[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 2 (Fall and Winter 2023) ::
FOP 2023, 7(2): 173-184 Back to browse issues page
The effect of different LED light spectrums on rooting and growth of benjamin fig cuttings
Zohreh Aslami , Masood Ghaemi Ghehsareh * , Saeed Reezi
Shahrekord University
Abstract:   (3273 Views)
Sunlight is the only source of natural energy for the growth of plants. Natural light is a cost- effective source for commercial agricultural production for economic reasons. But according to the environmental conditions, artificial light can also be used for cultivation of plants. One of the important horticultural activities is vegetative propagation of plants by rooting of cuttings. Due to the short length of cuttings and the economic nature of propagation throughout the year, it is possible to use multi-tier growth chambers in which optimal conditions are provided for rooting. One of the widely used indoor ornamental plants is Benjamin fig, whose commercial propagation method is by rooting of cuttings. In order to optimize the light conditions necessary for the rooting and growth of Ficus benjamina 'Starlight' cuttings, the effect of different LED light spectrums (red, blue, red + blue and white) on root regeneration and growth of its cuttings was studied. Three months after planting, rooting percentage, rooting index and morphological indices were measured. The results showed that except for the root length trait which was the longest (16.8 cm) in the combined light of red + blue LED, the highest number of root branches (12), root fresh weight (1.42 g), Root dry weight (0.36 g) and root volume (2.8 cm3) were related to white light. In terms of shoot growth indices, the highest leaf area (10.9 cm2) and shoot fresh weight (4.82 g) were observed in white light and the highest shoot dry weight (1.4 g), shoot length (23.2 cm) and shoot number (3/6) were observed in blue + red light. The highest rooting percentage (100%) was observed under red light and the highest rooting index (4.5) was related to blue LED light. Based on the results of this experiment, the white light spectrum has a better effect on the root growth of the cuttings, and for the growth of the aerial parts of the cuttings, the combined red + blue light has a better effect than the blue and red monochromic LEDs. In general, white LED light is recommended to produce rooted Benjamin fig cuttings with good quality.
Keywords: Artificial light, rooting index, root regeneration, growth chamber
Full-Text [PDF 521 kb]   (604 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/08/19 | Accepted: 2022/09/3 | Published: 2023/02/28
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Bantis, F., Ouzounis, T. and. Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277-283. [DOI:10.1016/j.scienta.2015.11.014]
2. Bello-Bello, J.J., Martinez-Estrada, E., Caamal-Velazquez, J.H. and Morales- Ramos, V. (2016). Effect of LED light quality on In vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15, 272-277. [DOI:10.5897/AJB2015.14662]
3. Briggs, W.R. and. Olney, M.A. )2001(. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiolog, 125, 85-88. [DOI:10.1104/pp.125.1.85]
4. Chen, X., Guo, W., Xu, X., Wang, L. and Qiao, X. (2014). Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 172, 168-175. [DOI:10.1016/j.scienta.2014.04.009]
5. Chung, J.P., Huang, C.Y. and Dai, T.E. (2010). Spectral effects on embryogenesis and plantlet growth of Oncidium 'Gower Ramsey'. Scientia Horticulturae, 124, 511-516. [DOI:10.1016/j.scienta.2010.01.028]
6. Clouse, S.D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Science, 6, 443-445. [DOI:10.1016/S1360-1385(01)02102-1]
7. Criley R.A. (2011). Rooting cuttings of tropical plants. In: Beyl C.A., and R.N. Trigiano (eds.) Plant propagation, concepts and laboratory exercises. CRC Press, Taylor and Francis Group, New York, London, pp. 213-224.
