1. Bantle, A., Borken, W., Ellerbrock, R.H., Schulze, E.D., Weisser, W.W., Matzner, E. (2014). Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecology and Management, 329, 287-294. [ DOI:10.1016/j.foreco.2014.06.035] 2. Bres, W., Politycka, B. (2016). Contamination of Soils and Substrates in Horticulture. In: Larramendy, M.L., Soloneski, S. (Eds). Soil Contamination - Current Consequences and Further Solutions. InTech Pub. Croatia, pp. 23-41. [ DOI:10.5772/64567] 3. Duryea, M.L., English, R.J., Hermansen, L.A. (1999). A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. Journal of Arboriculture, 25, 88-96. [ DOI:10.48044/jauf.1999.014] 4. Fazli, R., Nazarnezhad, N., Ebrahimzadeh, M. (2013). Evaluation of the antioxidant capacities and total phenolic contents of Beech, Hornbeam and Poplar Barks. Forest and Wood Products, 66(3), 339-349. 5. Gajdos, R. (1997). Effects of two composts and seven commercial cultivation media on germination and yield. Compost Science & Utilization, 5, 16-37. [ DOI:10.1080/1065657X.1997.10701861] 6. Gariglio, N.F., Buyatti, M.A., Pilatti, R.A., Gonzalez Rossia, D.E., Acosta, M.R. (2002). Use of a germination bioassay to test compost maturity of willow (salix sp.) sawdust. New Zealand Journal of Crop and Horticulture Science, 30, 135-139. [ DOI:10.1080/01140671.2002.9514208] 7. Haig, T. (2013). Allelochemicals in plants. In: Zeng, R. S., Mallik, A. U., Luo, S.M. (Eds). Allelopathy in Sustainable Agriculture and Forestry. New York: Springer; p. 63-104. [ DOI:10.1007/978-0-387-77337-7_4] 8. Heidari, M. (2022). Evaluation of Allelopathic Effects of Wood Chips of Pomegranate, Sour Orange and Date Palm Leaves on Seed Germination of Lettuce. Journal of Research in Plant Metabolits, 1(1), 63-75. (In Persian). 9. Henschk, M., Politycka, B. (2016). Application of wood chips for soil mulching in the cultivation of ornamental grasses. Folia Horticulture, 28(2), 187-194. [ DOI:10.1515/fhort-2016-0022] 10. Ismail, N.Z., Arsad, H., Samian, M.R., Hamdan, M.R. 2017. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. AGRIVITA Journal of Agricultural Science, 39(3), 335-344. [ DOI:10.17503/agrivita.v39i3.1076] 11. Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 15, 57-65. [ DOI:10.1016/j.cropro.2015.03.004] 12. Kannepalli, S., Strom, P., F., Krogmann, U., Subroy, V, Gimenez, D., Miskewitz, R. (2016). Characterization of wood mulch and leachate/runoff from three wood recycling facilities. Journal of Environmental Management, 182, 421- 428. [ DOI:10.1016/j.jenvman.2016.07.093] 13. Kazemi, F., Jozay, M. (2020). Allelopathic effects of some organic mulch extracts on seed germination and early growth of some ornamental plants. Journal of Ornamental Plants, 10(2), 99-108. 14. Komilis, D.P. and Ham, R.K. (2003). The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23, 419-423. [ DOI:10.1016/S0956-053X(03)00062-X] 15. Kunz, Ch., Sturm D.J., Varnholt, D., Walker, D. F., Gerhards, R. (2016). Allelopathic ability and weed suppressive ability of cover crops. Plant Soil Environment. 62, 60-66. [ DOI:10.17221/612/2015-PSE] 16. Maimoona, A., Naeem, I., Saddiqe, Z., Ali, N., Ahmed, G., Shah, I. (2011). Analysis of total flavonoids and phenolics in different fractions of bark and needle extracts of Pinus roxburghii and Pinus wallichiana. Journal of Medicinal Plants Research, 5, 2724-2728. 17. Manalo, C., S. Nakai. (2018). Inhibitory effects of woodchips on growth of climbing bean plant Kudzu vine (Pueraria lobataOhwi). Allelopathy Journal, 45(2), 173-182. [ DOI:10.26651/allelo.j./2018-45-2-1185] 18. Merwin, I.A., Hopkins, M.A., Byard, R.R. (2001). Groundcover managementinfluences nitrogen release, retention, and recycling in a New York apple orchard. Hortscience, 36(3), 451. 19. Nazari, S., Nazarnezhad, N., Ebrahimzadeh, M.A. (2013). Evaluation of antioxidant properties and total phenolic and flavonoids content of Eucalyptus camaldulensis and Pinus sylvestris bark. Iranian Journal of Wood and Paper Science Research, 28(3), 522-533. 20. Paes, J.B., Diniz, C.E.F., Lima, C.R., Bastos, P.M. Medeiros Neto, P.N. (2013). Condensed tannins of Anadenanthera colubrina var. cebil bark extracted with sodium hydroxide and sodium sulfite solutions. Revista Caatinga, 26(3), 22-27. 