[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 7(2): 277-292 Back to browse issues page
Application of the MaxEnt model to evaluate the habitat suitability of dog rose (Rosa canina L.) in the natural landscape of Kadkan (Khorasan Razavi)
Maryam Zarabian , Mahmod Soloki , Abdolrahman Rahimian Boogar * , Daruosh Ramazan , Abolfazl Bameri
University of Zabol
Abstract:   (2148 Views)
Dog rose (Rosa canina L.) is a medicinal-ornamental shrub that has a natural habitat in some regions of Iran. Climatic and geographical conditions of the habitat are the most important factors that have affected the distribution and habitat suitability of this species. Recognizing the factors affecting the habitat suitability of plants is necessary for species conservation programming and cultivation planning in the future. The current study was conducted to identify the factors that affect the habitat suitability of dog rose in the Kadkan region of Khorasan Razavi province using MaxEnt model. Input data included 14 factors of soil data (texture, acidity, electrical conductivity, organic matter and iron sulfate), climate (maximum and minimum temperature mean, annual precipitation mean), topographic (elevation, aspect, slope, plan curvature and hydrological data (topographic wetness index (TWI) and distance to stream). Evaluation of the model efficiency was investigated by the ROC curve and the importance of the variables influenced by the jackknife test. Results were shown that the MaxEnt model had a logical and acceptable efficiency (AUC = 0.866) in detecting the habitat suitability of the dog rose according to species presence points in the study area. The habitat suitability map was distinguished by MaxEnt model into 5 categories: very low, low, medium, high and very high. The area with very high suitability for dog rose growth had the lowest percentage in the investigated area. Results of the evaluation of variables importance showed that the elevation has the greatest effect on the habitat suitability of dog rose in the Kadkan region. Moreover, the acidity, environment relative humidity, TWI, clay, and the amount of iron sulfate in the soil were the other factors that respectively affected the habitat suitability of dog rose. Finally, the 36.5% of studied area in the Kodkan habitat has a high to very high suitability for the growth of Rosa canina L.
Keywords: Dogrose, Habitat, Suitability, Ecological landscape
Full-Text [PDF 1667 kb]   (543 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/10/8 | Accepted: 2022/11/29 | Published: 2023/06/18
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Abrha, H., Birhane, E., Hagos, H., Manaye, A. (2018) Predicting suitable habitats of endangered Juniperus procera tree under climate change in Northern Ethiopia. Journal of Sustainable Forestry, 37(8), 842-853. [DOI:10.1080/10549811.2018.1494000]
2. Bussmann, R.W., Batsatsashvili, K., Kikvidze, Z., Ghorbani, A., Khajoei Nasab, F., Paniagua-Zambrana, N.Y., Khutsishvili, M., Maisaia, I., Sikharulidze, S., Tchelidze, D. (2020). Rosa canina L., Rosa pimpinellifolia Boiss. Rosaceae. (eds.), Ethnobotany of the Mountain Regions of Far Eastern Europe, Ethnobotany of Mountain Regions, https://doi.org/10.1007/978-3-030-28940-9_118 [DOI:10.1007/978-3-030-28940-9_118.]
3. Daneshkhah, M., Kafi, M., Nikbakht, A., Mirjalili, M.H. (2007). Effect of different levels of nitrogen and potassium on yield indicators and oil of Rosa damascene from Barzok of Kashan. Journal of Horticultural Science and Technology, 8(2), 83-90. (In Persian)
4. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. [DOI:10.1111/j.1472-4642.2010.00725.x]
5. Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chemistry, 104, 1379- 1384 [DOI:10.1016/j.foodchem.2007.01.053]
6. Fielding, A.H., Haworth, P.F. (1995). Testing the generality of bird‐habitat models. Conservation Biology, 9 (6), 1466-1481. [DOI:10.1046/j.1523-1739.1995.09061466.x]
7. Fois, M., Cuena-Lombraña, A., Fenu, G., Bacchetta, G. (2018). Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modeling, 385, 124-132. [DOI:10.1016/j.ecolmodel.2018.07.018]
8. Ghorbani, A. (2005). Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, North of Iran (Part1): general results. Journal of Ethnopharmacology, 102, 58-68. [DOI:10.1016/j.jep.2005.05.035]
9. Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., Thiombiano, A., Sinsin, B., Schaldach, R., Hahn, K. (2013). The projected impact of climate and land use change on plant diversity: An example from West Africa. Journal of Arid Environment, 96, 48-54. [DOI:10.1016/j.jaridenv.2013.04.008]
10. Javanmard, M., Asadi-Gharneh, H.A., Nikneshan, P. (2017). Characterization of biochemical traits of dog rose (Rosa canina L.) ecotypes in the central part of Iran. Natural Product Research, 32(14):1738-1743. [DOI:10.1080/14786419.2017.1396591]
11. Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, USA. [DOI:10.1201/b10158]
12. Khalasi Ahwazi, L., Zare Chahouki, M.A., Hosseini, S.Z. (2015). Modeling geographic distribution of Artemisia sieberi and Artemisia aucheri using presence-only modelling methods (MaxEnt & ENFA). Journal of Renewable Natural Resources Research, 6(1), 57-74. (In Persian)
13. Khalighifar, A. (2015). Detect potential habitat of Rheum ribes L. in the Esfahan province using MaxEnt and Garp. Thesis of graduate student. Department of natural resources, Esfahan University of Technology. (In Persian)
14. Kelly, A.E., Goulden, M.L. (2008). Rapid shifts in plant distribution with recent climate change. PNAS, 105 (33), 11823-11826 [DOI:10.1073/pnas.0802891105]
15. Kumar, S., Stohlgren, T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticolain New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 094-098.
