[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 1 (Spring and Summer 2024) ::
FOP 2024, 9(1): 119-134 Back to browse issues page
Evaluation of allelopathic effects of wood chips of some ornamental trees and shrubs in Khuzestan province
Mokhtar Heidari *
Agricultural Sciences and Natural Resources University of Khuzestan
Abstract:   (1687 Views)
Producing compost, mulch, or organic fertilizers are suitable methods for utilizing pruning residues, which are effective in reducing environmental problems caused by the accumulation of pruning residues. Wood is a part of pruning residues that, due to decomposition and release of biochemical compounds, have allelopathic effects. Since limited reports have been published regarding the allelopathic effects of wood from trees and ornamental shrubs, in the current experiment, the biochemical compounds and allelopathic effects of wood from eight species of ornamental trees and shrubs were investigated. Pruned wood of Bougainvillea, Albizia lebbeck, Cordia myxa, Conocarpus, Dodonaea viscosa, Nerium oleander, Leucaena leucocephala, and Callistemon citrinus was soaked in water for 24 and 48 hours to prepare water elutes. The analysis of biochemical compounds showed significant differences in the phenolic compounds, tannin index (A280), flavonoids, non-structural soluble carbohydrates, total suspended solids, and electrical conductivity in the water elutes of wood samples, but the pH of the water elutes did not show significant differences. The duration of soaking wood in water (24 or 48 hours) affected the electrical conductivity and biochemical compounds in the water elutes. The Leucaena leucocephala extract had the highest tannin index (67.10 A280/ml) and soluble carbohydrates (81.1 mg/g), while the highest total phenol content was in Leucaena leucocephala and Conocarpus (1.107 and 55.114 mg/g, respectively). The highest electrical conductivity was in the Cordia myxa extract (87.2 ds/m), and the highest total suspended solids were in the Callistemon citrinus extract (0.61%). The highest level of flavonoids was found in Bougainvillea, Nerium oleander, Leucaena leucocephala, and Cordia myxa. The allelopathic effects of the water elute prepared from wood samples resulted in a reduction in germination percentage and germination index of cucumber seeds, as well as a decrease in the root and shoot length of cucumber seedlings, indicating the presence of allelopathic effects of biochemical compounds present in the wood of trees and ornamental shrubs. These results can be useful in selecting these species for designing landscape plantings to their allelopathic effects of residues on neighboring grasses and ornamental plants, or in managing pruning residues and producing compost or mulch from the wood of ornamental trees and shrubs.
Keywords: Bioassays, Germination, Growth, Inhibitory effects, Phenolic Compounds, Pruning residues
Full-Text [PDF 962 kb]   (449 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/03/25 | Accepted: 2024/04/13 | Published: 2024/10/22
References
1. Bantle, A., Borken, W., Ellerbrock, R.H., Schulze, E.D., Weisser, W.W., Matzner, E. (2014). Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecology and Management, 329, 287-294. [DOI:10.1016/j.foreco.2014.06.035]
2. Bres, W., Politycka, B. (2016). Contamination of Soils and Substrates in Horticulture. In: Larramendy, M.L., Soloneski, S. (Eds). Soil Contamination - Current Consequences and Further Solutions. InTech Pub. Croatia, pp. 23-41. [DOI:10.5772/64567]
3. Duryea, M.L., English, R.J., Hermansen, L.A. (1999). A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. Journal of Arboriculture, 25, 88-96. [DOI:10.48044/jauf.1999.014]
4. Fazli, R., Nazarnezhad, N., Ebrahimzadeh, M. (2013). Evaluation of the antioxidant capacities and total phenolic contents of Beech, Hornbeam and Poplar Barks. Forest and Wood Products, 66(3), 339-349.
5. Gajdos, R. (1997). Effects of two composts and seven commercial cultivation media on germination and yield. Compost Science & Utilization, 5, 16-37. [DOI:10.1080/1065657X.1997.10701861]
6. Gariglio, N.F., Buyatti, M.A., Pilatti, R.A., Gonzalez Rossia, D.E., Acosta, M.R. (2002). Use of a germination bioassay to test compost maturity of willow (salix sp.) sawdust. New Zealand Journal of Crop and Horticulture Science, 30, 135-139. [DOI:10.1080/01140671.2002.9514208]
7. Haig, T. (2013). Allelochemicals in plants. In: Zeng, R. S., Mallik, A. U., Luo, S.M. (Eds). Allelopathy in Sustainable Agriculture and Forestry. New York: Springer; p. 63-104. [DOI:10.1007/978-0-387-77337-7_4]
8. Heidari, M. (2022). Evaluation of Allelopathic Effects of Wood Chips of Pomegranate, Sour Orange and Date Palm Leaves on Seed Germination of Lettuce. Journal of Research in Plant Metabolits, 1(1), 63-75. (In Persian).
