[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 6, Issue 1 (Spring and Summer 2021) ::
FOP 2021, 6(1): 37-48 Back to browse issues page
CRISPR/Cas, a powerful tool for genome editing in ornamental plants
Mostafa K. Sarmast *
Abstract:   (1934 Views)
Biotechnology is a proper implement for breeding traits such as flower size, color and aroma as well as improving disease resistance and improvement of flower vase life. With completion of genome sequencing of many ornamental plants and astonishing progress on site-specific edition, the process of diversification for ornamental plant breeding will accelerate. Nowadays, due to the ease in application, low cost, and availability, CRISPR/Cas has overtaken the other genome editing technologies such as ZFNs, TALENs and meganuclease. CRISPR/Cas is an acquisition immune system in archaea and some bacteria wherein bacteria in response to introduced genetic materials start to make small complementary transcript by which intercepts the existing invasive sequence and inactivates the target DNA with the help of Cas nuclease protein. Broken strands join together by DNA repair system but the mutated nucleotides lead to inactivity of the target gene. The most important achievement of this technology in ornamental plants so far is knocking down homeotic genes involved in plant developmental process and also color change in petunia, torenia, gentian, orchids, and Japanese morning glory. With further development and optimization of this method, we will soon see many changes in the breeding of biotic traits resistance.
Keywords: Anthocyanin, Cas9 enzymes, Guide RNA, PAM
Full-Text [PDF 1278 kb]   (626 Downloads)    
Type of Study: Case report | Subject: Special
Received: 2020/12/7 | Accepted: 2021/07/25 | Published: 2022/01/25
References
1. Ahn, C.H., Ramya, M., An, H.R., Park, P.M., Kim, Y-J., Lee, S.Y., Jang, S. (2020). Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, doi:10.3390/plants9060687. [DOI:10.3390/plants9060687]
2. Barrangou, R., van der Oost, J. (2013). CRISPR-Cas Systems RNA-Mediated Adaptive Immunity in Bacteria and Archaea. Springer Heidelberg New York Dordrecht London. 229 p. [DOI:10.1007/978-3-642-34657-6]
3. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [DOI:10.1099/mic.0.28048-0]
4. Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P. (2008). Phage response to CRISPR-encoded resistance in Streptococcus hermophiles. Journal of Bacteriology, 190, 1390-1400. [DOI:10.1128/JB.01412-07]
5. Doudna, J.A., Charpentier, E. (2014). Genome editing, The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. [DOI:10.1126/science.1258096]
6. Ebina, H., Misawa, N., Kanemura, Y., Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Report, 3, 2510. [DOI:10.1038/srep02510]
7. Gelvin S.B. (2003). Improving plant genetic engineering by manipulation the host. Nature, 21, 95-98. [DOI:10.1016/S0167-7799(03)00005-2]
8. Giovannini, A., Laura, M., Nesi, B., Savona, M., Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40, 461-478. [DOI:10.1007/s00299-020-02632-x]
9. Hahne, G., Tomlinson, L., Nogué, F. (2019). Precision genetic engineering tools for next-generation plant breeding. Plant Cell Reports, 38, 435-436. [DOI:10.1007/s00299-019-02400-6]
10. Hischler, J., Bürstmayr, H., Stoger, E. (2016). Targeted modification of plant genomes for precision crop breeding. Ciotechnology Journal, 11, 1-14. [DOI:10.1002/biot.201600173]
11. Kishi-Kaboshi, M., Aida, R., Sasaki, K. (2017). Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58, 216-226. [DOI:10.1093/pcp/pcw222]
12. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J. (2017). Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium ocinale. Frontiers in Plant Science, 7, 2036. [DOI:10.3389/fpls.2016.02036]
13. Ma, X., Zhu, Q., Chen, Y., Liu, Y.G. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 9, 961-974. [DOI:10.1016/j.molp.2016.04.009]
14. Mali, P., Aach, J.P., Stranges, B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, l., Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838. [DOI:10.1038/nbt.2675]
15. Mendenhall, E.M., Williamson, K.E., Reyon, D. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31, 1133-1136. [DOI:10.1038/nbt.2701]
16. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182. [DOI:10.1007/s00239-004-0046-3]
17. Montague, T., Cruz, G.J.M., Gagnon, J.A., Church, G.M., Valen, E. (2014). CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42, 401-407. [DOI:10.1093/nar/gku410]
18. Nishihara, M., Higuchi, A., Watanabe, A., Tasaki, K. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 331. [DOI:10.1186/s12870-018-1539-3]
19. Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology, 151, 653-663 [DOI:10.1099/mic.0.27437-0]
20. Sarmast, M.K. Janati, M. (2019). Advances in New Technology for Targeted Modification of Plant Genomes. Gorgan Universitu of Agricultural Sciences and Natural Resources Publication. 216p. (In Persian).
