. and Evans, H.J. (1969). Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiol. 44, 1260-1266. [DOI:10.1104/pp.44.9.1260]
85. Piccaglia, R., Marotti, M., Baldoni, G. (2002). Factors influencing anthocyanin content in red cabbage (Brassica oleracea var. capitata L. f rubra (L) Thell). Journal of the Science of Food and Agriculture, 82(13), 1504-1509. [DOI:10.1002/jsfa.1226]
86. Pirie, A., Mullins, M.G. (1977). Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. American Journal of Enology and viticulture, 28(4), 204-209. [DOI:10.5344/ajev.1977.28.4.204]
87. Reay, P.F., Fletcher, R.H. and Thomas, V.J.G. (1998). Chlorophylls, carotenoids and anthocyanin concentrations in the skin of 'Gala' apples during maturation and the influence of foliar applications of nitrogen and magnesium. Journal of the Science of Food and Agriculture, 76(1), 63-71. https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<63::AID-JSFA908>3.0.CO;2-K [DOI:10.1002/(SICI)1097-0010(199801)76:13.0.CO;2-K]
88. Shaikh, N.P., Adjei, M.B., Scholberg, J.M. (2008). Interactive effect of phosphorus and nitrogen on leaf anthocyanins, tissue nutrient concentrations, and dry-matter yield of Floralta limpograss during short day length. Communications in Soil Science and Plant Analysis, 39(7-8), 1006-1015. [DOI:10.1080/00103620801925414]
89. Sorgona, A., Abenavoli, M.R., Gringeri, P.G., Cacco, G. (2006). A comparison of nitrogen use efficiency definitions in Citrus rootstocks. Scientia Horticulturae, 109(4), 389-393. [DOI:10.1016/j.scienta.2006.06.001]
90. Spayd, S.E., Wample, R.L., Evans, R.G., Stevens, R.G., Seymour, B.J., Nagel, C.W. (1994). Nitrogen fertilization of White Riesling grapes in Washington. Must and wine composition. American Journal of Enology and Viticulture, 45(1), 34-42. [DOI:10.5344/ajev.1994.45.1.34]
91. Takki Seed, A. (2017). Flowering Kale F1. http://www.takii.com/wp-content/uploads/2016/05/Flowering-Kale-F1-Feather-and-Fringe-Leaf-Rev-B-.pdf
92. Tjhia, B., Aziz, S.A., Suketi, K. (2018). Correlations between leaf nitrogen, phosphorus and potassium and leaf chlorophyll, anthocyanins and carotenoids content at vegetative and generative stage of Bitter Leaf (Vernonia amygealina Del.). Journal of Tropical Crop Science, 5(1), 23-53. [DOI:10.29244/jtcs.5.1.25-33]
93. Turan, M., Sevimli, F. (2005). Influence of different nitrogen sources and levels on ion content of cabbage (Brassica oleracea var. capitate). New Zealand Journal of Crop and Horticultural Science, 33(3), 241-249. [DOI:10.1080/01140671.2005.9514356]
94. Whipker, B.E., Gibson, J.L., Cloyd, R.A., Campbell, C.R., Jones, R. (1998). Success with ornamental cabbage and kale. Horticulture Information Leaflet, 507, 1-9.
95. Wilson, C., Albano, J., Mozdzen, M., Riiska, C. (2010). Irrigation water and nitrate-nitrogen loss characterization in southern Florida nurseries: Cumulative volumes, runoff rates, nitrate-nitrogen concentrations and loadings, and implications for management. HortTechnology, 20(2), 325-330. [DOI:10.21273/HORTTECH.20.2.325]
96. Wu, L., Li, P., Jia, H., Phillip, F.O., Bao, X., Zhao, F., Yu, K. (2021). The effect of foliar application of K2SO4 or KH2PO4 on skin color of the 'Kyoho' Grape. Agronomy, 11(11), 2361. [DOI:10.3390/agronomy11112361]
97. Zhao, D., Oosterhuis, D.M., Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39(1), 103-109. [DOI:10.1023/A:1012404204910]
98. Zhao, D., Reddy, K.R., Kakani, V.G., Read, J.J., Carter, G.A. (2003). Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257(1), 205-218. [DOI:10.1023/A:1026233732507]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi Ghehsareh M. Effects of different concentrations of Nitrogen and Potassium on morpho-physiological indices of ornamental kale. FOP 2023; 8 (1) :89-104
URL: http://flowerjournal.ir/article-1-281-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Spring and Summer 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4712