9. Henschk, M., Politycka, B. (2016). Application of wood chips for soil mulching in the cultivation of ornamental grasses. Folia Horticulture, 28(2), 187-194. [DOI:10.1515/fhort-2016-0022]
10. Ismail, N.Z., Arsad, H., Samian, M.R., Hamdan, M.R. 2017. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. AGRIVITA Journal of Agricultural Science, 39(3), 335-344. [DOI:10.17503/agrivita.v39i3.1076]
11. Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 15, 57-65. [DOI:10.1016/j.cropro.2015.03.004]
12. Kannepalli, S., Strom, P., F., Krogmann, U., Subroy, V, Gimenez, D., Miskewitz, R. (2016). Characterization of wood mulch and leachate/runoff from three wood recycling facilities. Journal of Environmental Management, 182, 421- 428. [DOI:10.1016/j.jenvman.2016.07.093]
13. Kazemi, F., Jozay, M. (2020). Allelopathic effects of some organic mulch extracts on seed germination and early growth of some ornamental plants. Journal of Ornamental Plants, 10(2), 99-108.
14. Komilis, D.P. and Ham, R.K. (2003). The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23, 419-423. [DOI:10.1016/S0956-053X(03)00062-X]
15. Kunz, Ch., Sturm D.J., Varnholt, D., Walker, D. F., Gerhards, R. (2016). Allelopathic ability and weed suppressive ability of cover crops. Plant Soil Environment. 62, 60-66. [DOI:10.17221/612/2015-PSE]
16. Maimoona, A., Naeem, I., Saddiqe, Z., Ali, N., Ahmed, G., Shah, I. (2011). Analysis of total flavonoids and phenolics in different fractions of bark and needle extracts of Pinus roxburghii and Pinus wallichiana. Journal of Medicinal Plants Research, 5, 2724-2728.
17. Manalo, C., S. Nakai. (2018). Inhibitory effects of woodchips on growth of climbing bean plant Kudzu vine (Pueraria lobataOhwi). Allelopathy Journal, 45(2), 173-182. [DOI:10.26651/allelo.j./2018-45-2-1185]
18. Merwin, I.A., Hopkins, M.A., Byard, R.R. (2001). Groundcover managementinfluences nitrogen release, retention, and recycling in a New York apple orchard. Hortscience, 36(3), 451.
19. Nazari, S., Nazarnezhad, N., Ebrahimzadeh, M.A. (2013). Evaluation of antioxidant properties and total phenolic and flavonoids content of Eucalyptus camaldulensis and Pinus sylvestris bark. Iranian Journal of Wood and Paper Science Research, 28(3), 522-533.
20. Paes, J.B., Diniz, C.E.F., Lima, C.R., Bastos, P.M. Medeiros Neto, P.N. (2013). Condensed tannins of Anadenanthera colubrina var. cebil bark extracted with sodium hydroxide and sodium sulfite solutions. Revista Caatinga, 26(3), 22-27.
21. Panzella, L., Moccia, F., Toscanesi, M., Trifuoggi, M., Giovando, S., Napolitano, A. (2019). Exhausted woods from tannin extraction as an unexplored waste biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants, 8(84), 1-13. [DOI:10.3390/antiox8040084]
22. Rathinasabapathi, B., Ferguson, J., Gal, M. (2005). Evaluation of Allelopathic Potential of Wood Chips for Weed Suppression in Horticultural Production Systems. HortScience, 40(3), 711-713. [DOI:10.21273/HORTSCI.40.3.711]
23. Reigosa M.J., Pedrol, M. (2002). Allelopathy: from molecules to ecosystems. Science Publishers, Enfield, New Hampshire, USA, 385-389.