16. Lemke, D., Hulme, P.E., Brown, J.A., Tadesse, W. (2011). Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. Journal of Forest Ecology and Management, 262(2), 139-149. [DOI:10.1016/j.foreco.2011.03.014]
17. Leus, L., Laere, K.V., Riek, J.D., Huylenbroeck, J.V. (2018). Rose. J. Van Huylenbroeck (ed.), Ornamental Crops, Handbook of Plant Breeding 11, Springer International Publishing AG, part of Springer Nature, https://doi.org/10.1007/978-3-319-90698-0_27 [DOI:10.1007/978-3-319-90698-0_27.]
18. Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Cambridge, UK: Academic Press.
19. Manimaran, P., Rajasekar, P., Rameshkumar, D., Jaison, M. (2017). Role of nutrients in plant growth and flower quality of rose: A review. International Journal of Chemical Studies, 5(6), 1734-1737.
20. Mirzadeh Vaghefi, S.S., Jalili, A., Jamzad, Z. (2020). Native plants with ornamental potential for planting in urban green space of Tehran. Flower and Ornamental Plants, 4(2), 131-142. (In Persian) [DOI:10.29252/flowerjournal.4.2.131]
21. Momeni damaneh, J., Esmaeilpour, Y., Gholami, H., Farashi, A. (2022). Prediction of potential habitat of Astracantha gossypina (Fisch). Using the maximum entropy model in regional scale. Journal of Plant Ecosystem Conservation, 9(19), 217-236. (In Persian)
22. Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. (2012). Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. Journal of Ethnopharmacology, 141, 80-95. [DOI:10.1016/j.jep.2012.02.004]
23. Mousazade, M., Ghanbarian, G., Pourghasemi, H.R., Safaeian, R., Cerdà, A. (2019). MaxEnt data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran. Sustainability, 11, 3452. [DOI:10.3390/su11123452]
24. Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. doi.org/10.1155/2019/5794869 [DOI:10.1155/2019/5794869]
25. Pehlivan, M., Mohammed, F.S., Sevindik, M., Akgul, H. (2018). Antioxidant and oxidant potential of Rosa canina. Eurasian Journal of Forest Science, 6(4), 22-25. [DOI:10.31195/ejejfs.475286]
26. Phillips, S.J., Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. [DOI:10.1111/j.0906-7590.2008.5203.x]
27. Phillips, S.J., Anderson, R.P., Schapire, R.E., (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. [DOI:10.1016/j.ecolmodel.2005.03.026]
28. Qin, A., Liu, B., Guo, Q., Bussmann, R.W., Ma, F., Jian, Z., Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology & Conservation, 10, 139-146. [DOI:10.1016/j.gecco.2017.02.004]
29. Rahimian Boogar, A., Salehi, H., Pourghasemi, H.R., Blaschke, T. (2019). Predicting Habitat Suitability and Conserving Juniperus spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques. Water, 11, 2049, doi:10.3390/w11102049. [DOI:10.3390/w11102049]
30. Sajid, A.H., Rudra, R.P., Parkin, G. (2013). Systematic evaluation of kriging and inverse distance weighting methods for spatial analysis of soil bulk density. Canadian Biosystems Engineering, 55, 1-13. [DOI:10.7451/CBE.2013.55.1]
31. Selahvarzian, A., Alizadeh, A., Baharvand, P.A., Eldahshan, O.A., Rasoulian, B. (2018). Medicinal Properties of Rosa canina L. Herbal Medicines Journal, 3(2), 77-84.