8. Currey, C.J., Hutchinson, V.A. and Lopez, R.G. (2012). Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience, 47(1), 25-30. [DOI:10.21273/HORTSCI.47.1.25]
9. Darko, E., Heydarizadeh, P., Schoefs, B. and Sabzalian, M.R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transaction of the Royal Society B: Biological Sciences, 369 (1640), 20130243. [DOI:10.1098/rstb.2013.0243]
10. Denbaars, S.P., Feezell, D., Kelchner, K., Pimputkar, S., Pan, C.C., Yen, C.C., et al. (2013). Development of gallium-nitride-based lightemitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 61(3), 945-951. [DOI:10.1016/j.actamat.2012.10.042]
11. Gabryszewska, E. and Rudnicki, R. (1995). The influence of light quality on the shoot proliferation and rooting of Gerbera Jamesonii in vitro. Acta Agrobotanica, 48(2), 105-111. [DOI:10.5586/aa.1995.021]
12. Gabryszewska, E. and Rudeniki, R. (1997(. The effects of light quality on the growth and development of shoots and roots of Ficus benjamina in vitro. Acta Horticulturae, 418, 163-168. [DOI:10.17660/ActaHortic.1997.418.22]
13. Ghasemi Ghehsare, M. and Kafi, M. (2015). Scientific and Practical Floriculture (Volume II). Author Publisher: 313p. (In Persian).
14. Ghasemi Ghehsareh, M., and Khosh-Khui, M. (2019). The effect of cutting type, leaf area, leaf number, putrescine and indole-3-Butyric acid on the rooting of Ficus cuttings (Ficus elastica Roxb. ex Hornem.). Advances in Horticultural Science, 33(1), 3-11.
15. Hung, C.D., Hong, C.H., Kim, S.K., Lee, K.H., Park, J.Y., Dung, C.D., Nam, M.W., Choi, D.H. and Lee, H.I. (2016). In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Scientia Horticulturae, 211, 248-254. [DOI:10.1016/j.scienta.2016.09.003]
16. Kevin, W. (2000). 'Photo-manipulation-boxes': An instrument for the study of plant photobiology. Plant Photobiology. 26(3), 15.
17. Kim, H.J., Lin, M.Y. and Mitchell, C.A. )2019(. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany. 157: 228-240. [DOI:10.1016/j.envexpbot.2018.10.019]
18. Kim, K.J., Kil, M.J., Song, J.S., Yoo, E.H., Son, K.C., and Kays, S.J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133(4), 521-526. [DOI:10.21273/JASHS.133.4.521]
19. Lee, N.N., Choi, Y.E. and Moon, H.K. (2014). Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. Journal of Plant Biotechnology, 41, 94-99. [DOI:10.5010/JPB.2014.41.2.94]
20. Lefsrud, M.G., Kopsell, D.A. and Sams, C.E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43, 2243-2244. [DOI:10.21273/HORTSCI.43.7.2243]
21. Li, H., Tang, C. and Xu, Z. (2013). The effect of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticalturae, 150, 117-124. [DOI:10.1016/j.scienta.2012.10.009]
22. Li, Q. and Kubota, C. (2009). Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. [DOI:10.1016/j.envexpbot.2009.06.011]
23. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods in enzymology, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
24. Lim, Y.J. and Eom, S.H. (2013). Effect of different light type on root formation of Ocimum basilicum L. Cuttings. Scientia Horticulturae, 164, 552-555. [DOI:10.1016/j.scienta.2013.09.057]
25. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W. and Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. [DOI:10.1016/j.scienta.2012.10.002]
26. Liu, Y., Roof, S., Ye, Z., Barry, C., van, Tuinen, A. and. Vrebalov, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101, 9897-9902. [DOI:10.1073/pnas.0400935101]
27. Lopez, R.G and Runkle, E.S. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience, 43(7), 2052-2059. [DOI:10.21273/HORTSCI.43.7.2052]
28. Mitchell, C., Both, A J., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R. and Runkle, E. (2012). LEDs: The future of greenhouse lighting Chron. Horticulturae, 52, 1-9.
