[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 7(2): 315-328 Back to browse issues page
Improvement of morpho-physiological and biochemical characteristics of stock flower (Matthiola incana L.) by Gamma-aminobutyric acid and spermine
Mitra Zare , Abolfazl Jowkar *
Shiraz University
Abstract:   (929 Views)
Common stock (Matthiola incana L.) is an important cut flower, bedding and aromatic plant. Increasing its flower number and size is a desired objective among florists. Plant growth regulators including γ-aminobutyric acid (GABA) and spermine have proved beneficial for improving flowers’ characteristics. This study was designed on a completely randomized design with 4 replicates and 16 treatments. GABA (0, 2.5, 5 and 10 mM) and spermine (0, 1, 2 and 3 mM) were sprayed on six leaves seedlings. Increasing concentration of GABA and spermine significantly decreased the flowering time and conversely increased plant height, number of flowers, stem diameter, flower diameter, shoot and root dry weight, leaf relative water content, chlorophyll, and antioxidant enzymes activity. The highest number of flower shoot and root dry weight, chlorophyll, and antioxidant enzymes in addition to the lowest electrolyte leakage were obtained by 10 mM GABA in combination with 3 mM Spermine. Also, maximum plant height and earliest flowering time were gained using 3 mM spermine, while the greatest leaf relative water content was obtained by 10 mM GABA. Application of GABA and spermine could be suggested as a promising way to improve stock flower’s aesthetic characteristics and possibly enhance their stress tolerance.
Keywords: Flower characteristics, GABA, γ-aminobutyric acid, Ornamental plant, Plant growth regulator, Spermine, Stock flower, Matthiola incana L.
Full-Text [PDF 535 kb]   (286 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/09/15 | Accepted: 2022/10/24 | Published: 2023/06/26
References
1. Ahmadi Hesar, A., Kaviani, B., Tarang, A., Bohlooli, S. (2017). Effect of different concentration of kinetin on regeneration of Matthiola incana. Plant Omics, 4(5), 236-238.
2. Bayanloo, E., Aelaei, M., Sani Khani, M. (2020). Effect of γ-aminobutyric acid, humic acid and salicylic acid on some morphophysiological responses of Catharanthus roseus L. Iranian Journal of Horticultural Science, 50(4), 993-1008. (In Persian)
3. Beyer J.R., W.F., Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566. [DOI: 10.1016/0003-2697(87)90489-1] [DOI:10.1016/0003-2697(87)90489-1]
4. Chandlee, J., Scandalios, J. (1984). Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical and Applied Genetics, 69, 71-77. [DOI: 10.1007/bf00262543] [DOI:10.1007/BF00262543]
5. Ekinci, M., Yildirim, E., Dursun, A., Mohamedsrajaden, N.S. (2019). Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Journal of Agricultural Science, 29(2), 290-299. [DOI: 10.29133/yyutbd.562482] [DOI:10.29133/yyutbd.562482]
6. Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R. (2007). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14-19. [DOI: 10.1016/j.tplants.2007.10.005] [DOI:10.1016/j.tplants.2007.10.005]
7. Heidari Krush, G., Rastegar, S. (2021). Reducing browning and keeping quality of narcissus (Narcissus tazetta L. cv. 'Shahla') cut flowers using gamma amino butyric acid. Flower and Ornamental Plants, 6(1), 1-12. [DOI: 10.52547/flowerjournal.6.1.29] [DOI:10.52547/flowerjournal.6.1.29]
8. Hosseini Farahi, M., Eshghi, S., Kavoosi, B., Amiri Fahliani, R., Dastyran, M. (2013). Effects of spermidine and calcium sulfate on quantitative and qualitative traits and vase life of rose grown in hydroponic system. Journal of Science and Technology of Greenhouse Cultivation, 4(14), 15-26.
