[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 1 (Spring and Summer 2023) ::
FOP 2023, 8(1): 155-170 Back to browse issues page
Investigation the effect of putrescine, IBA and wounding on rooting of cutting of Rosa hybrida cv. Sanaz-e-Zard under greenhouse and in vitro conditions
Maryam Dehestani-Ardakani * , Nima Ahmadi
Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
Abstract:   (431 Views)
Miniature roses are hybrid roses that are widely used in landscape or as pot plants and cut flowers. Traditional methods of propagation for this species is associated with time limitation and rootstock propagule, and micropropagation techniques are increasing. Root induction of roses cuttings through different plant growth regulators is important. In this study, the effects of different concentrations of Indole-3-Butyric Acid (IBA), putrescine and wounding the end of cuttings on rooting of Rosa hybrida cv. SanaZard under in vitro and greenhouse conditions was investigated. Micro-cuttings were planted in MS basal culture medium containing five concentrations (0, 0.25, 0.5, 1 and 2 mg L-1) of IBA and putrescine. In the greenhouse, the cuttings were treated with five levels of IBA, putrescine (0, 0.25, 0.5, 1 and 2 g L-1), and two levels of wounding (with and without wounding) and planted in pots after application of treatments. This study was conducted as a factorial experiment in a completely randomized design with three replicates. The results of greenhouse experiments showed that the maximum length and number of roots were obtained under the treatment of 1 g L-1of IBA (31.5 cm and 6.50, respectively). Wounding the end of the cutting increased the number of roots by 33.33%. In in vitro condition, the highest number of roots was observed in 1 mg L-1 IBA + 2 mg L-1putrescine (6) treatment and the highest number of shoots were obtained with the simultaneous application of 0.25, 0.5 and 2 g L-1 of IBA + all levels of putrescine. In general, it seems that the combined use of IBA and putrescine could increase the rooting of miniature rose cuttings in in vitro and in situ conditions. Also, wounding the ends of cuttings plays an important role on inducing the roots under greenhouse environment.
Keywords: Culture medium, Indole-3-butyric acid, Micro-cutting, Proliferation, Tissue culture
Full-Text [PDF 895 kb]   (64 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/11/7 | Accepted: 2023/04/15 | Published: 2023/12/23
References
1. Ahkami, A., Scholz, U., Steuernagel, B., Strickert, M., Haensch, K.-T., Druege, U., Hajirezaei, M. R. (2014). Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS One, 9, e100997. [DOI:10.1371/journal.pone.0100997]
2. Ahmadi, N. (2012). Rooting and growth of cuttings from ethylene-low or ethylene-high sensitive miniature rose genotypes under mist condition. Acta Horticulture, 952: 893-898. [DOI:10.17660/ActaHortic.2012.952.113]
3. Alaguero‐Cordovilla, A., Sánchez‐García, A. B., Ibáñez, S., Albacete, A., Cano, A., Acosta, M., Pérez‐Pérez, J. M. (2021). An auxin‐mediated regulatory framework for wound‐induced adventitious root formation in tomato shoot explants. Plant, Cell & Environment, 44(5), 1642-1662. [DOI:10.1111/pce.14001]
4. Azadi, P., Beyrami Zadeh, E. Otang Ntui, V. (2013). A simple protocol for somatic embryogenesis in Rosa hybrida L. cv. Apollo. The Journal of Horticultural Science and Biotechnology, 88(4), 399-402. [DOI:10.1080/14620316.2013.11512982]
5. Bellini, C., Pacurar, D. I., Perrone, I. (2014). Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology, 65, 639-666. [DOI:10.1146/annurev-arplant-050213-035645]
6. Canher, B., Heyman, J., Savina, M., Devendran, A., Eekhout, T., Vercauteren, I., De Veylder, L. (2020). Rocks in the auxin stream: Wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proceedings of the National Academy of Sciences, 117, 16667-16677. [DOI:10.1073/pnas.2006620117]
7. Castilon, J., Jones, B., Kamo, K. (2006) Efficient regeneration of rose plants from somatic embryos of three genetically diverse cultivars. - Floral Nursery Plants Research Unit, US National Arboretum, Beltsville, MD, USA.