29. Moon, H.K., Park, S.U., Kim, Y.W. and Kim, C.H.S. (2006). Growth of Tsuru-rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. Journal of Plant Biology, 49(2), 174-179. [DOI:10.1007/BF03031014]
30. Mortensen, L.M. (1990(. Effects of temperature and light quality on growth and flowering of Begonia·hiemalis Fotsch and Campanula isophylla Moretti. Scientia Horticulturae, 44, 309-314. [DOI:10.1016/0304-4238(90)90131-W]
31. Munthikote, S. (2018). Review article role of light emitting diode in food industry. 1: 1-9.
32. Nelson, J.A. and Bugbee, B. (2014). Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE. 9(6), e99010. doi:10.1371/journal.pone.0099010. [DOI:10.1371/journal.pone.0099010]
33. Opdam, J.G., Schoonderbeek, G.G., Heller, E.B. and Gelder, A. (2005). Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Horticulturae, 691, 517-524. [DOI:10.17660/ActaHortic.2005.691.61]
34. Pinker, I., Zoglauer, K. and Coring, H. (1989). Influence of light on adventitious root formation in birch shoot cultures in vitro. Biology Plantarum, 31, 254-260 [DOI:10.1007/BF02907285]
35. Poudel, P.R., Kataoka, I. and Mochioka, R. (2008). Effect of red and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Orang Culture, 92, 147-153. [DOI:10.1007/s11240-007-9317-1]
36. Ramrez-Mosqueda, M.A., Iglesia-Andrea, L.G. and Luan-Sanchez, I.J. (2017). Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109, 288-293. [DOI:10.1016/j.sajb.2017.01.205]
37. Samuoliene, G., Brazaityte, A., Urbonaviciute, A., Šabajeviene, G. and Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97, 99-104.
38. Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food. Science and Technolog, 13(11), 361-371. [DOI:10.1016/S0924-2244(02)00182-6]
39. Schroeter-zakrzewska, A. and Kleiber, T. (2014). The effect of light color and type of lamps on rooting and nutrient status in cutting of Michaelmas daisy. Bulgarian Journal of Agricultural Science, 6, 1426-1434.
40. Shimazaki, K., Doi, M., Assmann, S.M. and Kinoshita, T. (2007). Light regulation of stomatal movement. Annul Review Plant Biology, 58, 219-247. [DOI:10.1146/annurev.arplant.57.032905.105434]
41. Shin, K.S., Murthy, H.N., Hue, J.W., Hahn, E.J. and Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. [DOI:10.1007/s11738-007-0128-0]
42. Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T. and Okamoto, K. (1998). In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). Journal of Horticultural Science and Biotechnology, 73, 39-44. [DOI:10.1080/14620316.1998.11510941]
43. Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2015). Plant physiology and development (Ed. 6). Sinauer Associates Incorporated. 761p.
44. Tyburski, J. and Tretyn, A. (2004(. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regulation, 42, 39-38. [DOI:10.1023/B:GROW.0000014896.18601.38]
45. Wollaeger, H. and Runkle, E. (2014). Htt //: www.Growing seeding under LEDs: part two. Greenhouse Grower.
46. Wozny, A. and Miler, N. (2016). LEDs application ex vitro rooting and acclimatization of chrysanthemum (Chrysanthemum × grandiflorum Ramat. / Kitam.). Electronic Journal of Polish Agricultural Universities, 19(4), 1-7.
47. Bantis, F., Ouzounis, T. and. Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277-283. [DOI:10.1016/j.scienta.2015.11.014]
48. Bello-Bello, J.J., Martinez-Estrada, E., Caamal-Velazquez, J.H. and Morales- Ramos, V. (2016). Effect of LED light quality on In vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15, 272-277. [DOI:10.5897/AJB2015.14662]
49. Briggs, W.R. and. Olney, M.A. )2001(. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiolog, 125, 85-88. [DOI:10.1104/pp.125.1.85]
50. Chen, X., Guo, W., Xu, X., Wang, L. and Qiao, X. (2014). Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 172, 168-175. [DOI:10.1016/j.scienta.2014.04.009]
51. Chung, J.P., Huang, C.Y. and Dai, T.E. (2010). Spectral effects on embryogenesis and plantlet growth of Oncidium 'Gower Ramsey'. Scientia Horticulturae, 124, 511-516. [DOI:10.1016/j.scienta.2010.01.028]
52. Clouse, S.D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Science, 6, 443-445. [DOI:10.1016/S1360-1385(01)02102-1]
53. Criley R.A. (2011). Rooting cuttings of tropical plants. In: Beyl C.A., and R.N. Trigiano (eds.) Plant propagation, concepts and laboratory exercises. CRC Press, Taylor and Francis Group, New York, London, pp. 213-224.