9. Krishnan, S., Laskowski, K., Shukla, V., Merewitz, E.B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass. Journal of American Society for Horticultural Science, 138, 358-366. [DOI: 10.21273/jashs.138.5.358] [DOI:10.21273/JASHS.138.5.358]
10. Li, Z., Peng, Y., Huang, B. (2019). Alteration of transcripts of stress protective genes and transcriptional factors by γ-aminobutyric acid associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences, 1623-1628. [DOI: 10.3390/ijms19061623] [DOI:10.3390/ijms19061623]
11. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. [DOI: 10.1093/oxfordjournals.pcp.a076232] [DOI:10.1093/oxfordjournals.pcp.a076232]
12. Palagani, N., Singh, A. (2017). Influence of bio fertilizers and foliar spray of spermine and vermiwash on growth, yield and postharvest quality of gerbera (Gerbera jamesonii Hook.) under naturally ventilated polyhouse. International Journal of Current Microbiology and Applied Sciences, 6(12), 245-253. [DOI: 10.20546/ijcmas.2017.612.030] [DOI:10.20546/ijcmas.2017.612.030]
13. Pazoki, A.R. (2017). Effect of polyamines foliar application on morphological traits, protein and extract contents of sweet basil under drought stress conditions. Journal of Crop Production Research, 9(1), 71-94.
14. Sadeghiani, F., Amini Deh Aghai, M., Pirzad, A., Fotokian, M.H. (2019). Variation in yield and biochemical factors of German chamomile under foliar application of osmolytes and drought stress conditions. Journal of Herbmed Pharmacology, 8(2), 90-100. [DOI: 10.15171/jhp.2019.15] [DOI:10.15171/jhp.2019.15]
15. Sajjad, Y., Jaskani M.J., Qasim, M., Akhtar, G., Mehmood, A. (2015). Foliar application of growth bioregulators influences floral traits, corm associated traits and chemical constituents in Gladiolus grandiflorus L. Korean Journal of Horticultural Science & Technology, 33(6), 812-819. [DOI: 10.7235/hort.2015.15052] [DOI:10.7235/hort.2015.15052]
16. Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu, G., Bajwa, V.S. (2012). Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants pathway structure. Botany, 90(8), 651-668. [DOI: 10.1139/b2012-030] [DOI:10.1139/b2012-030]
17. Soleimani Aghdam, M., Naderi, R., Jannatizadeh, A., Askari Sarcheshmeh, M.A., Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid treatments. Scientia Horticulturae, 198, 52-60. [DOI: 10.1016/j.scienta.2015.11.019] [DOI:10.1016/j.scienta.2015.11.019]
18. Sun, X., Xie, L., Han, L. (2019). Effect of exogenous spermidine and spermine on antioxidant metabolism associated with cold induced leaf senescence in zoysia grass. Horticulture, Environment and Biotechnology, 60(3), 295-302. [DOI: 10.1007/s13580-018-0089-9] [DOI:10.1007/s13580-018-0089-9]
19. Syed Sarfraz, H., Muhammad, A., Maqbool, A., Kadambot, H.M. (2011). Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300-311. [DOI:10.1016/j.biotechadv.2011.01.003]
20. Tatte, S., Singh, A., Ahlawat, T. R. (2016). Effect of polyamines and natural growth substances on the growth and flowering of rose (Rosa hybrida) cv. Samurai under protected conditions. Journal of Applied and Natural Science, 8(3), 1317-1320. [DOI: 10.31018/jans.v8i3.960] [DOI:10.31018/jans.v8i3.960]
21. Thomas, T., Thomas, T.J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58, 224-258. [DOI: 10.1007/pl00000852] [DOI:10.1007/PL00000852]
22. Upadhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N., Smith, B. (1985). Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Journal of Plant Physiology, 121, 453-461. [DOI: 10.1016/s0176-1617(85)80081-x] [DOI:10.1016/S0176-1617(85)80081-X]
23. Valero, D., Martinez- Romero D., Serrano, M. (2002). The role of polyamines in the improvement of the shelf life of fruit. Trends in Food Science and Technology, 13, 228-234. [DOI: 10.1016/s0924-2244(02)00134-6] [DOI:10.1016/S0924-2244(02)00134-6]
24. Vijayakumari, K., Puthur, T. (2016). γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum L. plants subjected to PEG induced stress. Plant Growth Regulation, 168-173. [DOI: 10.1007/s10725-015-0074-6] [DOI:10.1007/s10725-015-0074-6]
25. Yousef, E.A.A., Nasef, I.N. (2019). Growth and yield response of garlic genotypes to foliar application of γ-aminobutyric acid. HortScience Journal of Suez Canal University, 8(1), 35-43. [DOI: 10.21608/hjsc.2019.59848] [DOI:10.21608/hjsc.2019.59848]
26. Zarei, L., Kousheshsaba, M., Vafai, Y. (2020). Effect of γ-aminobutyric acid foliar application on chilling and postharvest quality of tomato. Plant Production, 43(2), 199-212.