24. Saha, D., Marble, S.C., Pearson, B.J. (2018). Allelopathic Effects of Common Landscape and Nursery Mulch Materials on Weed Control. Frontiers in Plant Science, 9, 733. [DOI:10.3389/fpls.2018.00733]
25. Santiago, S.B., Gonçalves, F.G., Paes, J.B., Lelis, R.C.C., Vidaurre, G.B., Chaves Arantes, M.D., (2019). Condensed tannins extracted from Eucalyptus bark waste. Floresta, 49(1), 49-56. [DOI:10.5380/rf.v49i1.56141]
26. Santos, S.A., Vilela, C., Freire, C.S., Neto, C.P., Silvestre, A.J. (2013). Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. Journal of Chromatography, 938, 65-74. [DOI:10.1016/j.jchromb.2013.08.034]
27. Seigler, D.S. (1996). Chemistry and mechanisms of allelopathic interactions. Agronomy Journal. 88: 876-885. [DOI:10.2134/agronj1996.00021962003600060006x]
28. Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley and Los Angeles, CA. 372 pp. [DOI:10.1525/9780520407114]
29. TMECC (Test Methods for the Examination of Composts and Composting). (2002). In: Thompson, W., Leege, P., Millner, P., Watson, M.E. (Eds.). The US Composting Council, U. S. Government Printing Office.
30. Waterhouse, A.L., (2002). Determination of Total Phenolics, in Current Protocols in Food Analytical Chemistry, I1.1.1-I1.1.8, John Wiley and Sons, Inc, Hoboken, N. J.
31. Zucconi, F., Monaco, A., Forte, M., Bertoldi, M. (1985). Phytotoxins during the stabilization of organic matter. In: Gasser, J. K. R. ed. Composting of agricultural and other wastes. London and New York, Elsevier Applied Science. pp. 73-88.
32. Bantle, A., Borken, W., Ellerbrock, R.H., Schulze, E.D., Weisser, W.W., Matzner, E. (2014). Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecology and Management, 329, 287-294. [DOI:10.1016/j.foreco.2014.06.035]
33. Bres, W., Politycka, B. (2016). Contamination of Soils and Substrates in Horticulture. In: Larramendy, M.L., Soloneski, S. (Eds). Soil Contamination - Current Consequences and Further Solutions. InTech Pub. Croatia, pp. 23-41. [DOI:10.5772/64567]
34. Duryea, M.L., English, R.J., Hermansen, L.A. (1999). A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. Journal of Arboriculture, 25, 88-96. [DOI:10.48044/jauf.1999.014]
35. Fazli, R., Nazarnezhad, N., Ebrahimzadeh, M. (2013). Evaluation of the antioxidant capacities and total phenolic contents of Beech, Hornbeam and Poplar Barks. Forest and Wood Products, 66(3), 339-349.
36. Gajdos, R. (1997). Effects of two composts and seven commercial cultivation media on germination and yield. Compost Science & Utilization, 5, 16-37. [DOI:10.1080/1065657X.1997.10701861]
37. Gariglio, N.F., Buyatti, M.A., Pilatti, R.A., Gonzalez Rossia, D.E., Acosta, M.R. (2002). Use of a germination bioassay to test compost maturity of willow (salix sp.) sawdust. New Zealand Journal of Crop and Horticulture Science, 30, 135-139. [DOI:10.1080/01140671.2002.9514208]
38. Haig, T. (2013). Allelochemicals in plants. In: Zeng, R. S., Mallik, A. U., Luo, S.M. (Eds). Allelopathy in Sustainable Agriculture and Forestry. New York: Springer; p. 63-104. [DOI:10.1007/978-0-387-77337-7_4]
39. Heidari, M. (2022). Evaluation of Allelopathic Effects of Wood Chips of Pomegranate, Sour Orange and Date Palm Leaves on Seed Germination of Lettuce. Journal of Research in Plant Metabolits, 1(1), 63-75. (In Persian).
40. Henschk, M., Politycka, B. (2016). Application of wood chips for soil mulching in the cultivation of ornamental grasses. Folia Horticulture, 28(2), 187-194. [DOI:10.1515/fhort-2016-0022]
41. Ismail, N.Z., Arsad, H., Samian, M.R., Hamdan, M.R. 2017. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. AGRIVITA Journal of Agricultural Science, 39(3), 335-344. [DOI:10.17503/agrivita.v39i3.1076]
42. Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 15, 57-65. [DOI:10.1016/j.cropro.2015.03.004]
43. Kannepalli, S., Strom, P., F., Krogmann, U., Subroy, V, Gimenez, D., Miskewitz, R. (2016). Characterization of wood mulch and leachate/runoff from three wood recycling facilities. Journal of Environmental Management, 182, 421- 428. [DOI:10.1016/j.jenvman.2016.07.093]
44. Kazemi, F., Jozay, M. (2020). Allelopathic effects of some organic mulch extracts on seed germination and early growth of some ornamental plants. Journal of Ornamental Plants, 10(2), 99-108.
