[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 7، شماره 2 - ( پاییز و زمستان 1401 ) ::
جلد 7 شماره 2 صفحات 238-213 برگشت به فهرست نسخه ها
بهبود شاخص‌‌های رشد رویشی و تسریع گلدهی دانهال‌های اطلسی با استفاده از تغییر تدریجی ترکیب طیفی نور در دوران رشد
آزاده رشیدی ، علی تهرانی فر* ، لیلا سمیعی
دانشگاه فردوسی مشهد
چکیده:   (964 مشاهده)
با توجه به تأثیر برخی از طیف‌‌های نوری مانند آبی و قرمز بر ساخت و فعالیت رنگدانه‌‌های مختلف گیاهی، در سال‌‌های اخیر شیوه‌‌های متفاوتی از کاربرد لامپ‌‌های ال ای دی در محیط‌‌های پرورش گیاهان و برای بهبود رشد گیاهان بررسی شده است. هدف از انجام این پژوهش، مقایسه تأثیر ترکیب‌‌های طیفی نور با اجزایی ثابت و یا متغیر، نور لامپ فلورسنت و نور لامپ پرفشار سدیم بر شاخص‌‌های رویشی نشاء اطلسی، کارایی مصرف انرژی در طی رشد نشاء و تغییر رفتار رویشی و زایشی گیاهان بالغ بود. نشاء‌‌های اطلسی به مدت 28 روز زیر تیمارهای نوری مختلف قرار گرفتند. در برخی از تیمارهای نوری، نسبت ترکیب نورهای آبی: قرمز (شامل 15% آبی: 85% قرمز، 30% آبی :70% قرمز و45% آبی: 55% قرمز) در طی دوران رشد نشاء‌‌ها ثابت بود. در برخی دیگر از تیمارهای نوری، درصد نورهای آبی و قرمز برابر برنامه زمان‌‌بندی تغییر کرد که شامل افزایش تدریجی میزان نور قرمز و یا کاهش تدریجی آن بود. همچنین تأثیر نور لامپ‌‌های فلورسنت و پرفشار سدیم نیز بررسی شد. پس از پایان دوره رشد نشاء‌‌ها زیر رژیم‌‌های مختلف نوری، گیاهان به گلخانه‌‌ای با شرایط محیطی یکسان منتقل شدند تا رشد رویشی و زایشی گیاهان بالغ سنجیده شود. نتایج بیانگر بهبود شاخص‌‌های رشد گیاهان اطلسی با ایجاد تغییرهای تدریجی در ترکیب طیفی در طی رشد نشاء‌‌‌‌ها بود. وزن‌‌های خشک و تر شاخساره و ریشه، سطح و تعداد برگ، محتوی رنگدانه‌‌های کلروفیل و کاروتنوئید و کارایی مصرف انرژی در تیمار نوری که در ابتدا نور آبی تک‌رنگ حضور داشت و سپس میزان نور قرمز به‌تدریج افزایش یافته بود، به شکل معنی‌‌دار بیش از سایر تیمارهای نوری بود. از سوی دیگر دیده ‌‌شد که شاخص‌‌های رشد رویشی گیاهان بالغ زیر تأثیر ترکیب طیفی به‌کاررفته در دوران نشاء قرار گرفت و گیاهان بالغی که نشاهای آن‌ها در ابتدای رشد تحت تأثیر نور آبی تک‌رنگ بودند و به‌تدریج از مقدار نور آبی محیط کاسته شده بود، دارای وزن تر و خشک شاخساره و ریشه، حجم ریشه، تعداد و طول شاخه‌‌های جانبی بیشتری در مقایسه با سایر گیاهان بودند. همچنین دیده شد که اگرچه تغییرهای ترکیب طیفی نور در طی رشد نشاء بر زمان گلدهی گیاهان بالغ به شکل معنی‌دار تأثیرگذار است اما تفاوتی معنی‌‌دار میان برخی از تیمارهای نوری (نسبت ثابت 45% آبی: 55% قرمز، نور لامپ پرفشار سدیم و افزایش تدریجی میزان نور قرمز) دیده نشد.  ایجاد تغییر در ترکیب طیفی نور در طی دوران رشد نشاء‌‌ها، توانست افزون بر افزایش کیفیت رویشی نشاء‌‌ها و گلدهی گیاهان بالغ، کارایی مصرف انرژی را به شکل قابل‌توجهی افرایش دهد که این موضوع در روند تولید محصول‌‌های گلخانه‌‌ای از منظر اقتصادی نیز قابل‌توجه است. نتایج این پژوهش بیانگر آینده‌‌ای متفاوت در نحوه کاربرد سامانه‌‌های نوردهی در محیط پرورش گیاهان است.
واژه‌های کلیدی: ریخت‌‌زایی وابسته به نور، کارایی انرژی، گلدهی، سامانه نوردهی
متن کامل [PDF 1456 kb]   (235 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/5/4 | پذیرش: 1401/8/2 | انتشار: 1402/3/16
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Andres, J., Koskela, E. (2022). Axillary bud fate shapes plant architecture in horticultural crop. Horticulturae, 8(2), 130, dio: 10.3390/horticulturae8020130 [DOI:10.3390/horticulturae8020130]
2. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts Poly phenol oxidase in Beta vulgaris. Plant Physiology, doi: 10.1104/pp.24.1.1 [DOI:10.1104/pp.24.1.1]
3. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437-451, doi: 10.1016/j.scienta.2018.02.058 [DOI:10.1016/j.scienta.2018.02.058]
4. Budiarto, K. (2010). Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Asian Journal of Applied Science, 32, 234-240, doi: 10.17503/agrivita.v32i3.20
5. Canamero, R.C., Bakrim, N., Bouly, J.P, Garay, A., Dudkin, E.E., Habricot, Y. (2006). Cryptochromes photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta, 224, 995- 1003, doi: 10.1007/s00425-006-0280-6 [DOI:10.1007/s00425-006-0280-6]
6. Chen, X., Wang, L., Li, T., Yang, Q., Gun, W. (2019). Sugar accumulation and growth of lettuce exposed to different lighting modes of red and blue LED light. Scientific Report, 9(1), 6926, doi: 10.1038/S41598-019-43498-8 [DOI:10.1038/s41598-019-43498-8]
7. Craver, J.K., Nemali, K.S., Lopez, R.G. (2020). Acclimation of growth and photosynthesis in petunia seedlings exposed to high-intensity blue radiation. Journal of the American Society for Horticultural Science, 145(3), doi: 10.21273/JASHS04799-19 [DOI:10.21273/JASHS04799-19]
8. Currey, C.J., Lopez, R.G. (2013). Cuttings of impatient, pelargonium, and petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience, 48(4), 428-434, doi: 10.21273/HORTSCI.48.4.428 [DOI:10.21273/HORTSCI.48.4.428]
9. Drummond, R.S.M., Janssen, B, J., Luo, Z., Oplaat, C., Ledger, S.E., Wohlers, M.W., Snowden, K.C. (2015). Environmental Control of Branching in Petunia. Plant Physiology, 168(2), 735-751, doi: 10.1104/pp.15.00486 [DOI:10.1104/pp.15.00486]
10. Duryea, M.L. (1984). Nursery Cultural Practices: Impacts on Seedling Quality. In: Duryea, M.L., Landis, T.D., Perry, C.R. (eds) Forestry Nursery Manual: Production of Bareroot Seedlings. Forestry Sciences, doi: 10.1007/978-94-009-6110-4_15. [DOI:10.1007/978-94-009-6110-4_15]
11. Dutta Gupta, S. Light Emitting Diodes for Agriculture. Springer, Singapore. Pages: 59-80. ISBN 978-981-10-5806-6, doi.org. 10.1007/978-981-10-5807-3_4.