27. Ahmadi Hesar, A., Kaviani, B., Tarang, A., Bohlooli, S. (2017). Effect of different concentration of kinetin on regeneration of Matthiola incana. Plant Omics, 4(5), 236-238.
28. Bayanloo, E., Aelaei, M., Sani Khani, M. (2020). Effect of γ-aminobutyric acid, humic acid and salicylic acid on some morphophysiological responses of Catharanthus roseus L. Iranian Journal of Horticultural Science, 50(4), 993-1008. (In Persian)
29. Beyer J.R., W.F., Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566. [DOI: 10.1016/0003-2697(87)90489-1] [DOI:10.1016/0003-2697(87)90489-1]
30. Chandlee, J., Scandalios, J. (1984). Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical and Applied Genetics, 69, 71-77. [DOI: 10.1007/bf00262543] [DOI:10.1007/BF00262543]
31. Ekinci, M., Yildirim, E., Dursun, A., Mohamedsrajaden, N.S. (2019). Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Journal of Agricultural Science, 29(2), 290-299. [DOI: 10.29133/yyutbd.562482] [DOI:10.29133/yyutbd.562482]
32. Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R. (2007). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14-19. [DOI: 10.1016/j.tplants.2007.10.005] [DOI:10.1016/j.tplants.2007.10.005]
33. Heidari Krush, G., Rastegar, S. (2021). Reducing browning and keeping quality of narcissus (Narcissus tazetta L. cv. 'Shahla') cut flowers using gamma amino butyric acid. Flower and Ornamental Plants, 6(1), 1-12. [DOI: 10.52547/flowerjournal.6.1.29] [DOI:10.52547/flowerjournal.6.1.29]
34. Hosseini Farahi, M., Eshghi, S., Kavoosi, B., Amiri Fahliani, R., Dastyran, M. (2013). Effects of spermidine and calcium sulfate on quantitative and qualitative traits and vase life of rose grown in hydroponic system. Journal of Science and Technology of Greenhouse Cultivation, 4(14), 15-26.
35. Krishnan, S., Laskowski, K., Shukla, V., Merewitz, E.B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass. Journal of American Society for Horticultural Science, 138, 358-366. [DOI: 10.21273/jashs.138.5.358] [DOI:10.21273/JASHS.138.5.358]
36. Li, Z., Peng, Y., Huang, B. (2019). Alteration of transcripts of stress protective genes and transcriptional factors by γ-aminobutyric acid associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences, 1623-1628. [DOI: 10.3390/ijms19061623] [DOI:10.3390/ijms19061623]
37. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. [DOI: 10.1093/oxfordjournals.pcp.a076232] [DOI:10.1093/oxfordjournals.pcp.a076232]
38. Palagani, N., Singh, A. (2017). Influence of bio fertilizers and foliar spray of spermine and vermiwash on growth, yield and postharvest quality of gerbera (Gerbera jamesonii Hook.) under naturally ventilated polyhouse. International Journal of Current Microbiology and Applied Sciences, 6(12), 245-253. [DOI: 10.20546/ijcmas.2017.612.030] [DOI:10.20546/ijcmas.2017.612.030]
39. Pazoki, A.R. (2017). Effect of polyamines foliar application on morphological traits, protein and extract contents of sweet basil under drought stress conditions. Journal of Crop Production Research, 9(1), 71-94.