21. Sarmast, M.K. (2019). Transient expression-based CRISPR/Cas9 system for manipulation of tall fescue SGR gene. Journal of Plant Production Research, 56, 35-43 (In Persian).
22. Sarmast, M.K. (2020). Principles and Application of CRISPR/Cas Technology in Genetic Modification of Plants. Gorgan University of Agricultural Sciences and Natural Resources Publication. 124p. (In Persian).
23. Shen, B., Zhang, W.S., Zhang, J., Zhou, J.K., Wang, J.Y., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X.X., Skarens, W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 11, 399-402. [DOI:10.1038/nmeth.2857]
24. Shibuya, K., Watanabeb, K., Ono, M. (2018). CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that 1 regulates petal 2 senescence in Japanese morning glory. Plant Physiology and Biochemistry, 131, 53-57. [DOI:10.1016/j.plaphy.2018.04.036]
25. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., Lee, G.J. (2016). Site-directed mutagenesis in Petunia hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 35, 1535-1544. [DOI:10.1007/s00299-016-1937-7]
26. Sun, L., Kao, T.H. (2018). CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction, 31, 129-143. [DOI:10.1007/s00497-017-0314-1]
27. Tasaki, K., Higuchi, A., Watanabe, A., Sasaki, N., Nishihara, M. (2019). Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports, 9, 15831. [DOI:10.1038/s41598-019-51808-3]
28. Tasaki, T., Yoshida, M., Nakajim, M., Higuchi, A., Watanabe, A., Nishihara, M. (2020). Molecular characterization of an anthocyanin-related glutathione Stransferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology, 20, 370. [DOI:10.1186/s12870-020-02565-3]
29. Tong, C.G., Wu, F.H., Yuan, Y.H., Chen, Y.R., Lin, C.S. (2020). High efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal, 18, 889-891. [DOI:10.1111/pbi.13264]
30. Vainstein, A. (2002). Breeding for Ornamentals: Classical and Molecular Approaches. Springer. 392p. [DOI:10.1007/978-94-017-0956-9]
31. Watanabe, K., Kobayashi, A., Endo, M., Sage-Ono, K., Toki, S., Ono, M. (2017). CRISPR/Cas9-mediated mutagenesis of the dihydrofavonol4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Report, 7, 10028. [DOI:10.1038/s41598-017-10715-1]
32. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., Ono, M. (2018). Alteration of flower color in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25-38. [DOI:10.1007/s11248-017-0051-0]
33. Wei, Q., Guo, Y., Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Report, 30, 1201-1207. [DOI:10.1007/s00299-011-1028-8]
34. Xu, J., Hua, K., Lang, Z. (2019). Genome editing for horticultural crop improvement. Horticulture Research, 6, 113. [DOI:10.1038/s41438-019-0196-5]
35. Xu, J., Kang, B.C., Naing, A.H., Bae, S.J., Kim, J.S., Kim, H., Kim, C.K. (2020). CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal, 18, 287-297. [DOI:10.1111/pbi.13197]
36. Yan, R., Wang, Z., Ren, Y., Li, H., Liu, N., Sun, H. (2019). Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Science, 20, 2920. [DOI:10.3390/ijms20122920]
37. Yu, J., Tu, L., Subburaj, S., Bae, S., Lee, G-J. (2020). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR‑Cas9 ribonucleoproteins. Plant Cell Reports, https://doi.org/10.1007/s00299-020-02593-1 [DOI:10.1007/s00299-020-02593-1.]
38. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J.L., Oost, J.V.D., Regev, A., Koonin, E.V., Zhang, F. (2015). Cpf1 is a single RNA-guide endonuclease of a class 2 CRISPRran-Cas system. Cell, 163, 1-13. [DOI:10.1016/j.cell.2015.09.038]
39. Zhang, B., Yang, X., Yang, C., Li, M., Guo, Y. (2016). Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Scientific Reports, 6, 20315. [DOI:10.1038/srep20315]
40. Zhang, F., Puchta, H., Thomson, J.G. (2015). Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York. 166p. [DOI:10.1007/978-1-4939-2556-8]
41. Ahn, C.H., Ramya, M., An, H.R., Park, P.M., Kim, Y-J., Lee, S.Y., Jang, S. (2020). Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, doi:10.3390/plants9060687. [DOI:10.3390/plants9060687]
42. Barrangou, R., van der Oost, J. (2013). CRISPR-Cas Systems RNA-Mediated Adaptive Immunity in Bacteria and Archaea. Springer Heidelberg New York Dordrecht London. 229 p. [DOI:10.1007/978-3-642-34657-6]
43. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [DOI:10.1099/mic.0.28048-0]
44. Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P. (2008). Phage response to CRISPR-encoded resistance in Streptococcus hermophiles. Journal of Bacteriology, 190, 1390-1400. [DOI:10.1128/JB.01412-07]
45. Doudna, J.A., Charpentier, E. (2014). Genome editing, The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. [DOI:10.1126/science.1258096]
46. Ebina, H., Misawa, N., Kanemura, Y., Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Report, 3, 2510. [DOI:10.1038/srep02510]
47. Gelvin S.B. (2003). Improving plant genetic engineering by manipulation the host. Nature, 21, 95-98. [DOI:10.1016/S0167-7799(03)00005-2]
48. Giovannini, A., Laura, M., Nesi, B., Savona, M., Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40, 461-478. [DOI:10.1007/s00299-020-02632-x]
49. Hahne, G., Tomlinson, L., Nogué, F. (2019). Precision genetic engineering tools for next-generation plant breeding. Plant Cell Reports, 38, 435-436. [DOI:10.1007/s00299-019-02400-6]
50. Hischler, J., Bürstmayr, H., Stoger, E. (2016). Targeted modification of plant genomes for precision crop breeding. Ciotechnology Journal, 11, 1-14. [DOI:10.1002/biot.201600173]
51. Kishi-Kaboshi, M., Aida, R., Sasaki, K. (2017). Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58, 216-226. [DOI:10.1093/pcp/pcw222]
52. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J. (2017). Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium ocinale. Frontiers in Plant Science, 7, 2036. [DOI:10.3389/fpls.2016.02036]
53. Ma, X., Zhu, Q., Chen, Y., Liu, Y.G. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 9, 961-974. [DOI:10.1016/j.molp.2016.04.009]
54. Mali, P., Aach, J.P., Stranges, B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, l., Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838. [DOI:10.1038/nbt.2675]
55. Mendenhall, E.M., Williamson, K.E., Reyon, D. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31, 1133-1136. [DOI:10.1038/nbt.2701]
56. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182. [DOI:10.1007/s00239-004-0046-3]
57. Montague, T., Cruz, G.J.M., Gagnon, J.A., Church, G.M., Valen, E. (2014). CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42, 401-407. [DOI:10.1093/nar/gku410]
58. Nishihara, M., Higuchi, A., Watanabe, A., Tasaki, K. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 331. [DOI:10.1186/s12870-018-1539-3]
59. Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology, 151, 653-663 [DOI:10.1099/mic.0.27437-0]
60. Sarmast, M.K. Janati, M. (2019). Advances in New Technology for Targeted Modification of Plant Genomes. Gorgan Universitu of Agricultural Sciences and Natural Resources Publication. 216p. (In Persian).
61. Sarmast, M.K. (2019). Transient expression-based CRISPR/Cas9 system for manipulation of tall fescue SGR gene. Journal of Plant Production Research, 56, 35-43 (In Persian).