12. Fan, X., Xu, Z., Liu, X., Tang, C., Wang, L. (2013). Effect of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturea, 153, 50-55, doi: 10.1016/j.scienta.2013.01.017 [DOI:10.1016/j.scienta.2013.01.017]
13. Fausey, B.A., Heins, R.D., Cameron, A.C. (2005). Daily light integral affects flowering and quality of greenhouse grown Achillea, Gaura, and Lavandula. HortScience, 40, 114-118, doi: 10.21273/HORTSCI.40.1.114 [DOI:10.21273/HORTSCI.40.1.114]
14. Folta, K.M., Spalding, E.P. (2001). Unexpected roles for cryptochrome 2 and phototropinrevealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant Journal, 26, 471-478, doi: 10.1046/j.1365-313x.2001.01038.x [DOI:10.1046/j.1365-313x.2001.01038.x]
15. Fujiwara, K. (2020). Chapter 8- Light sources. Esitor (s): Kozai, T., Niu, G., Takagaki, M., Plant Factory (Second edition). Academic Press, London, England, Pages 139-151. ISBN 9780128166918, doi: 10.1016/B978-0-12-816691-8.00008-X [DOI:10.1016/B978-0-12-816691-8.00008-X]
16. Fukuda, N. Ajima, C, Yukawa, T., Olsen, J.E. (2015). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 121, 102-111, doi: 10.1016/j.envexpbot.2015.06.014 [DOI:10.1016/j.envexpbot.2015.06.014]
17. Fukuda, N., Olsen, J.E. (2011). Effects of light quality under red and blue light emitting diodes on growth and expression of FBP28 in petunia. Acta Horticulturae, 907, 361-366, doi: 10.17660/ActaHortic.2011.907.59 [DOI:10.17660/ActaHortic.2011.907.59]
18. Fukuda, N., Ishii, Y., Ezura, H., Olsen, J.E. (2011). Effect of light quality under red and
19. blue light emitting diodes on growth and expression of FBP28 in petunia. Acta Horticulturae, 907, 361-366, doi: 10.17660/Acta Horticulturae, 2011.907.59
20. Fukuda, N., Oba, H., Mizuta, D., Yoshida, H., Olsen, J.E. (2016). Timing of blue and red-light exposure and CPPU application during the raising of seedlings can control flowering timing of petunia. Acta Horticulturae, 1134, 171-178, doi: 10.17660/ActaHortic.2016.1134.23 [DOI:10.17660/ActaHortic.2016.1134.23]
21. Gao, X., Zhang, C., Lu, C., Wang, M., Xie, N., Chen, J., Li, Y., Chen, J., Shen, C. (2021). Disruption of photomorphogenesis leads to abnormal chloroplast development and leaf variegation in Camellia sinensis. Frontiers in Plant Science, 12, 720800. doi: 10.3389/fpls.2021.720800 [DOI:10.3389/fpls.2021.720800]
22. Gautam, P., Terfa, M.T., Olsen, J.E., Torre, S. (2015). Red and blue effects on morphology and flowering of Petunia × hybrida. Scientia Horticulturae, doi: 10.1016/j.scienta.2015.01.004 [DOI:10.1016/j.scienta.2015.01.004]
23. Gil, C.S., Kwon, S.J., Jeong, H.Y., Lee, C., Lee, O.J., Eom, S.H. (2021). Blue Light Upregulates Auxin Signaling and Stimulates Root Formation in Irregular Rooting of Rosemary Cuttings. Agronomy, 11(9), 1725. doi: 10.3390/agronomy11091725 [DOI:10.3390/agronomy11091725]
24. Haliapas, S., Yupsanis, T.A., Syros, T.D., Kofidis, G. (2008). Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiologiae Plantarum, 30, 807, doi: 10.1007/s11738-008-0185-z [DOI:10.1007/s11738-008-0185-z]
25. Heo, J., Lee, C., Chakrabarty, D., Paek, K. (2002). Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light- Emitting Diode. Plant Growth Regulations, 38, 225-230. doi: 10.1023/A:1021523832488 [DOI:10.1023/A:1021523832488]
26. Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light, Journal of Experimental Botany. 61 (11), 3107-3117, doi: /10.1093/jxb/erq132 [DOI:10.1093/jxb/erq132]
27. Holalu, V.S., Finlayson, S.A. (2013). The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. Journal. of Experimental. Botany, 68(5), 943-952. doi: /10.1093/jxb/erw479.
28. Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerod, H., Olsen, J. E., Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143, doi: 10.1016/j.scienta.2012.08.03 [DOI:10.1016/j.scienta.2012.08.034]
29. Islam, M.A., Tarkowská, D., Clarke, J.L., Blystad, D.R., Gislerod, H.R., Torre, Olsen, J.E. (2014). Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Scientia Horticulturae, 174, 77-86, doi: 10.1016/j.scienta.2014.05.013 [DOI:10.1016/j.scienta.2014.05.013]
30. Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerod, H., Olsen, J.E., and Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143, doi: 10.1016/j.scienta.2012.08.034 [DOI:10.1016/j.scienta.2012.08.034]
31. Jaenicke, H. (1999). Good tree nursery practices: practical guidelines for research nurseries. ICRAF,
32. Nairobi, pp 8-15.
33. Jeong, S.W., Hogewoning, S.H., and Ieperen, W. (2014). Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum, Scientia Horticulturae,165, 69-74, doi: 10.1016/j.scienta.2013.11.006 [DOI:10.1016/j.scienta.2013.11.006]
34. Jing, Y. and Lin, R. (2020). Transcriptional regulatory network of the light signaling pathways. New Phytologist, 227(3), 683-697, doi:10.1111/nph.16602 [DOI:10.1111/nph.16602]
35. Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. (2010). Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce, HortScience horts,45(2), 1809-1814, doi: 10.21273/HORTSCI.45.12.1809. [DOI:10.21273/HORTSCI.45.12.1809]
36. Kaczperski, M.P., Carlson, W.H., Karlsson, M.G. (1991). Growth and Development of Petunia × hybrids as a Function of Temperature and Irradiance. Journal of the American Society for Horticultural Science, 116(2), 232-237, doi:10.21273/JASHS.116.2.232. [DOI:10.21273/JASHS.116.2.232]
37. Kim, S.Y., Yu, X., Michaels, S.D. (2008). Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant physiology, 148(1), 269-279, doi:10.1104/pp.108.122606. [DOI:10.1104/pp.108.122606]
38. Kim, S.J., Hahn, E, J., Heo, J. W., Paek, K.Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1-2), 143-151, doi: 10.1016/j.scienta.2003.10.003 [DOI:10.1016/j.scienta.2003.10.003]
39. King, R.W., Hisamatsu, T., Goldschmidt, E.E., Blundell, C. (2008). The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT), Journal of Experimental Botany, 59 (14), 3811-3820, doi:10.1093/jxb/ern231 [DOI:10.1093/jxb/ern231]
40. Kohler, A., Lopez, R.G. (2021). Duration of light-emitting diode (LED) supplemental lighting providing far-red radiation during seedling production influences subsequent time to flower of long-day annuals, Scientia Horticulturae, 281, 109956, doi: 10.1016/j.scienta.2021.109956 [DOI:10.1016/j.scienta.2021.109956]
41. Kong, Y., Stasiak, M., Dixon, M.A., Zheng, Y. (2018). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155, 345-359, doi:10.1016/j.envexpbot.2018.07.021 [DOI:10.1016/j.envexpbot.2018.07.021]
42. Kuno, Y., Shimizu, H., Nakashima, H., Miyasaka, J., Ohdoi, K. (2017). Effect of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L. 'Greenwave'. Environmental Control in Biology, 55(3), 129-135, doi:10.2525/ecb.55.129 [DOI:10.2525/ecb.55.129]
43. Kurepin, L.V., Walton, L.J., Reid, D.M. (2006). Interaction of red to far red-light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation, 51(1), 53-61, [DOI:10.1007/s10725-006-9147-x]
44. Kusuma, P., Pattison, P.M., Bugbee, B. (2020). From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, 7, 56, doi:10.1038/s41438-020-0283-7 [DOI:10.1038/s41438-020-0283-7]
45. Li, H., Xu, Z., Tang, C. (2010). Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 103, 155-163, doi:10.1007/s11240-010-9763-z [DOI:10.1007/s11240-010-9763-z]
46. Lau, O.S., Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13 (5), 571-577, [DOI:10.1016/j.pbi.2010.07.001]
47. Masuda, K., Nakashima, H., Miyasaka, J. Ohdio, K. (2021). Qualification of the alternating and simultaneous red and blue irradiations on plant morphology and shoot fresh weight in leaf lettuce 'Greenwave'. Environmental Control in Biology, 59(4), 181-190, doi:10.2525/ecb.59.181 [DOI:10.2525/ecb.59.181]
48. Meng, Q., Runkle, E.S. (2014). Controlling Flowering of Photoperiodic Ornamental Crops with Light-emitting Diode Lamps: A Coordinated Grower Trial, HortTechnology hortte, 24(6), 702-711, doi:10.21273/HORTTECH.24.6.702 [DOI:10.21273/HORTTECH.24.6.702]
49. Ohtake, N., Ishikura, M. Suzuki, H. Asachi, S., Yamori, W. (2021). Alternating red/blue light increases leaf thickness and mesophyll cell density in the early growth stage, improving photosynthesis and plant growth in lettuce. Environmental Control in Biology, 53(12), 1804-1809, doi:10.2525/ecb.59.59 [DOI:10.2525/ecb.59.59]
50. OuYang, F., Mao J.F., Wang, J., Zhang, S., Li, Y. (2015) Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway sprouce [Picea abies (L.) Karst.]. PLOS ONE, 10(8), e0127896, [DOI:10.1371/journal.pone.0127896]
51. Ouzounis, T., Fretté, X., Rosenqvist, E., Ottosen, C.O. (2014b). Spectral effects of supple-
52. mentary lighting on the secondary metabolites in roses, chrysanthemums, and cam-
53. panulas. Journal of Plant Physiology, 171, 1491-1499, doi: 10.1016/j.jplph.2014.06.012. [DOI:10.1016/j.jplph.2014.06.012]