21. Panzella, L., Moccia, F., Toscanesi, M., Trifuoggi, M., Giovando, S., Napolitano, A. (2019). Exhausted woods from tannin extraction as an unexplored waste biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants, 8(84), 1-13. [ DOI:10.3390/antiox8040084] 22. Rathinasabapathi, B., Ferguson, J., Gal, M. (2005). Evaluation of Allelopathic Potential of Wood Chips for Weed Suppression in Horticultural Production Systems. HortScience, 40(3), 711-713. [ DOI:10.21273/HORTSCI.40.3.711] 23. Reigosa M.J., Pedrol, M. (2002). Allelopathy: from molecules to ecosystems. Science Publishers, Enfield, New Hampshire, USA, 385-389. 24. Saha, D., Marble, S.C., Pearson, B.J. (2018). Allelopathic Effects of Common Landscape and Nursery Mulch Materials on Weed Control. Frontiers in Plant Science, 9, 733. [ DOI:10.3389/fpls.2018.00733] 25. Santiago, S.B., Gonçalves, F.G., Paes, J.B., Lelis, R.C.C., Vidaurre, G.B., Chaves Arantes, M.D., (2019). Condensed tannins extracted from Eucalyptus bark waste. Floresta, 49(1), 49-56. [ DOI:10.5380/rf.v49i1.56141] 26. Santos, S.A., Vilela, C., Freire, C.S., Neto, C.P., Silvestre, A.J. (2013). Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. Journal of Chromatography, 938, 65-74. [ DOI:10.1016/j.jchromb.2013.08.034] 27. Seigler, D.S. (1996). Chemistry and mechanisms of allelopathic interactions. Agronomy Journal. 88: 876-885. [ DOI:10.2134/agronj1996.00021962003600060006x] 28. Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley and Los Angeles, CA. 372 pp. [ DOI:10.1525/9780520407114] 29. TMECC (Test Methods for the Examination of Composts and Composting). (2002). In: Thompson, W., Leege, P., Millner, P., Watson, M.E. (Eds.). The US Composting Council, U. S. Government Printing Office. 30. Waterhouse, A.L., (2002). Determination of Total Phenolics, in Current Protocols in Food Analytical Chemistry, I1.1.1-I1.1.8, John Wiley and Sons, Inc, Hoboken, N. J. 31. Zucconi, F., Monaco, A., Forte, M., Bertoldi, M. (1985). Phytotoxins during the stabilization of organic matter. In: Gasser, J. K. R. ed. Composting of agricultural and other wastes. London and New York, Elsevier Applied Science. pp. 73-88. 32. Bantle, A., Borken, W., Ellerbrock, R.H., Schulze, E.D., Weisser, W.W., Matzner, E. (2014). Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecology and Management, 329, 287-294. [ DOI:10.1016/j.foreco.2014.06.035] 33. Bres, W., Politycka, B. (2016). Contamination of Soils and Substrates in Horticulture. In: Larramendy, M.L., Soloneski, S. (Eds). Soil Contamination - Current Consequences and Further Solutions. InTech Pub. Croatia, pp. 23-41. [ DOI:10.5772/64567] 34. Duryea, M.L., English, R.J., Hermansen, L.A. (1999). A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. Journal of Arboriculture, 25, 88-96. [ DOI:10.48044/jauf.1999.014] 35. Fazli, R., Nazarnezhad, N., Ebrahimzadeh, M. (2013). Evaluation of the antioxidant capacities and total phenolic contents of Beech, Hornbeam and Poplar Barks. Forest and Wood Products, 66(3), 339-349. 36. Gajdos, R. (1997). Effects of two composts and seven commercial cultivation media on germination and yield. Compost Science & Utilization, 5, 16-37. [ DOI:10.1080/1065657X.1997.10701861] 37. Gariglio, N.F., Buyatti, M.A., Pilatti, R.A., Gonzalez Rossia, D.E., Acosta, M.R. (2002). Use of a germination bioassay to test compost maturity of willow (salix sp.) sawdust. New Zealand Journal of Crop and Horticulture Science, 30, 135-139. [ DOI:10.1080/01140671.2002.9514208] 38. Haig, T. (2013). Allelochemicals in plants. In: Zeng, R. S., Mallik, A. U., Luo, S.M. (Eds). Allelopathy in Sustainable Agriculture and Forestry. New York: Springer; p. 63-104. [ DOI:10.1007/978-0-387-77337-7_4] 39. Heidari, M. (2022). Evaluation of Allelopathic Effects of Wood Chips of Pomegranate, Sour Orange and Date Palm Leaves on Seed Germination of Lettuce. Journal of Research in Plant Metabolits, 1(1), 63-75. (In Persian). 40. Henschk, M., Politycka, B. (2016). Application of wood chips for soil mulching in the cultivation of ornamental grasses. Folia Horticulture, 28(2), 187-194. [ DOI:10.1515/fhort-2016-0022] 41. Ismail, N.Z., Arsad, H., Samian, M.R., Hamdan, M.R. 2017. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. AGRIVITA Journal of Agricultural Science, 39(3), 335-344. [ DOI:10.17503/agrivita.v39i3.1076] 42. Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 15, 57-65. [ DOI:10.1016/j.cropro.2015.03.004] 43. Kannepalli, S., Strom, P., F., Krogmann, U., Subroy, V, Gimenez, D., Miskewitz, R. (2016). Characterization of wood mulch and leachate/runoff from three wood recycling facilities. Journal of Environmental Management, 182, 421- 428. [ DOI:10.1016/j.jenvman.2016.07.093] 44. Kazemi, F., Jozay, M. (2020). Allelopathic effects of some organic mulch extracts on seed germination and early growth of some ornamental plants. Journal of Ornamental Plants, 10(2), 99-108. 45. Komilis, D.P. and Ham, R.K. (2003). The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23, 419-423. [ DOI:10.1016/S0956-053X(03)00062-X] 46. Kunz, Ch., Sturm D.J., Varnholt, D., Walker, D. F., Gerhards, R. (2016). Allelopathic ability and weed suppressive ability of cover crops. Plant Soil Environment. 62, 60-66. [ DOI:10.17221/612/2015-PSE] 47. Maimoona, A., Naeem, I., Saddiqe, Z., Ali, N., Ahmed, G., Shah, I. (2011). Analysis of total flavonoids and phenolics in different fractions of bark and needle extracts of Pinus roxburghii and Pinus wallichiana. Journal of Medicinal Plants Research, 5, 2724-2728. 48. Manalo, C., S. Nakai. (2018). Inhibitory effects of woodchips on growth of climbing bean plant Kudzu vine (Pueraria lobataOhwi). Allelopathy Journal, 45(2), 173-182. [ DOI:10.26651/allelo.j./2018-45-2-1185] 49. Merwin, I.A., Hopkins, M.A., Byard, R.R. (2001). Groundcover managementinfluences nitrogen release, retention, and recycling in a New York apple orchard. Hortscience, 36(3), 451. 50. Nazari, S., Nazarnezhad, N., Ebrahimzadeh, M.A. (2013). Evaluation of antioxidant properties and total phenolic and flavonoids content of Eucalyptus camaldulensis and Pinus sylvestris bark. Iranian Journal of Wood and Paper Science Research, 28(3), 522-533. 51. Paes, J.B., Diniz, C.E.F., Lima, C.R., Bastos, P.M. Medeiros Neto, P.N. (2013). Condensed tannins of Anadenanthera colubrina var. cebil bark extracted with sodium hydroxide and sodium sulfite solutions. Revista Caatinga, 26(3), 22-27. 52. Panzella, L., Moccia, F., Toscanesi, M., Trifuoggi, M., Giovando, S., Napolitano, A. (2019). Exhausted woods from tannin extraction as an unexplored waste biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants, 8(84), 1-13. [ DOI:10.3390/antiox8040084] 53. Rathinasabapathi, B., Ferguson, J., Gal, M. (2005). Evaluation of Allelopathic Potential of Wood Chips for Weed Suppression in Horticultural Production Systems. HortScience, 40(3), 711-713. [ DOI:10.21273/HORTSCI.40.3.711] 54. Reigosa M.J., Pedrol, M. (2002). Allelopathy: from molecules to ecosystems. Science Publishers, Enfield, New Hampshire, USA, 385-389. 55. Saha, D., Marble, S.C., Pearson, B.J. (2018). Allelopathic Effects of Common Landscape and Nursery Mulch Materials on Weed Control. Frontiers in Plant Science, 9, 733. [ DOI:10.3389/fpls.2018.00733] 56. Santiago, S.B., Gonçalves, F.G., Paes, J.B., Lelis, R.C.C., Vidaurre, G.B., Chaves Arantes, M.D., (2019). Condensed tannins extracted from Eucalyptus bark waste. Floresta, 49(1), 49-56. [ DOI:10.5380/rf.v49i1.56141] 57. Santos, S.A., Vilela, C., Freire, C.S., Neto, C.P., Silvestre, A.J. (2013). Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. Journal of Chromatography, 938, 65-74. [ DOI:10.1016/j.jchromb.2013.08.034] 58. Seigler, D.S. (1996). Chemistry and mechanisms of allelopathic interactions. Agronomy Journal. 88: 876-885. [ DOI:10.2134/agronj1996.00021962003600060006x] 59. Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley and Los Angeles, CA. 372 pp. [ DOI:10.1525/9780520407114] 60. TMECC (Test Methods for the Examination of Composts and Composting). (2002). In: Thompson, W., Leege, P., Millner, P., Watson, M.E. (Eds.). The US Composting Council, U. S. Government Printing Office. 61. Waterhouse, A.L., (2002). Determination of Total Phenolics, in Current Protocols in Food Analytical Chemistry, I1.1.1-I1.1.8, John Wiley and Sons, Inc, Hoboken, N. J. 62. Zucconi, F., Monaco, A., Forte, M., Bertoldi, M. (1985). Phytotoxins during the stabilization of organic matter. In: Gasser, J. K. R. ed. Composting of agricultural and other wastes. London and New York, Elsevier Applied Science. pp. 73-88.
|