62. Sarmast, M.K. (2020). Principles and Application of CRISPR/Cas Technology in Genetic Modification of Plants. Gorgan University of Agricultural Sciences and Natural Resources Publication. 124p. (In Persian).
63. Shen, B., Zhang, W.S., Zhang, J., Zhou, J.K., Wang, J.Y., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X.X., Skarens, W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 11, 399-402. [DOI:10.1038/nmeth.2857]
64. Shibuya, K., Watanabeb, K., Ono, M. (2018). CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that 1 regulates petal 2 senescence in Japanese morning glory. Plant Physiology and Biochemistry, 131, 53-57. [DOI:10.1016/j.plaphy.2018.04.036]
65. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., Lee, G.J. (2016). Site-directed mutagenesis in Petunia hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 35, 1535-1544. [DOI:10.1007/s00299-016-1937-7]
66. Sun, L., Kao, T.H. (2018). CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction, 31, 129-143. [DOI:10.1007/s00497-017-0314-1]
67. Tasaki, K., Higuchi, A., Watanabe, A., Sasaki, N., Nishihara, M. (2019). Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports, 9, 15831. [DOI:10.1038/s41598-019-51808-3]
68. Tasaki, T., Yoshida, M., Nakajim, M., Higuchi, A., Watanabe, A., Nishihara, M. (2020). Molecular characterization of an anthocyanin-related glutathione Stransferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology, 20, 370. [DOI:10.1186/s12870-020-02565-3]
69. Tong, C.G., Wu, F.H., Yuan, Y.H., Chen, Y.R., Lin, C.S. (2020). High efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal, 18, 889-891. [DOI:10.1111/pbi.13264]
70. Vainstein, A. (2002). Breeding for Ornamentals: Classical and Molecular Approaches. Springer. 392p. [DOI:10.1007/978-94-017-0956-9]
71. Watanabe, K., Kobayashi, A., Endo, M., Sage-Ono, K., Toki, S., Ono, M. (2017). CRISPR/Cas9-mediated mutagenesis of the dihydrofavonol4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Report, 7, 10028. [DOI:10.1038/s41598-017-10715-1]
72. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., Ono, M. (2018). Alteration of flower color in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25-38. [DOI:10.1007/s11248-017-0051-0]
73. Wei, Q., Guo, Y., Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Report, 30, 1201-1207. [DOI:10.1007/s00299-011-1028-8]
74. Xu, J., Hua, K., Lang, Z. (2019). Genome editing for horticultural crop improvement. Horticulture Research, 6, 113. [DOI:10.1038/s41438-019-0196-5]
75. Xu, J., Kang, B.C., Naing, A.H., Bae, S.J., Kim, J.S., Kim, H., Kim, C.K. (2020). CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal, 18, 287-297. [DOI:10.1111/pbi.13197]
76. Yan, R., Wang, Z., Ren, Y., Li, H., Liu, N., Sun, H. (2019). Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Science, 20, 2920. [DOI:10.3390/ijms20122920]
77. Yu, J., Tu, L., Subburaj, S., Bae, S., Lee, G-J. (2020). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR‑Cas9 ribonucleoproteins. Plant Cell Reports, https://doi.org/10.1007/s00299-020-02593-1 [DOI:10.1007/s00299-020-02593-1.]
78. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J.L., Oost, J.V.D., Regev, A., Koonin, E.V., Zhang, F. (2015). Cpf1 is a single RNA-guide endonuclease of a class 2 CRISPRran-Cas system. Cell, 163, 1-13. [DOI:10.1016/j.cell.2015.09.038]
79. Zhang, B., Yang, X., Yang, C., Li, M., Guo, Y. (2016). Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Scientific Reports, 6, 20315. [DOI:10.1038/srep20315]
80. Zhang, F., Puchta, H., Thomson, J.G. (2015). Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York. 166p. [DOI:10.1007/978-1-4939-2556-8]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

K. Sarmast M. CRISPR/Cas, a powerful tool for genome editing in ornamental plants. FOP 2021; 6 (1) :37-48
URL: http://flowerjournal.ir/article-1-182-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (Spring and Summer 2021) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645