54. Ouzounis, T., Rosenqvist, E., Ottosen, C.O. (2015). Spectral effects of artificial light on
55. plant physiology and secondary metabolism. Hortscience, 50(8), 1128-1135, doi: 10.21273/HORTSCI.50.8.1128 [DOI:10.21273/HORTSCI.50.8.1128]
56. Owen, W.G., Lopez, R.G. (2017). Geranium and purple fountain grass leaf pigmentation is influenced by end-day-production supplemental lighting with red and blue light-emitting diodes. HortScience, 52(2), 236-244, doi:10.21273/HORTSCI11098-16 [DOI:10.21273/HORTSCI11098-16]
57. Park, Y., Runkle, E.S. (2017). Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 168, 103871, http://doi.org/10.1016/j.envexpbot.2016.12.013 [DOI:10.1016/j.envexpbot.2016.12.013]
58. Park, Y., Runkle, E.S. (2018b). Spectral effects of the light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficiency: white versus blue plus red radiation. PLOS ONE, 13(8), e0202386, doi: 10.1371/journal.pone.0202386 [DOI:10.1371/journal.pone.0202386]
59. Park, Y., Gomez, C., Runkle, E.S. (2022). Chapter 19 - Indoor production of ornamental seedlings, vegetable transplants, and microgreens, Editor(s): Toyoki Kozai, Genhua Niu, Joseph Masabni, Plant Factory Basics, Applications and Advances. Academic Press, Pages 351-375, ISBN 9780323851527, doi:10.1016/B978-0-323-85152-7.00020-3 [DOI:10.1016/B978-0-323-85152-7.00020-3]
60. Park, Y., Runkle, E.S. (2019). Blue radiation attenuates the effects of the red to far-red ratio on extension growth but not on flowering. Environmental and Experimental Botany, 168, 103871, doi: 10.1016/j.envexpbot.2019.103871 [DOI:10.1016/j.envexpbot.2019.103871]
61. Poel, B.R., Runkle, E.S. (2017). Spectral Effects of Supplemental Greenhouse Radiation on Growth and Flowering of Annual Bedding Plants and Vegetable Transplants, HortScience, 52(9), 1221-1228, doi:10.21273/HORTSCI12135-17 [DOI:10.21273/HORTSCI12135-17]
62. Qin, K., Leskovar, D.I. (2020). Humic Substances Improve Vegetable Seedling Quality and Post-Transplant Yield Performance under Stress Conditions. Agriculture, 10(7), 254, doi:10.3390/agriculture10070254 [DOI:10.3390/agriculture10070254]
63. Runkle, E.S. Heins, R.D. (2001). Specific functions of red, far red, and blue light in
64. flowering and stem extension of long-day plants. Journal of the American Society for Horticultural Science, 126, 275-282, doi:10.21273/JASHS.126.3.275 [DOI:10.21273/JASHS.126.3.275]
65. Savvides, A., Fanourakis, D., van Ieperen, W. (2012). Co-ordination of hydraulic and stomatal conductance across light qualities in cucumber leaves. Journal of Experimental Botany, 63(3), 1135-43, doi:10.1093/jxb/err348. [DOI:10.1093/jxb/err348]
66. Saini, E.S. (2006). Labratoey manual of analytical techniques in horticulture. Agrobios. India.
67. Simkin, A.J., Kapoor, L., Doss, C.G.P., Hofmann, T.A., Lawson, T. Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in plants. Photosynthesis Reseaech, doi:10.1007/s11120-021-00892-6 [DOI:10.1007/s11120-021-00892-6]
68. Simons, J.L., Napoli, C.A., Janssen, B.J., Plummer, K.M. Snowden, K.C. (2007). Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiology, 143(2), 697-706, doi: 10.1104/pp.106.087957 [DOI:10.1104/pp.106.087957]
69. Sipos, L., Boros, I.F., Gsambalik, L., Szekely, G., Jung, A. Balazs, L. (2020). Horticultural lighting system optimization: A review. Scientia Horticulturae, 273, 109631, doi: 10.1016/j.scienta.2020.109631 [DOI:10.1016/j.scienta.2020.109631]
70. Snowden, M.C., Cope, K.R., Bugbee, B. (2016). Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLOS ONE, 30(9), 987-994, doi: 10.1371/journal.pone.0163121 [DOI:10.1371/journal.pone.0163121]
71. Sullivan, A., Hart, J., Rasch, P., Walker, C. Christie, J. (2016). Phytochrome A mediates blue light enhancement of second positive phototropism in Arabidopsis. Frontier in plant Science, 7, 290, doi:10.3389/fpls.2016.00290 [DOI:10.3389/fpls.2016.00290]
72. Takasu, S., Shimizu, H., Nakashima, H., Miyasaka, J. Ohdoi, K. (2019). Photosynthesis and morphology of leaf lettuce (Lactuca sativa L. cv. Greenwave) grown under alternating irradiation of red and blue light. Environmental Control in Biology, 57(4), 93-98, doi:10.2525/ecb.57.93 [DOI:10.2525/ecb.57.93]
73. Takoutsing, B., Tchoundjeu, Z., Degrande, A. Asaah, E., Gyau, A., Nkeumoe, F. Tsobeng, A. (2014). Assessing the Quality of Seedlings in Small-scale Nurseries in the Highlands of Cameroon: The Use of Growth Characteristics and Quality Thresholds as Indicators. Small-scale Forestry, 13, 65-77, doi:10.1007/s11842-013-9241-7 [DOI:10.1007/s11842-013-9241-7]
74. van Gelderen, K., Kang, C. Pierik, R. (2018). Light Signaling, Root Development, and Plasticity. Plant Physiology, 176 (2), 1049-1060, doi:10.1104/pp.17.01079. [DOI:10.1104/pp.17.01079]
75. van Iersel, M.W. (2017). Chapter 4- Optimizing LED lighting in controlled environment agriculture. Editor: Dutta Gupta, S. Light Emitting Diodes for Agriculture. Springer, Singapore. Pages: 59-80. ISBN 978-981-10-5806-6. doi:10.1007/978-981-10-5807-3_4 [DOI:10.1007/978-981-10-5807-3_4]