8. Cristofori, V., Rouphael, Y., Rugini, E. (2010). Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Scientia Horticulturae, 124,189-194. [DOI:10.1016/j.scienta.2009.12.034]
9. de Jong, M., Wolters-Arts, M., Schimmel, B. C., Stultiens, C. L., de Groot, P. F., Powers, S. J., Rieu, I. (2015). Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. Journal of Experimental Botany, 66, 3405-3416. [DOI:10.1093/jxb/erv152]
10. de Klerk, G. J., van der Krieken, W., de Jong, J. C. (1999). Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cellular & Developmental Biology. Plant, 35, 189-199. [DOI:10.1007/s11627-999-0076-z]
11. Denaxa, N.K., Roussos, P.A., Vemmos, S.N. (2014). The Possible Role of Polyamines to the Recalcitrance of ''Kalamata'' Olive Leafy Cuttings to Root. Journal of plant growth regulators, 33,579-589. [DOI:10.1007/s00344-013-9407-8]
12. Druege, U., Franken, P. (2019). Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: At the nexus of physiology, genetics, microbiology and horticulture. Physiologia Plantarum, 165, 58-72. [DOI:10.1111/ppl.12762]
13. Druege, U., Franken, P., Lischewski, S., Ahkami, A. H., Zerche, S., Hause, B., Hajirezaei, M. R. (2014). Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Frontiers in Plant Science, 5, 494. [DOI:10.3389/fpls.2014.00494]
14. Druege, U., Hilo, A., Pérez-Pérez, J. M., Klopotek, Y., Acosta, M., Shahinnia, F., Hajirezaei, M. R. (2019). Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany, 123, 929-949. [DOI:10.1093/aob/mcy234]
15. Duke, J. A. Ayensu, E. S. (1985) Medicinal plants of China. Reference Publications. [DOI:10.1126/science.229.4718.1036.b]
16. Fern'andez-Crespo, E., Scalschi, L., Llorens, E., García-Agustín, P., Cama˜nes, G. (2015). NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation. Journal of Experimental Botany, 66, 6777-6790. https://doi.org/10.1093/jxb/ [DOI:10.1093/jxb/ erv382.]
17. Galavi, M., Karimian, M. A., Mousavi, S. R. (2013). Effects of different auxin (IBA) concentrations and planting-beds on rooting grape cuttings (Vitis vinifera). Annual Research & Review in Biology, 517-523.
18. George, E.F., Hall, M.A., De Klerk, G.J. (2008). The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture. Springer, The Netherlands. [DOI:10.1007/978-1-402 0-5005-3_4]
19. Goel, A., Kaur, A., Kumar A. (2018). Biochemical and histological changes during in vitro rooting of microcuttings of Bacopa monnieri (L.) Wettst. - Acta Physiologiae Plantarum, 40(3): 1-12. [DOI:10.1007/s11738-018-2641-8]
20. Gonin, M., Bergougnoux, V., Nguyen, T. D., Gantet, P., Champion, A. (2019). What makes adventitious roots? Plants, 8, 240. [DOI:10.3390/plants8070240]
21. González-Hernández, A. I., Scalschi, L., Troncho, P., García-Agustín, P., Camañes, G. (2022). Putrescine biosynthetic pathways modulate root growth differently in tomato seedlings grown under different N sources. Journal of Plant Physiology, 268, 153560. [DOI:10.1016/j.jplph.2021.153560]
22. Han, H., Zhang, S., Sun, X. (2009). A review on the molecular mechanism of plants rooting modulated by auxin. African Journal of Biotechnology, 8(3).