40. Sadeghiani, F., Amini Deh Aghai, M., Pirzad, A., Fotokian, M.H. (2019). Variation in yield and biochemical factors of German chamomile under foliar application of osmolytes and drought stress conditions. Journal of Herbmed Pharmacology, 8(2), 90-100. [DOI: 10.15171/jhp.2019.15] [DOI:10.15171/jhp.2019.15]
41. Sajjad, Y., Jaskani M.J., Qasim, M., Akhtar, G., Mehmood, A. (2015). Foliar application of growth bioregulators influences floral traits, corm associated traits and chemical constituents in Gladiolus grandiflorus L. Korean Journal of Horticultural Science & Technology, 33(6), 812-819. [DOI: 10.7235/hort.2015.15052] [DOI:10.7235/hort.2015.15052]
42. Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu, G., Bajwa, V.S. (2012). Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants pathway structure. Botany, 90(8), 651-668. [DOI: 10.1139/b2012-030] [DOI:10.1139/b2012-030]
43. Soleimani Aghdam, M., Naderi, R., Jannatizadeh, A., Askari Sarcheshmeh, M.A., Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid treatments. Scientia Horticulturae, 198, 52-60. [DOI: 10.1016/j.scienta.2015.11.019] [DOI:10.1016/j.scienta.2015.11.019]
44. Sun, X., Xie, L., Han, L. (2019). Effect of exogenous spermidine and spermine on antioxidant metabolism associated with cold induced leaf senescence in zoysia grass. Horticulture, Environment and Biotechnology, 60(3), 295-302. [DOI: 10.1007/s13580-018-0089-9] [DOI:10.1007/s13580-018-0089-9]
45. Syed Sarfraz, H., Muhammad, A., Maqbool, A., Kadambot, H.M. (2011). Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300-311. [DOI:10.1016/j.biotechadv.2011.01.003]
46. Tatte, S., Singh, A., Ahlawat, T. R. (2016). Effect of polyamines and natural growth substances on the growth and flowering of rose (Rosa hybrida) cv. Samurai under protected conditions. Journal of Applied and Natural Science, 8(3), 1317-1320. [DOI: 10.31018/jans.v8i3.960] [DOI:10.31018/jans.v8i3.960]
47. Thomas, T., Thomas, T.J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58, 224-258. [DOI: 10.1007/pl00000852] [DOI:10.1007/PL00000852]
48. Upadhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N., Smith, B. (1985). Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Journal of Plant Physiology, 121, 453-461. [DOI: 10.1016/s0176-1617(85)80081-x] [DOI:10.1016/S0176-1617(85)80081-X]
49. Valero, D., Martinez- Romero D., Serrano, M. (2002). The role of polyamines in the improvement of the shelf life of fruit. Trends in Food Science and Technology, 13, 228-234. [DOI: 10.1016/s0924-2244(02)00134-6] [DOI:10.1016/S0924-2244(02)00134-6]
50. Vijayakumari, K., Puthur, T. (2016). γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum L. plants subjected to PEG induced stress. Plant Growth Regulation, 168-173. [DOI: 10.1007/s10725-015-0074-6] [DOI:10.1007/s10725-015-0074-6]
51. Yousef, E.A.A., Nasef, I.N. (2019). Growth and yield response of garlic genotypes to foliar application of γ-aminobutyric acid. HortScience Journal of Suez Canal University, 8(1), 35-43. [DOI: 10.21608/hjsc.2019.59848] [DOI:10.21608/hjsc.2019.59848]
52. Zarei, L., Kousheshsaba, M., Vafai, Y. (2020). Effect of γ-aminobutyric acid foliar application on chilling and postharvest quality of tomato. Plant Production, 43(2), 199-212.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare M, Jowkar A. Improvement of morpho-physiological and biochemical characteristics of stock flower (Matthiola incana L.) by Gamma-aminobutyric acid and spermine. FOP 2023; 7 (2) :315-328
URL: http://flowerjournal.ir/article-1-240-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645