76. Wang, Q., Liu, Q., Wang, X., Zuo, Z., Oka, Y. Lin, C. (2017). New insights into the mechanisms of phytochrome- cryptochrome coaction. New Phytologist, 217(2), 547-55, doi:10.1111/nph.14886 [DOI:10.1111/nph.14886]
77. Wang, X.Y., Xu, X. M., Cui, J. (2015). The importance of blue light for leaf area expansion, development of photosynthetic apparatus, chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 53(2), 213-222, doi:10.1007/s11099-015-0083-8 [DOI:10.1007/s11099-015-0083-8]
78. Wang, X., Wang, Q., Nguyen, P., Lin, C. (2014). Cryptochrome-mediated light responses in plants. Enzymes, doi: 10.1016/B978-0-12-801922-1.00007-5 [DOI:10.1016/B978-0-12-801922-1.00007-5]
79. Warner, R. M. (2010). Temperature and Photoperiod Influence Flowering and Morphology of Four Petunia spp. HortScience, 45(3), 365-368, doi: 10.21273/HORTSCI.45.3.365 [DOI:10.21273/HORTSCI.45.3.365]
80. Wollaeger, H.M. Runkle, E.S. (2015). Growth and acclimation of Impatiens, Salvia, Petunia, and Tomato seedlings to blue and red light. HortScience, 50(4), 522-529, doi:10.21273/HORTSCI.50.4.522 [DOI:10.21273/HORTSCI.50.4.522]
81. Yan, Z., He, D., Niu, G., Zhou, Q., Qu, Y. (2019). Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience, 54 (10), 1737-1744, doi:10.21273/HORTSCI14236-19 [DOI:10.21273/HORTSCI14236-19]
82. Yue, C., Wang, Z., Yang, P. (2021). Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Botanical studies, 62, 21, doi:10.1186/s40529-021-00329-2 [DOI:10.1186/s40529-021-00329-2]
83. Zadworny, M., Mucha, J., Jagodziński, A.M., Kościelniak, P., Łakomy, P., Modrzejewski, M., Ufnalski, K., Żytkowiak, R., Comas, L.H. Rodríguez-Calcerrada, J. (2021). Seedling regeneration techniques affect root systems and the response of Quercus robur seedlings to water shortages. Forest Ecology and Management, 479, 118552, doi: 10.1016/j.foreco.2020.118552 [DOI:10.1016/j.foreco.2020.118552]
84. Zheng, L. van Labeke, M.C. (2017). Long-term effects of red and blue light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science, 8. 917,doi:10.3389/fpls.2017.00917 [DOI:10.3389/fpls.2017.00917]
85. Zheng, L., He, H., Song, W. (2019). Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience, 54(10), 1656-1661, doi:10.21273/HORTSCI14109-19 [DOI:10.21273/HORTSCI14109-19]
86. Zheng, L., Steppe, K., van Lebeke, M. C. (2020). Spectral quality of monochromatic LED affects photosynthetic accumulation to high-intensity sunlight of chrysanthemum and spathiphyllum. Physiologia Plantarum, 169 (1), 10-26, doi:10.1111/ppl.13067 [DOI:10.1111/ppl.13067]
87. Zhou, H., Beynon-Davies, R., Carslaw, N., Dodd, I.C., Ashworth, K. (2022). Yield, resource use efficiency or flavor: Trade-offs of varying blue-to-red lighting ratio in urban plant factories. Scientia Horticulturae, 295, 110802, doi: 10.1016/j.scienta.2021.110802 [DOI:10.1016/j.scienta.2021.110802]
88. Andres, J., Koskela, E. (2022). Axillary bud fate shapes plant architecture in horticultural crop. Horticulturae, 8(2), 130, dio: 10.3390/horticulturae8020130 [DOI:10.3390/horticulturae8020130]
89. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts Poly phenol oxidase in Beta vulgaris. Plant Physiology, doi: 10.1104/pp.24.1.1 [DOI:10.1104/pp.24.1.1]
90. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437-451, doi: 10.1016/j.scienta.2018.02.058 [DOI:10.1016/j.scienta.2018.02.058]
91. Budiarto, K. (2010). Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Asian Journal of Applied Science, 32, 234-240, doi: 10.17503/agrivita.v32i3.20
92. Canamero, R.C., Bakrim, N., Bouly, J.P, Garay, A., Dudkin, E.E., Habricot, Y. (2006). Cryptochromes photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta, 224, 995- 1003, doi: 10.1007/s00425-006-0280-6 [DOI:10.1007/s00425-006-0280-6]
93. Chen, X., Wang, L., Li, T., Yang, Q., Gun, W. (2019). Sugar accumulation and growth of lettuce exposed to different lighting modes of red and blue LED light. Scientific Report, 9(1), 6926, doi: 10.1038/S41598-019-43498-8 [DOI:10.1038/s41598-019-43498-8]
94. Craver, J.K., Nemali, K.S., Lopez, R.G. (2020). Acclimation of growth and photosynthesis in petunia seedlings exposed to high-intensity blue radiation. Journal of the American Society for Horticultural Science, 145(3), doi: 10.21273/JASHS04799-19 [DOI:10.21273/JASHS04799-19]
95. Currey, C.J., Lopez, R.G. (2013). Cuttings of impatient, pelargonium, and petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience, 48(4), 428-434, doi: 10.21273/HORTSCI.48.4.428 [DOI:10.21273/HORTSCI.48.4.428]
96. Drummond, R.S.M., Janssen, B, J., Luo, Z., Oplaat, C., Ledger, S.E., Wohlers, M.W., Snowden, K.C. (2015). Environmental Control of Branching in Petunia. Plant Physiology, 168(2), 735-751, doi: 10.1104/pp.15.00486 [DOI:10.1104/pp.15.00486]
97. Duryea, M.L. (1984). Nursery Cultural Practices: Impacts on Seedling Quality. In: Duryea, M.L., Landis, T.D., Perry, C.R. (eds) Forestry Nursery Manual: Production of Bareroot Seedlings. Forestry Sciences, doi: 10.1007/978-94-009-6110-4_15. [DOI:10.1007/978-94-009-6110-4_15]
98. Dutta Gupta, S. Light Emitting Diodes for Agriculture. Springer, Singapore. Pages: 59-80. ISBN 978-981-10-5806-6, doi.org. 10.1007/978-981-10-5807-3_4.