32. Silva, L.D., Costa, H., de Azevedo, E.B., Medeiros, V., Alves, M., Elias, R.B., Silva, L. (2017). Modelling Native and Invasive Woody Species: A Comparison of ENFA and MaxEnt Applied to the Azorean Forest. In Modeling, Dynamics, Optimization and Bioeconomics II, Proceedings in Mathematics & Statistics, Pinto, A.A., Zilberman, D., Eds., Springer: Berlin, Germany, 195, 415-444. [DOI:10.1007/978-3-319-55236-1_20]
33. Soti, P.G., Jayachandran, K., Koptur, S., Volin, J.C. (2015). Effect of soil pH on growth, nutrient uptake, and mycorrhizal colonization in exotic invasive Lygodium microphyllum. Plant Ecology, 216, 989-998 [DOI:10.1007/s11258-015-0484-6]
34. Tesfamariam, B.G., Gessesse, B., Melgani, F. (2022). MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape-scale. Environmental Systems Research, 11(4), 1-12. [DOI:10.1186/s40068-022-00248-6]
35. Thorn, J.S., Nijman, V., Smith, D., Nekaris, K.A.I. (2009). Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, 15(2), 289-298. [DOI:10.1111/j.1472-4642.2008.00535.x]
36. Tunçay, T., Bayramin, I., Atalay, F., Ünver, I. (2016). Assessment of inverse distance weighting (IDW) interpolation on spatial variability of selected soil properties in the Cukurova plain. Journal of Agricultural Sciences, 22, 377-384. [DOI:10.15832/ankutbd.257726]
37. Vukosavljeva, M., J. Zhang, J., Esselink, G.D., van't Westende, W.P.C., Cox, P., Visser, R.G.F., Arens, P., Smulders, M.J.M. (2013). Genetic diversity and differentiation in roses: A garden rose perspective. Scientia Horticulturae, 162(23), 320-332. [DOI:10.1016/j.scienta.2013.08.015]
38. Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecologycal Engineering, 51, 83-87. [DOI:10.1016/j.ecoleng.2012.12.004]
39. Zarabi, M., Haghdadi, R., Yousefi, H. (2017). Habitat utility modeling of organic (wild) pistachios (Pistacia Vera) using Maximum Entropy Method (MaxEnt) in Sarakhs Forest Area (Gonbadli in khorasan Province). Iranian Journal of Ecohydrology, 4(3), 817-824. (In Persian)
40. Zare Chahouki, M.A., Abbasi, M. (2018). Habitat prediction model medicinal species of Rheum ribes L. with Maximum Entropy model in Chahtorsh rangeland of the Yazd province. Journal of Range and Watershed Management, 71(2), 379-391. (In Persian)
41. Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., Tao, J. (2019). Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics, 50, 62-67. [DOI:10.1016/j.ecoinf.2019.01.004]
42. Abrha, H., Birhane, E., Hagos, H., Manaye, A. (2018) Predicting suitable habitats of endangered Juniperus procera tree under climate change in Northern Ethiopia. Journal of Sustainable Forestry, 37(8), 842-853. [DOI:10.1080/10549811.2018.1494000]
43. Bussmann, R.W., Batsatsashvili, K., Kikvidze, Z., Ghorbani, A., Khajoei Nasab, F., Paniagua-Zambrana, N.Y., Khutsishvili, M., Maisaia, I., Sikharulidze, S., Tchelidze, D. (2020). Rosa canina L., Rosa pimpinellifolia Boiss. Rosaceae. (eds.), Ethnobotany of the Mountain Regions of Far Eastern Europe, Ethnobotany of Mountain Regions, https://doi.org/10.1007/978-3-030-28940-9_118 [DOI:10.1007/978-3-030-28940-9_118.]