54. Currey, C.J., Hutchinson, V.A. and Lopez, R.G. (2012). Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience, 47(1), 25-30. [DOI:10.21273/HORTSCI.47.1.25]
55. Darko, E., Heydarizadeh, P., Schoefs, B. and Sabzalian, M.R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transaction of the Royal Society B: Biological Sciences, 369 (1640), 20130243. [DOI:10.1098/rstb.2013.0243]
56. Denbaars, S.P., Feezell, D., Kelchner, K., Pimputkar, S., Pan, C.C., Yen, C.C., et al. (2013). Development of gallium-nitride-based lightemitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 61(3), 945-951. [DOI:10.1016/j.actamat.2012.10.042]
57. Gabryszewska, E. and Rudnicki, R. (1995). The influence of light quality on the shoot proliferation and rooting of Gerbera Jamesonii in vitro. Acta Agrobotanica, 48(2), 105-111. [DOI:10.5586/aa.1995.021]
58. Gabryszewska, E. and Rudeniki, R. (1997(. The effects of light quality on the growth and development of shoots and roots of Ficus benjamina in vitro. Acta Horticulturae, 418, 163-168. [DOI:10.17660/ActaHortic.1997.418.22]
59. Ghasemi Ghehsare, M. and Kafi, M. (2015). Scientific and Practical Floriculture (Volume II). Author Publisher: 313p. (In Persian).
60. Ghasemi Ghehsareh, M., and Khosh-Khui, M. (2019). The effect of cutting type, leaf area, leaf number, putrescine and indole-3-Butyric acid on the rooting of Ficus cuttings (Ficus elastica Roxb. ex Hornem.). Advances in Horticultural Science, 33(1), 3-11.
61. Hung, C.D., Hong, C.H., Kim, S.K., Lee, K.H., Park, J.Y., Dung, C.D., Nam, M.W., Choi, D.H. and Lee, H.I. (2016). In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Scientia Horticulturae, 211, 248-254. [DOI:10.1016/j.scienta.2016.09.003]
62. Kevin, W. (2000). 'Photo-manipulation-boxes': An instrument for the study of plant photobiology. Plant Photobiology. 26(3), 15.
63. Kim, H.J., Lin, M.Y. and Mitchell, C.A. )2019(. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany. 157: 228-240. [DOI:10.1016/j.envexpbot.2018.10.019]
64. Kim, K.J., Kil, M.J., Song, J.S., Yoo, E.H., Son, K.C., and Kays, S.J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133(4), 521-526. [DOI:10.21273/JASHS.133.4.521]
65. Lee, N.N., Choi, Y.E. and Moon, H.K. (2014). Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. Journal of Plant Biotechnology, 41, 94-99. [DOI:10.5010/JPB.2014.41.2.94]
66. Lefsrud, M.G., Kopsell, D.A. and Sams, C.E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43, 2243-2244. [DOI:10.21273/HORTSCI.43.7.2243]
67. Li, H., Tang, C. and Xu, Z. (2013). The effect of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticalturae, 150, 117-124. [DOI:10.1016/j.scienta.2012.10.009]
68. Li, Q. and Kubota, C. (2009). Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. [DOI:10.1016/j.envexpbot.2009.06.011]
69. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods in enzymology, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
70. Lim, Y.J. and Eom, S.H. (2013). Effect of different light type on root formation of Ocimum basilicum L. Cuttings. Scientia Horticulturae, 164, 552-555. [DOI:10.1016/j.scienta.2013.09.057]
71. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W. and Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. [DOI:10.1016/j.scienta.2012.10.002]
72. Liu, Y., Roof, S., Ye, Z., Barry, C., van, Tuinen, A. and. Vrebalov, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101, 9897-9902. [DOI:10.1073/pnas.0400935101]
73. Lopez, R.G and Runkle, E.S. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience, 43(7), 2052-2059. [DOI:10.21273/HORTSCI.43.7.2052]
74. Mitchell, C., Both, A J., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R. and Runkle, E. (2012). LEDs: The future of greenhouse lighting Chron. Horticulturae, 52, 1-9.