99. Fan, X., Xu, Z., Liu, X., Tang, C., Wang, L. (2013). Effect of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturea, 153, 50-55, doi: 10.1016/j.scienta.2013.01.017 [DOI:10.1016/j.scienta.2013.01.017]
100. Fausey, B.A., Heins, R.D., Cameron, A.C. (2005). Daily light integral affects flowering and quality of greenhouse grown Achillea, Gaura, and Lavandula. HortScience, 40, 114-118, doi: 10.21273/HORTSCI.40.1.114 [DOI:10.21273/HORTSCI.40.1.114]
101. Folta, K.M., Spalding, E.P. (2001). Unexpected roles for cryptochrome 2 and phototropinrevealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant Journal, 26, 471-478, doi: 10.1046/j.1365-313x.2001.01038.x [DOI:10.1046/j.1365-313x.2001.01038.x]
102. Fujiwara, K. (2020). Chapter 8- Light sources. Esitor (s): Kozai, T., Niu, G., Takagaki, M., Plant Factory (Second edition). Academic Press, London, England, Pages 139-151. ISBN 9780128166918, doi: 10.1016/B978-0-12-816691-8.00008-X [DOI:10.1016/B978-0-12-816691-8.00008-X]
103. Fukuda, N. Ajima, C, Yukawa, T., Olsen, J.E. (2015). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 121, 102-111, doi: 10.1016/j.envexpbot.2015.06.014 [DOI:10.1016/j.envexpbot.2015.06.014]
104. Fukuda, N., Olsen, J.E. (2011). Effects of light quality under red and blue light emitting diodes on growth and expression of FBP28 in petunia. Acta Horticulturae, 907, 361-366, doi: 10.17660/ActaHortic.2011.907.59 [DOI:10.17660/ActaHortic.2011.907.59]
105. Fukuda, N., Ishii, Y., Ezura, H., Olsen, J.E. (2011). Effect of light quality under red and
106. blue light emitting diodes on growth and expression of FBP28 in petunia. Acta Horticulturae, 907, 361-366, doi: 10.17660/Acta Horticulturae, 2011.907.59
107. Fukuda, N., Oba, H., Mizuta, D., Yoshida, H., Olsen, J.E. (2016). Timing of blue and red-light exposure and CPPU application during the raising of seedlings can control flowering timing of petunia. Acta Horticulturae, 1134, 171-178, doi: 10.17660/ActaHortic.2016.1134.23 [DOI:10.17660/ActaHortic.2016.1134.23]
108. Gao, X., Zhang, C., Lu, C., Wang, M., Xie, N., Chen, J., Li, Y., Chen, J., Shen, C. (2021). Disruption of photomorphogenesis leads to abnormal chloroplast development and leaf variegation in Camellia sinensis. Frontiers in Plant Science, 12, 720800. doi: 10.3389/fpls.2021.720800 [DOI:10.3389/fpls.2021.720800]
109. Gautam, P., Terfa, M.T., Olsen, J.E., Torre, S. (2015). Red and blue effects on morphology and flowering of Petunia × hybrida. Scientia Horticulturae, doi: 10.1016/j.scienta.2015.01.004 [DOI:10.1016/j.scienta.2015.01.004]
110. Gil, C.S., Kwon, S.J., Jeong, H.Y., Lee, C., Lee, O.J., Eom, S.H. (2021). Blue Light Upregulates Auxin Signaling and Stimulates Root Formation in Irregular Rooting of Rosemary Cuttings. Agronomy, 11(9), 1725. doi: 10.3390/agronomy11091725 [DOI:10.3390/agronomy11091725]
111. Haliapas, S., Yupsanis, T.A., Syros, T.D., Kofidis, G. (2008). Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiologiae Plantarum, 30, 807, doi: 10.1007/s11738-008-0185-z [DOI:10.1007/s11738-008-0185-z]
112. Heo, J., Lee, C., Chakrabarty, D., Paek, K. (2002). Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light- Emitting Diode. Plant Growth Regulations, 38, 225-230. doi: 10.1023/A:1021523832488 [DOI:10.1023/A:1021523832488]
113. Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light, Journal of Experimental Botany. 61 (11), 3107-3117, doi: /10.1093/jxb/erq132 [DOI:10.1093/jxb/erq132]
114. Holalu, V.S., Finlayson, S.A. (2013). The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. Journal. of Experimental. Botany, 68(5), 943-952. doi: /10.1093/jxb/erw479.
115. Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerod, H., Olsen, J. E., Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143, doi: 10.1016/j.scienta.2012.08.03 [DOI:10.1016/j.scienta.2012.08.034]
116. Islam, M.A., Tarkowská, D., Clarke, J.L., Blystad, D.R., Gislerod, H.R., Torre, Olsen, J.E. (2014). Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Scientia Horticulturae, 174, 77-86, doi: 10.1016/j.scienta.2014.05.013 [DOI:10.1016/j.scienta.2014.05.013]
117. Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.R., Gislerod, H., Olsen, J.E., and Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136-143, doi: 10.1016/j.scienta.2012.08.034 [DOI:10.1016/j.scienta.2012.08.034]
118. Jaenicke, H. (1999). Good tree nursery practices: practical guidelines for research nurseries. ICRAF,
119. Nairobi, pp 8-15.
120. Jeong, S.W., Hogewoning, S.H., and Ieperen, W. (2014). Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum, Scientia Horticulturae,165, 69-74, doi: 10.1016/j.scienta.2013.11.006 [DOI:10.1016/j.scienta.2013.11.006]
121. Jing, Y. and Lin, R. (2020). Transcriptional regulatory network of the light signaling pathways. New Phytologist, 227(3), 683-697, doi:10.1111/nph.16602 [DOI:10.1111/nph.16602]
122. Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. (2010). Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce, HortScience horts,45(2), 1809-1814, doi: 10.21273/HORTSCI.45.12.1809. [DOI:10.21273/HORTSCI.45.12.1809]
123. Kaczperski, M.P., Carlson, W.H., Karlsson, M.G. (1991). Growth and Development of Petunia × hybrids as a Function of Temperature and Irradiance. Journal of the American Society for Horticultural Science, 116(2), 232-237, doi:10.21273/JASHS.116.2.232. [DOI:10.21273/JASHS.116.2.232]
124. Kim, S.Y., Yu, X., Michaels, S.D. (2008). Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant physiology, 148(1), 269-279, doi:10.1104/pp.108.122606. [DOI:10.1104/pp.108.122606]
125. Kim, S.J., Hahn, E, J., Heo, J. W., Paek, K.Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1-2), 143-151, doi: 10.1016/j.scienta.2003.10.003 [DOI:10.1016/j.scienta.2003.10.003]