44. Daneshkhah, M., Kafi, M., Nikbakht, A., Mirjalili, M.H. (2007). Effect of different levels of nitrogen and potassium on yield indicators and oil of Rosa damascene from Barzok of Kashan. Journal of Horticultural Science and Technology, 8(2), 83-90. (In Persian)
45. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. [DOI:10.1111/j.1472-4642.2010.00725.x]
46. Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chemistry, 104, 1379- 1384 [DOI:10.1016/j.foodchem.2007.01.053]
47. Fielding, A.H., Haworth, P.F. (1995). Testing the generality of bird‐habitat models. Conservation Biology, 9 (6), 1466-1481. [DOI:10.1046/j.1523-1739.1995.09061466.x]
48. Fois, M., Cuena-Lombraña, A., Fenu, G., Bacchetta, G. (2018). Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modeling, 385, 124-132. [DOI:10.1016/j.ecolmodel.2018.07.018]
49. Ghorbani, A. (2005). Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, North of Iran (Part1): general results. Journal of Ethnopharmacology, 102, 58-68. [DOI:10.1016/j.jep.2005.05.035]
50. Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., Thiombiano, A., Sinsin, B., Schaldach, R., Hahn, K. (2013). The projected impact of climate and land use change on plant diversity: An example from West Africa. Journal of Arid Environment, 96, 48-54. [DOI:10.1016/j.jaridenv.2013.04.008]
51. Javanmard, M., Asadi-Gharneh, H.A., Nikneshan, P. (2017). Characterization of biochemical traits of dog rose (Rosa canina L.) ecotypes in the central part of Iran. Natural Product Research, 32(14):1738-1743. [DOI:10.1080/14786419.2017.1396591]
52. Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, USA. [DOI:10.1201/b10158]
53. Khalasi Ahwazi, L., Zare Chahouki, M.A., Hosseini, S.Z. (2015). Modeling geographic distribution of Artemisia sieberi and Artemisia aucheri using presence-only modelling methods (MaxEnt & ENFA). Journal of Renewable Natural Resources Research, 6(1), 57-74. (In Persian)
54. Khalighifar, A. (2015). Detect potential habitat of Rheum ribes L. in the Esfahan province using MaxEnt and Garp. Thesis of graduate student. Department of natural resources, Esfahan University of Technology. (In Persian)
55. Kelly, A.E., Goulden, M.L. (2008). Rapid shifts in plant distribution with recent climate change. PNAS, 105 (33), 11823-11826 [DOI:10.1073/pnas.0802891105]
56. Kumar, S., Stohlgren, T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticolain New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 094-098.
57. Lemke, D., Hulme, P.E., Brown, J.A., Tadesse, W. (2011). Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. Journal of Forest Ecology and Management, 262(2), 139-149. [DOI:10.1016/j.foreco.2011.03.014]
58. Leus, L., Laere, K.V., Riek, J.D., Huylenbroeck, J.V. (2018). Rose. J. Van Huylenbroeck (ed.), Ornamental Crops, Handbook of Plant Breeding 11, Springer International Publishing AG, part of Springer Nature, https://doi.org/10.1007/978-3-319-90698-0_27 [DOI:10.1007/978-3-319-90698-0_27.]
59. Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Cambridge, UK: Academic Press.
60. Manimaran, P., Rajasekar, P., Rameshkumar, D., Jaison, M. (2017). Role of nutrients in plant growth and flower quality of rose: A review. International Journal of Chemical Studies, 5(6), 1734-1737.
61. Mirzadeh Vaghefi, S.S., Jalili, A., Jamzad, Z. (2020). Native plants with ornamental potential for planting in urban green space of Tehran. Flower and Ornamental Plants, 4(2), 131-142. (In Persian) [DOI:10.29252/flowerjournal.4.2.131]
62. Momeni damaneh, J., Esmaeilpour, Y., Gholami, H., Farashi, A. (2022). Prediction of potential habitat of Astracantha gossypina (Fisch). Using the maximum entropy model in regional scale. Journal of Plant Ecosystem Conservation, 9(19), 217-236. (In Persian)
63. Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. (2012). Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. Journal of Ethnopharmacology, 141, 80-95. [DOI:10.1016/j.jep.2012.02.004]
64. Mousazade, M., Ghanbarian, G., Pourghasemi, H.R., Safaeian, R., Cerdà, A. (2019). MaxEnt data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran. Sustainability, 11, 3452. [DOI:10.3390/su11123452]
65. Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. doi.org/10.1155/2019/5794869 [DOI:10.1155/2019/5794869]
66. Pehlivan, M., Mohammed, F.S., Sevindik, M., Akgul, H. (2018). Antioxidant and oxidant potential of Rosa canina. Eurasian Journal of Forest Science, 6(4), 22-25. [DOI:10.31195/ejejfs.475286]
67. Phillips, S.J., Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. [DOI:10.1111/j.0906-7590.2008.5203.x]
68. Phillips, S.J., Anderson, R.P., Schapire, R.E., (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. [DOI:10.1016/j.ecolmodel.2005.03.026]
69. Qin, A., Liu, B., Guo, Q., Bussmann, R.W., Ma, F., Jian, Z., Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology & Conservation, 10, 139-146. [DOI:10.1016/j.gecco.2017.02.004]
70. Rahimian Boogar, A., Salehi, H., Pourghasemi, H.R., Blaschke, T. (2019). Predicting Habitat Suitability and Conserving Juniperus spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques. Water, 11, 2049, doi:10.3390/w11102049. [DOI:10.3390/w11102049]
71. Sajid, A.H., Rudra, R.P., Parkin, G. (2013). Systematic evaluation of kriging and inverse distance weighting methods for spatial analysis of soil bulk density. Canadian Biosystems Engineering, 55, 1-13. [DOI:10.7451/CBE.2013.55.1]
72. Selahvarzian, A., Alizadeh, A., Baharvand, P.A., Eldahshan, O.A., Rasoulian, B. (2018). Medicinal Properties of Rosa canina L. Herbal Medicines Journal, 3(2), 77-84.