23. Hummel, I., Couee, I., Amrani, A., Tanguy, J.M. Hennion, F. (2002). Involvement of polyamines in root development at low temeprature in the subantartic cruciferous species Pringlea. Antiscorbutica. Journal of Experimental Botany, 53, 1436-1473. [DOI:10.1093/jexbot/53.373.1463]
24. Hussain, S.S., Ali, M., Ahmad, M., Siddique, K.H.M. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300-311. https://doi.org/10.1016/j.biotechadv.2011.01.003 [DOI:10.1016/j.biotechadv.2011.01.003.]
25. Kasim, N. E., Abou Rayya, M. S., Shaheen, M. A., Yehia, T. A., Ali, E. L. (2009). Effect of different collection times and some treatments on rooting and chemical internal constituents of Bitter Almond hardwood cuttings. Research Journal of Agriculture and Biological Sciences, 5(2), 116-122.
26. Kasim, N. E., Abou Rayya, M. S., Shaheen, M. A., Yehia, T. A., Ali, E. L. (2009). Effect of different collection times and some treatments on rooting and chemical internal constituents of Bitter Almond hardwood cuttings. Research Journal of Agriculture and Biological Sciences, 5(2), 116-122.
27. Kazankaya, A., Mehmet, S., Tekintas, F.G. (1997). Relations between Graft Success and Structural Hormones on Walnut (Juglans regia L.). International Society for Horticultural Science, 442, 295-298. [DOI:10.17660/ActaHortic.1997.442.45]
28. Khamushi, M., Dehestani-Ardakani, M., Zarei, A., Kamali Aliabad, K. (2019). An efficient protocol for micropropagation of old cypress of Abarkuh (Cupressus sempervirens var. horizontalis [Mill.]) under in vitro condition. Plant Cell, Tissue and Organ Culture (PCTOC), 138(3), 597-601. [DOI:10.1007/s11240-019-01645-z]
29. Kusano, T., Berberich, T., Tateda, C., Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta 228, 367-381. https://doi.org/10.1007/s00425-008-0772-7 [DOI:10.1007/s00425- 008-0772-7.]
30. Lakehal, A., Bellini, C. (2019). Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 165, 90-100. [DOI:10.1111/ppl.12823]
31. Lischweski, S., Muchow, A., Guthörl, D., Hause, B. (2015). Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biology, 15, 229. [DOI:10.1186/s12870-015-0615-1]
32. Liu, J.H., Moriguchi, T. (2007). Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Reports, 26, 125-131. [DOI:10.1007/s00299-006-0223-5]
33. Liu, J. H., Nada, K., Honda, C., Kitashiba, H., Wen, X. P., Pang, X. M., & Moriguchi, T. (2006). Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. Journal of Experimental Botany, 57(11), 2589-2599. [DOI:10.1093/jxb/erl018]
34. Liu, J.H., Wang, W., Wu, H., Gong, X., Moriguchi, T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science, 6, 827. https://doi.org/ 10.3389/fpls.2015.00827. https://doi.org/10.3389/fpls.2015.00827 [DOI:10.3389/fpls.2015.00827.]
35. Malik, M., Warchoł, M., Kwaśniewska, E., Pawłowska, B. (2017). Biochemical and morphometric analysis of Rosa tomentosa and Rosa rubiginosa during application of liquid culture systems for in vitro shoot production. Journal of Horticultural Science and Biotechnology, 92(6), 606-613. [DOI:10.1080/14620316.2017.1324744]
36. Mirza, M.Q.B., Ishfaq, A.H., Azhar, H., Touqeer, A., Nadeem, A.A. (2011). An efficient protocol for in vitro propagation of Rosa gruss-an-teplitz and Rosa centifolia. African Journal of Biotechnology, 10 (22), 4564-4573.
37. Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
38. Nguyen, T. H. N., Tänzer, S., Rudeck, J., Winkelmann, T., Debener, T. (2020). Genetic analysis of adventitious root formation in vivo and in vitro in a diversity panel of roses. Scientia Horticulturae, 266, 109277. [DOI:10.1016/j.scienta.2020.109277]
39. Nybom, H., Werlemark, G. (2017) 'Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae)', Current Bioactive Compounds. Bentham Science Publishers, 13(1), pp. 3-17. [DOI:10.2174/1573407212666160607090635]
40. Pacurar, D. I., Perrone, I., Bellini, C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151, 83-96. [DOI:10.1111/ppl.12171]
41. Pourghorban, M., Azadi, P., Khaghani, S., Mirzakhani, A., Changizi, M., Edrisi, B. (2020). Propagation of Three Cultivars of Rosa hybrida L. through Stenting Method. International Journal of Horticultural Science and Technology, 7(1), 27-36.
42. Pourhosseini, L., Kermani, M.J., Habashi, A.A., Khalighi, A. (2013). Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue and Organ Culture, 112(1),101-108. [DOI:10.1007/s11240-012-0210-1]
43. Ramtin, A., Khalighi, A., Hadavi, E., Hekmati, J. (2011). Effect of different IBA concentrations and types of cuttings on rooting and flowering Poinsettia pulcherrima L. International Journal of Agricultural Science, 1(5), 303-310.
44. Rather, Z.S.D., Tsewang Tamchos, P.T. (2017). Effect of growth regulators and growth media on rooting of semi hardwood cuttings of rose rootstocks. International Journal of Current Microbiology and Applied Sciences, 6, 1042-1051. https://doi.org/10.20546/ijcmas.2017.604.129 [DOI:10.20546/ijcmas.2017.604.129.]
45. Rugini, E., Jacoboni, A., Luppino, M. (1993). Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Scientia horticulturae, 53(1-2), 63-72. [DOI:10.1016/0304-4238(93)90138-G]
46. Salehi, H., Khosh-Khui, M. (1997). Effects of Explant Length and Diameter on in Vitro Shoot Growth and Proliferation Rate of Miniature Roses. Journal Horticultural Science, 72, 673-676. [DOI:10.1080/14620316.1997.11515558]
47. Samiei, L., Davoudi Pahnehkolayi, M., Tehranifar, A., Karimian, Z. (2021). Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. Journal of Genetic Engineering and Biotechnology, 19(1), 1-7. [DOI:10.1186/s43141-021-00166-7]
48. Soleimani, A., Rabiei, V., Hassani, D. (2010). Effect of Different Techniques on Walnut (J. regia) Grafting," Journal of Food, Agriculture & Environment, 8(29), 544-546.
49. Tchinda, N. D., Messi, H. J. C. M., Fotso, F., Nzweundji, G., Oumar, D., Dongmo, B., Sanonne Agbor, G.A., Ndoumou, D. O. (2013). Biochemical aspects of single-node cuttings of Ricinodendron heudelotii (Baill.) in relation with rooting. African Journal of Biotechnology, 12, 1049-1056.
50. Wang, T., Wang, S., Guo, S., Sun, Y. (2008). Effects of exogenous spermidine on the photosynthesis of Cucumis sativus L. seedlings under rhizosphere hypoxia stress. Frontiers of Agriculture in China, 2(1), 55-60. [DOI:10.1007/s11703-008-0015-5]
51. Wojtania, A., Matysiak, B. (2018). In vitro propagation of Rosa 'Konstancin'(R. rugosa× R. beggeriana), a plant with high nutritional and pro-health value. Folia Horticulturae, 30(2),259-267. [DOI:10.2478/fhort-2018-0022]
52. Ye, B.-B., Shang, G. D., Pan, Y., Xu, Z. G., Zhou, C. M., Mao, Y. B., Wang, J. W. (2020). AP2/ERF transcription factors integrate age and wound signals for root regeneration. The Plant Cell, 32, 226-241. [DOI:10.1105/tpc.19.00378]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehestani-Ardakani M, Ahmadi N. Investigation the effect of putrescine, IBA and wounding on rooting of cutting of Rosa hybrida cv. Sanaz-e-Zard under greenhouse and in vitro conditions. FOP 2023; 8 (1) :155-170
URL: http://flowerjournal.ir/article-1-257-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Spring and Summer 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4645