75. Moon, H.K., Park, S.U., Kim, Y.W. and Kim, C.H.S. (2006). Growth of Tsuru-rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. Journal of Plant Biology, 49(2), 174-179. [DOI:10.1007/BF03031014]
76. Mortensen, L.M. (1990(. Effects of temperature and light quality on growth and flowering of Begonia·hiemalis Fotsch and Campanula isophylla Moretti. Scientia Horticulturae, 44, 309-314. [DOI:10.1016/0304-4238(90)90131-W]
77. Munthikote, S. (2018). Review article role of light emitting diode in food industry. 1: 1-9.
78. Nelson, J.A. and Bugbee, B. (2014). Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE. 9(6), e99010. doi:10.1371/journal.pone.0099010. [DOI:10.1371/journal.pone.0099010]
79. Opdam, J.G., Schoonderbeek, G.G., Heller, E.B. and Gelder, A. (2005). Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Horticulturae, 691, 517-524. [DOI:10.17660/ActaHortic.2005.691.61]
80. Pinker, I., Zoglauer, K. and Coring, H. (1989). Influence of light on adventitious root formation in birch shoot cultures in vitro. Biology Plantarum, 31, 254-260 [DOI:10.1007/BF02907285]
81. Poudel, P.R., Kataoka, I. and Mochioka, R. (2008). Effect of red and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Orang Culture, 92, 147-153. [DOI:10.1007/s11240-007-9317-1]
82. Ramrez-Mosqueda, M.A., Iglesia-Andrea, L.G. and Luan-Sanchez, I.J. (2017). Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109, 288-293. [DOI:10.1016/j.sajb.2017.01.205]
83. Samuoliene, G., Brazaityte, A., Urbonaviciute, A., Šabajeviene, G. and Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97, 99-104.
84. Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food. Science and Technolog, 13(11), 361-371. [DOI:10.1016/S0924-2244(02)00182-6]
85. Schroeter-zakrzewska, A. and Kleiber, T. (2014). The effect of light color and type of lamps on rooting and nutrient status in cutting of Michaelmas daisy. Bulgarian Journal of Agricultural Science, 6, 1426-1434.
86. Shimazaki, K., Doi, M., Assmann, S.M. and Kinoshita, T. (2007). Light regulation of stomatal movement. Annul Review Plant Biology, 58, 219-247. [DOI:10.1146/annurev.arplant.57.032905.105434]
87. Shin, K.S., Murthy, H.N., Hue, J.W., Hahn, E.J. and Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. [DOI:10.1007/s11738-007-0128-0]
88. Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T. and Okamoto, K. (1998). In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). Journal of Horticultural Science and Biotechnology, 73, 39-44. [DOI:10.1080/14620316.1998.11510941]
89. Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2015). Plant physiology and development (Ed. 6). Sinauer Associates Incorporated. 761p.
90. Tyburski, J. and Tretyn, A. (2004(. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regulation, 42, 39-38. [DOI:10.1023/B:GROW.0000014896.18601.38]
91. Wollaeger, H. and Runkle, E. (2014). Htt //: www.Growing seeding under LEDs: part two. Greenhouse Grower.
92. Wozny, A. and Miler, N. (2016). LEDs application ex vitro rooting and acclimatization of chrysanthemum (Chrysanthemum × grandiflorum Ramat. / Kitam.). Electronic Journal of Polish Agricultural Universities, 19(4), 1-7.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aslami Z, Ghaemi Ghehsareh M, Reezi S. The effect of different LED light spectrums on rooting and growth of benjamin fig cuttings. FOP 2023; 7 (2) :173-184
URL: http://flowerjournal.ir/article-1-237-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 2 (Fall and Winter 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.02 seconds with 37 queries by YEKTAWEB 4710