73. Silva, L.D., Costa, H., de Azevedo, E.B., Medeiros, V., Alves, M., Elias, R.B., Silva, L. (2017). Modelling Native and Invasive Woody Species: A Comparison of ENFA and MaxEnt Applied to the Azorean Forest. In Modeling, Dynamics, Optimization and Bioeconomics II, Proceedings in Mathematics & Statistics, Pinto, A.A., Zilberman, D., Eds., Springer: Berlin, Germany, 195, 415-444. [DOI:10.1007/978-3-319-55236-1_20]
74. Soti, P.G., Jayachandran, K., Koptur, S., Volin, J.C. (2015). Effect of soil pH on growth, nutrient uptake, and mycorrhizal colonization in exotic invasive Lygodium microphyllum. Plant Ecology, 216, 989-998 [DOI:10.1007/s11258-015-0484-6]
75. Tesfamariam, B.G., Gessesse, B., Melgani, F. (2022). MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape-scale. Environmental Systems Research, 11(4), 1-12. [DOI:10.1186/s40068-022-00248-6]
76. Thorn, J.S., Nijman, V., Smith, D., Nekaris, K.A.I. (2009). Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, 15(2), 289-298. [DOI:10.1111/j.1472-4642.2008.00535.x]
77. Tunçay, T., Bayramin, I., Atalay, F., Ünver, I. (2016). Assessment of inverse distance weighting (IDW) interpolation on spatial variability of selected soil properties in the Cukurova plain. Journal of Agricultural Sciences, 22, 377-384. [DOI:10.15832/ankutbd.257726]
78. Vukosavljeva, M., J. Zhang, J., Esselink, G.D., van't Westende, W.P.C., Cox, P., Visser, R.G.F., Arens, P., Smulders, M.J.M. (2013). Genetic diversity and differentiation in roses: A garden rose perspective. Scientia Horticulturae, 162(23), 320-332. [DOI:10.1016/j.scienta.2013.08.015]
79. Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecologycal Engineering, 51, 83-87. [DOI:10.1016/j.ecoleng.2012.12.004]
80. Zarabi, M., Haghdadi, R., Yousefi, H. (2017). Habitat utility modeling of organic (wild) pistachios (Pistacia Vera) using Maximum Entropy Method (MaxEnt) in Sarakhs Forest Area (Gonbadli in khorasan Province). Iranian Journal of Ecohydrology, 4(3), 817-824. (In Persian)
81. Zare Chahouki, M.A., Abbasi, M. (2018). Habitat prediction model medicinal species of Rheum ribes L. with Maximum Entropy model in Chahtorsh rangeland of the Yazd province. Journal of Range and Watershed Management, 71(2), 379-391. (In Persian)
82. Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., Tao, J. (2019). Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics, 50, 62-67. [DOI:10.1016/j.ecoinf.2019.01.004]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarabian M, Soloki M, Rahimian Boogar A, Ramazan D, Bameri A. Application of the MaxEnt model to evaluate the habitat suitability of dog rose (Rosa canina L.) in the natural landscape of Kadkan (Khorasan Razavi). FOP 2023; 7 (2) :277-292
URL: http://flowerjournal.ir/article-1-246-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4710