126. King, R.W., Hisamatsu, T., Goldschmidt, E.E., Blundell, C. (2008). The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT), Journal of Experimental Botany, 59 (14), 3811-3820, doi:10.1093/jxb/ern231 [DOI:10.1093/jxb/ern231]
127. Kohler, A., Lopez, R.G. (2021). Duration of light-emitting diode (LED) supplemental lighting providing far-red radiation during seedling production influences subsequent time to flower of long-day annuals, Scientia Horticulturae, 281, 109956, doi: 10.1016/j.scienta.2021.109956 [DOI:10.1016/j.scienta.2021.109956]
128. Kong, Y., Stasiak, M., Dixon, M.A., Zheng, Y. (2018). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155, 345-359, doi:10.1016/j.envexpbot.2018.07.021 [DOI:10.1016/j.envexpbot.2018.07.021]
129. Kuno, Y., Shimizu, H., Nakashima, H., Miyasaka, J., Ohdoi, K. (2017). Effect of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L. 'Greenwave'. Environmental Control in Biology, 55(3), 129-135, doi:10.2525/ecb.55.129 [DOI:10.2525/ecb.55.129]
130. Kurepin, L.V., Walton, L.J., Reid, D.M. (2006). Interaction of red to far red-light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation, 51(1), 53-61, [DOI:10.1007/s10725-006-9147-x]
131. Kusuma, P., Pattison, P.M., Bugbee, B. (2020). From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, 7, 56, doi:10.1038/s41438-020-0283-7 [DOI:10.1038/s41438-020-0283-7]
132. Li, H., Xu, Z., Tang, C. (2010). Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 103, 155-163, doi:10.1007/s11240-010-9763-z [DOI:10.1007/s11240-010-9763-z]
133. Lau, O.S., Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13 (5), 571-577, [DOI:10.1016/j.pbi.2010.07.001]
134. Masuda, K., Nakashima, H., Miyasaka, J. Ohdio, K. (2021). Qualification of the alternating and simultaneous red and blue irradiations on plant morphology and shoot fresh weight in leaf lettuce 'Greenwave'. Environmental Control in Biology, 59(4), 181-190, doi:10.2525/ecb.59.181 [DOI:10.2525/ecb.59.181]
135. Meng, Q., Runkle, E.S. (2014). Controlling Flowering of Photoperiodic Ornamental Crops with Light-emitting Diode Lamps: A Coordinated Grower Trial, HortTechnology hortte, 24(6), 702-711, doi:10.21273/HORTTECH.24.6.702 [DOI:10.21273/HORTTECH.24.6.702]
136. Ohtake, N., Ishikura, M. Suzuki, H. Asachi, S., Yamori, W. (2021). Alternating red/blue light increases leaf thickness and mesophyll cell density in the early growth stage, improving photosynthesis and plant growth in lettuce. Environmental Control in Biology, 53(12), 1804-1809, doi:10.2525/ecb.59.59 [DOI:10.2525/ecb.59.59]
137. OuYang, F., Mao J.F., Wang, J., Zhang, S., Li, Y. (2015) Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway sprouce [Picea abies (L.) Karst.]. PLOS ONE, 10(8), e0127896, [DOI:10.1371/journal.pone.0127896]
138. Ouzounis, T., Fretté, X., Rosenqvist, E., Ottosen, C.O. (2014b). Spectral effects of supple-
139. mentary lighting on the secondary metabolites in roses, chrysanthemums, and cam-
140. panulas. Journal of Plant Physiology, 171, 1491-1499, doi: 10.1016/j.jplph.2014.06.012. [DOI:10.1016/j.jplph.2014.06.012]
141. Ouzounis, T., Rosenqvist, E., Ottosen, C.O. (2015). Spectral effects of artificial light on
142. plant physiology and secondary metabolism. Hortscience, 50(8), 1128-1135, doi: 10.21273/HORTSCI.50.8.1128 [DOI:10.21273/HORTSCI.50.8.1128]
143. Owen, W.G., Lopez, R.G. (2017). Geranium and purple fountain grass leaf pigmentation is influenced by end-day-production supplemental lighting with red and blue light-emitting diodes. HortScience, 52(2), 236-244, doi:10.21273/HORTSCI11098-16 [DOI:10.21273/HORTSCI11098-16]
144. Park, Y., Runkle, E.S. (2017). Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 168, 103871, http://doi.org/10.1016/j.envexpbot.2016.12.013 [DOI:10.1016/j.envexpbot.2016.12.013]
145. Park, Y., Runkle, E.S. (2018b). Spectral effects of the light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficiency: white versus blue plus red radiation. PLOS ONE, 13(8), e0202386, doi: 10.1371/journal.pone.0202386 [DOI:10.1371/journal.pone.0202386]
146. Park, Y., Gomez, C., Runkle, E.S. (2022). Chapter 19 - Indoor production of ornamental seedlings, vegetable transplants, and microgreens, Editor(s): Toyoki Kozai, Genhua Niu, Joseph Masabni, Plant Factory Basics, Applications and Advances. Academic Press, Pages 351-375, ISBN 9780323851527, doi:10.1016/B978-0-323-85152-7.00020-3 [DOI:10.1016/B978-0-323-85152-7.00020-3]
147. Park, Y., Runkle, E.S. (2019). Blue radiation attenuates the effects of the red to far-red ratio on extension growth but not on flowering. Environmental and Experimental Botany, 168, 103871, doi: 10.1016/j.envexpbot.2019.103871 [DOI:10.1016/j.envexpbot.2019.103871]
148. Poel, B.R., Runkle, E.S. (2017). Spectral Effects of Supplemental Greenhouse Radiation on Growth and Flowering of Annual Bedding Plants and Vegetable Transplants, HortScience, 52(9), 1221-1228, doi:10.21273/HORTSCI12135-17 [DOI:10.21273/HORTSCI12135-17]
149. Qin, K., Leskovar, D.I. (2020). Humic Substances Improve Vegetable Seedling Quality and Post-Transplant Yield Performance under Stress Conditions. Agriculture, 10(7), 254, doi:10.3390/agriculture10070254 [DOI:10.3390/agriculture10070254]
150. Runkle, E.S. Heins, R.D. (2001). Specific functions of red, far red, and blue light in
151. flowering and stem extension of long-day plants. Journal of the American Society for Horticultural Science, 126, 275-282, doi:10.21273/JASHS.126.3.275 [DOI:10.21273/JASHS.126.3.275]
152. Savvides, A., Fanourakis, D., van Ieperen, W. (2012). Co-ordination of hydraulic and stomatal conductance across light qualities in cucumber leaves. Journal of Experimental Botany, 63(3), 1135-43, doi:10.1093/jxb/err348. [DOI:10.1093/jxb/err348]