45. Komilis, D.P. and Ham, R.K. (2003). The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23, 419-423. [DOI:10.1016/S0956-053X(03)00062-X]
46. Kunz, Ch., Sturm D.J., Varnholt, D., Walker, D. F., Gerhards, R. (2016). Allelopathic ability and weed suppressive ability of cover crops. Plant Soil Environment. 62, 60-66. [DOI:10.17221/612/2015-PSE]
47. Maimoona, A., Naeem, I., Saddiqe, Z., Ali, N., Ahmed, G., Shah, I. (2011). Analysis of total flavonoids and phenolics in different fractions of bark and needle extracts of Pinus roxburghii and Pinus wallichiana. Journal of Medicinal Plants Research, 5, 2724-2728.
48. Manalo, C., S. Nakai. (2018). Inhibitory effects of woodchips on growth of climbing bean plant Kudzu vine (Pueraria lobataOhwi). Allelopathy Journal, 45(2), 173-182. [DOI:10.26651/allelo.j./2018-45-2-1185]
49. Merwin, I.A., Hopkins, M.A., Byard, R.R. (2001). Groundcover managementinfluences nitrogen release, retention, and recycling in a New York apple orchard. Hortscience, 36(3), 451.
50. Nazari, S., Nazarnezhad, N., Ebrahimzadeh, M.A. (2013). Evaluation of antioxidant properties and total phenolic and flavonoids content of Eucalyptus camaldulensis and Pinus sylvestris bark. Iranian Journal of Wood and Paper Science Research, 28(3), 522-533.
51. Paes, J.B., Diniz, C.E.F., Lima, C.R., Bastos, P.M. Medeiros Neto, P.N. (2013). Condensed tannins of Anadenanthera colubrina var. cebil bark extracted with sodium hydroxide and sodium sulfite solutions. Revista Caatinga, 26(3), 22-27.
52. Panzella, L., Moccia, F., Toscanesi, M., Trifuoggi, M., Giovando, S., Napolitano, A. (2019). Exhausted woods from tannin extraction as an unexplored waste biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants, 8(84), 1-13. [DOI:10.3390/antiox8040084]
53. Rathinasabapathi, B., Ferguson, J., Gal, M. (2005). Evaluation of Allelopathic Potential of Wood Chips for Weed Suppression in Horticultural Production Systems. HortScience, 40(3), 711-713. [DOI:10.21273/HORTSCI.40.3.711]
54. Reigosa M.J., Pedrol, M. (2002). Allelopathy: from molecules to ecosystems. Science Publishers, Enfield, New Hampshire, USA, 385-389.
55. Saha, D., Marble, S.C., Pearson, B.J. (2018). Allelopathic Effects of Common Landscape and Nursery Mulch Materials on Weed Control. Frontiers in Plant Science, 9, 733. [DOI:10.3389/fpls.2018.00733]
56. Santiago, S.B., Gonçalves, F.G., Paes, J.B., Lelis, R.C.C., Vidaurre, G.B., Chaves Arantes, M.D., (2019). Condensed tannins extracted from Eucalyptus bark waste. Floresta, 49(1), 49-56. [DOI:10.5380/rf.v49i1.56141]
57. Santos, S.A., Vilela, C., Freire, C.S., Neto, C.P., Silvestre, A.J. (2013). Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. Journal of Chromatography, 938, 65-74. [DOI:10.1016/j.jchromb.2013.08.034]
58. Seigler, D.S. (1996). Chemistry and mechanisms of allelopathic interactions. Agronomy Journal. 88: 876-885. [DOI:10.2134/agronj1996.00021962003600060006x]
59. Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley and Los Angeles, CA. 372 pp. [DOI:10.1525/9780520407114]
60. TMECC (Test Methods for the Examination of Composts and Composting). (2002). In: Thompson, W., Leege, P., Millner, P., Watson, M.E. (Eds.). The US Composting Council, U. S. Government Printing Office.
61. Waterhouse, A.L., (2002). Determination of Total Phenolics, in Current Protocols in Food Analytical Chemistry, I1.1.1-I1.1.8, John Wiley and Sons, Inc, Hoboken, N. J.
62. Zucconi, F., Monaco, A., Forte, M., Bertoldi, M. (1985). Phytotoxins during the stabilization of organic matter. In: Gasser, J. K. R. ed. Composting of agricultural and other wastes. London and New York, Elsevier Applied Science. pp. 73-88.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari M. Evaluation of allelopathic effects of wood chips of some ornamental trees and shrubs in Khuzestan province. FOP 2024; 9 (1) :119-134
URL: http://flowerjournal.ir/article-1-304-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Spring and Summer 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.03 seconds with 37 queries by YEKTAWEB 4732