153. Saini, E.S. (2006). Labratoey manual of analytical techniques in horticulture. Agrobios. India.
154. Simkin, A.J., Kapoor, L., Doss, C.G.P., Hofmann, T.A., Lawson, T. Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in plants. Photosynthesis Reseaech, doi:10.1007/s11120-021-00892-6 [DOI:10.1007/s11120-021-00892-6]
155. Simons, J.L., Napoli, C.A., Janssen, B.J., Plummer, K.M. Snowden, K.C. (2007). Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiology, 143(2), 697-706, doi: 10.1104/pp.106.087957 [DOI:10.1104/pp.106.087957]
156. Sipos, L., Boros, I.F., Gsambalik, L., Szekely, G., Jung, A. Balazs, L. (2020). Horticultural lighting system optimization: A review. Scientia Horticulturae, 273, 109631, doi: 10.1016/j.scienta.2020.109631 [DOI:10.1016/j.scienta.2020.109631]
157. Snowden, M.C., Cope, K.R., Bugbee, B. (2016). Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLOS ONE, 30(9), 987-994, doi: 10.1371/journal.pone.0163121 [DOI:10.1371/journal.pone.0163121]
158. Sullivan, A., Hart, J., Rasch, P., Walker, C. Christie, J. (2016). Phytochrome A mediates blue light enhancement of second positive phototropism in Arabidopsis. Frontier in plant Science, 7, 290, doi:10.3389/fpls.2016.00290 [DOI:10.3389/fpls.2016.00290]
159. Takasu, S., Shimizu, H., Nakashima, H., Miyasaka, J. Ohdoi, K. (2019). Photosynthesis and morphology of leaf lettuce (Lactuca sativa L. cv. Greenwave) grown under alternating irradiation of red and blue light. Environmental Control in Biology, 57(4), 93-98, doi:10.2525/ecb.57.93 [DOI:10.2525/ecb.57.93]
160. Takoutsing, B., Tchoundjeu, Z., Degrande, A. Asaah, E., Gyau, A., Nkeumoe, F. Tsobeng, A. (2014). Assessing the Quality of Seedlings in Small-scale Nurseries in the Highlands of Cameroon: The Use of Growth Characteristics and Quality Thresholds as Indicators. Small-scale Forestry, 13, 65-77, doi:10.1007/s11842-013-9241-7 [DOI:10.1007/s11842-013-9241-7]
161. van Gelderen, K., Kang, C. Pierik, R. (2018). Light Signaling, Root Development, and Plasticity. Plant Physiology, 176 (2), 1049-1060, doi:10.1104/pp.17.01079. [DOI:10.1104/pp.17.01079]
162. van Iersel, M.W. (2017). Chapter 4- Optimizing LED lighting in controlled environment agriculture. Editor: Dutta Gupta, S. Light Emitting Diodes for Agriculture. Springer, Singapore. Pages: 59-80. ISBN 978-981-10-5806-6. doi:10.1007/978-981-10-5807-3_4 [DOI:10.1007/978-981-10-5807-3_4]
163. Wang, Q., Liu, Q., Wang, X., Zuo, Z., Oka, Y. Lin, C. (2017). New insights into the mechanisms of phytochrome- cryptochrome coaction. New Phytologist, 217(2), 547-55, doi:10.1111/nph.14886 [DOI:10.1111/nph.14886]
164. Wang, X.Y., Xu, X. M., Cui, J. (2015). The importance of blue light for leaf area expansion, development of photosynthetic apparatus, chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 53(2), 213-222, doi:10.1007/s11099-015-0083-8 [DOI:10.1007/s11099-015-0083-8]
165. Wang, X., Wang, Q., Nguyen, P., Lin, C. (2014). Cryptochrome-mediated light responses in plants. Enzymes, doi: 10.1016/B978-0-12-801922-1.00007-5 [DOI:10.1016/B978-0-12-801922-1.00007-5]
166. Warner, R. M. (2010). Temperature and Photoperiod Influence Flowering and Morphology of Four Petunia spp. HortScience, 45(3), 365-368, doi: 10.21273/HORTSCI.45.3.365 [DOI:10.21273/HORTSCI.45.3.365]
167. Wollaeger, H.M. Runkle, E.S. (2015). Growth and acclimation of Impatiens, Salvia, Petunia, and Tomato seedlings to blue and red light. HortScience, 50(4), 522-529, doi:10.21273/HORTSCI.50.4.522 [DOI:10.21273/HORTSCI.50.4.522]
168. Yan, Z., He, D., Niu, G., Zhou, Q., Qu, Y. (2019). Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience, 54 (10), 1737-1744, doi:10.21273/HORTSCI14236-19 [DOI:10.21273/HORTSCI14236-19]
169. Yue, C., Wang, Z., Yang, P. (2021). Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Botanical studies, 62, 21, doi:10.1186/s40529-021-00329-2 [DOI:10.1186/s40529-021-00329-2]
170. Zadworny, M., Mucha, J., Jagodziński, A.M., Kościelniak, P., Łakomy, P., Modrzejewski, M., Ufnalski, K., Żytkowiak, R., Comas, L.H. Rodríguez-Calcerrada, J. (2021). Seedling regeneration techniques affect root systems and the response of Quercus robur seedlings to water shortages. Forest Ecology and Management, 479, 118552, doi: 10.1016/j.foreco.2020.118552 [DOI:10.1016/j.foreco.2020.118552]
171. Zheng, L. van Labeke, M.C. (2017). Long-term effects of red and blue light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science, 8. 917,doi:10.3389/fpls.2017.00917 [DOI:10.3389/fpls.2017.00917]
172. Zheng, L., He, H., Song, W. (2019). Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience, 54(10), 1656-1661, doi:10.21273/HORTSCI14109-19 [DOI:10.21273/HORTSCI14109-19]
173. Zheng, L., Steppe, K., van Lebeke, M. C. (2020). Spectral quality of monochromatic LED affects photosynthetic accumulation to high-intensity sunlight of chrysanthemum and spathiphyllum. Physiologia Plantarum, 169 (1), 10-26, doi:10.1111/ppl.13067 [DOI:10.1111/ppl.13067]
174. Zhou, H., Beynon-Davies, R., Carslaw, N., Dodd, I.C., Ashworth, K. (2022). Yield, resource use efficiency or flavor: Trade-offs of varying blue-to-red lighting ratio in urban plant factories. Scientia Horticulturae, 295, 110802, doi: 10.1016/j.scienta.2021.110802 [DOI:10.1016/j.scienta.2021.110802]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashidi A, Tehranifar A, Samiei L. Gradual modification of the light spectral combinations during the growth of Petunia×hybrida seedlings improves vegetative growth traits and accelerates flowering. FOP 2023; 7 (2) :213-238
URL: http://flowerjournal.ir/article-1-233-fa.html

رشیدی آزاده، تهرانی فر علی، سمیعی لیلا. بهبود شاخص‌‌های رشد رویشی و تسریع گلدهی دانهال‌های اطلسی با استفاده از تغییر تدریجی ترکیب طیفی نور در دوران رشد. گل و گیاهان زینتی. 1401; 7 (2) :213-238

URL: http://flowerjournal.ir/article-1-233-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 2 - ( پاییز و زمستان 1401 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4645