[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 8، شماره 1 - ( بهار و تابستان 1402 ) ::
جلد 8 شماره 1 صفحات 154-141 برگشت به فهرست نسخه ها
اثر دی کرومات پتاسیم بر شاخص‌های مورفولوژیک و بیوشیمیایی سه رقم رز مناسب فضای سبز شهری
معصومه رحیمی ، محمود شور* ، علی تهرانی فر ، جعفر نباتی
دانشگاه فردوسی مشهد
چکیده:   (1285 مشاهده)
کروم یکی از مهم‌ترین عناصر سنگین است که در سال‌های اخیر به دلیل استفاده‌های وسیع در صنعت، سموم کشاورزی و رها کردن پسماندهای صنعتی و پساب به آب‌ها، بیش‌ازحد به محیط افزوده ‌شده است. از سویی به دلیل خشکسالی‌های پی­درپی استفاده از پساب‌ برای آبیاری فضاهای سبز رایج شده است. برای ارزیابی اثر سطوح مختلف کروم (صفر، 75 و 150 میلی‌گرم در کیلوگرم) روی سه رقم گل رز (سفید، مهندسی و هفت‌رنگ) آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار به‌صورت گلدانی در سال 1398 در گلخانه پژوهشی دانشکده کشاورزی دانشگاه فردوسی مشهد انجام شد. به مدت 120 روز پس از کاشت گیاهان، صفات مورفولوژیک و بیوشیمیایی ارزیابی شد. بر اساس نتایج، بیشترین میزان کاهش کلروفیل a، نسبت کلروفیل b/ a در رقم هفت‌رنگ به ترتیب 3/53 و 3/80%، مقدار کاروتنوئیدها در رقم سفید به میزان 6/%85، مقدار کلروفیل b در رقم مهندسی با 1/5% کاهش نسبت به شاهد این ارقام در غلظت 150 میلی‌گرم در کیلوگرم خاک کروم مشاهده شد. بیشترین مقدار تجمع کروم در غلظت 150 میلی‌گرم در کیلوگرم در ریشه‌های رقم رز هفت‌رنگ و برگ‌های رقم رز مهندسی به ترتیب با نسبت 610 و 3915 برابر در مقایسه با شاهد این ارقام بود. با افزایش غلظت کروم محتوای کربوهیدرات‌های محلول افزایش یافت که این افزایش در رقم مهندسی بیشتر از دو رقم دیگر بود. درمجموع سطح برگ، شاخص کلروفیل، وزن تر و خشک اندام هوایی در همه ارقام با افزایش غلظت کروم کاهش یافت. همچنین نتایج نشان داد که رز رقم هفت‌رنگ نسبت به دو رقم دیگر نسبت به افزایش کروم مقاوم‌تر بود.
 
واژه‌های کلیدی: سفید، عناصر سنگین، مهندسی، هفت‌رنگ
متن کامل [PDF 635 kb]   (335 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/10/15 | پذیرش: 1401/11/16 | انتشار: 1402/10/1
فهرست منابع
1. Amin, H., Arain, B. A., Amin, F., Surhio, M. A. (2013). Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4(12), 2431. [DOI:10.4236/ajps.2013.412302]
2. Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., Wang, L. (2016). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, & Soil Pollution, 227(9), 1-14. [DOI:10.1007/s11270-016-3013-x]
3. Bah, A. M., Dai, H., Zhao, J., Sun, H., Cao, F., Zhang, G., Wu, F. (2011). Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biological Trace Element Research, 142(1), 77-92.‌ [DOI:10.1007/s12011-010-8746-6]
4. ‌Barzin, M., Khairabadi, H., Vafiuni, M. (2014). Investigation pollution Some heavy metals in surface soils Hamedan using pollution indicators. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil, 19(72), 69-79. (In Persian). [DOI:10.18869/acadpub.jstnar.19.72.7]
5. Belay, A. A. (2010). Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 1(01), 53.‌ [DOI:10.4236/jep.2010.11007]
6. Campanella, L., Conti, M.E., Cubadda, F., Sucapane, C. (2001). Trace metals in sea grass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117-126. [DOI:10.1016/S0269-7491(99)00327-9]
7. Chandra, P., Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313-327. [DOI:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2]
8. Chidambaram, A.A., Murugan, A., Ganesh, K.S., Sundaramoorthy, P. (2006). Effect of chromium on growth and cell division of blackgram (Vigna mungo (L.) Hepper. Plant Archives, 6(2), 763-766.
9. de Oliveira, L.M., Gress, J., De, J., Rathinasabapathi, B., Marchi, G., Chen, Y., Ma, L.Q. (2016). Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulat or Pterisvittata. Chemosphere, 147, 36-43. [DOI:10.1016/j.chemosphere.2015.12.088]
10. Dere, S., Gines, T., Sivaci, R. (1998). Spectrophotometric determination of chlorophyll- a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18.
11. Diwan, H., Khan, I., Ahmad, A., Iqbal, M. (2010). Induction of phytochelatins and antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97-107.‌ [DOI:10.1007/s10725-010-9454-0]
12. Dubey, R. S., Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 42(2), 233-239.‌ [DOI:10.1023/A:1002160618700]
13. Dubois, M., Gilles, K. A.. Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [DOI:10.1021/ac60111a017]
14. Fatahi, B,. Arzani, K,. Suri, M,. Barzegar, M. (2020). The effect of cadmium and lead on characteristics Morphophysiological and photosynthetic indices of basil plant (Ocimum basilicum L.). Horticultural Sciences of Iran, 50(4), 839-849. (In Persian).
15. Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120, 154-164. [DOI:10.1016/j.chemosphere.2014.06.029]
16. Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., Gupta, V. K. (2020). Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240, 124944.‌ [DOI:10.1016/j.chemosphere.2019.124944]
17. Hayat, S., Khalique, G., Irfan, M., Wani, A.S., Tripathi, B.N., Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: An overview. Protoplasma, 249, 599-611. [DOI:10.1007/s00709-011-0331-0]
18. Huang, T. L., Huang, L. Y., Fu, S. F., Trinh, N. N., Huang, H. J. (2014). Genomic profiling of rice roots with short-and long-term chromium stress. Plant Molecular Biology, 86(1), 157-170.‌ [DOI:10.1007/s11103-014-0219-4]
19. Huang, W.; Jiao, J.; Ru, M.; Bai, Z.; Yuan, H.; Bao, Z.; Liang, Z. (2018). Localization and Speciation of Chromium in Coptis chinensis Franch. using Synchrotron Radiation X-ray Technology and Laser Ablation ICP-MS. Scientific Reports, 8(1), 1-14. [DOI:10.1038/s41598-018-26774-x]
20. Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M. Babar, M. A. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2), 355-363.‌ [DOI:10.30848/PJB2020-2(24)]
21. Khavarinejad, R., Najafi, F., Aslani, F. (2014). The effect of different concentrations of potassium dichromate on the growth and content of some antioxidants in corn plant (Zea mays L). Plant Research (Biology of Iran), 28(2), 285 - 296. (In Persian).
22. Kundu, D., Dey, S., Raychaudhuri, S. S. (2018). Chromium (VI)-induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40(1), 1-13.‌ [DOI:10.1186/s41021-018-0109-0]
23. Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., Hu, C. (2009). Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil, 322(1), 187-195.‌ [DOI:10.1007/s11104-009-9907-2]
24. López-Luna, J., González-Chávez, M. C., Esparza-Garcia, F. J., Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2-3), 829-834.‌ [DOI:10.1016/j.jhazmat.2008.07.034]
25. Michalak I, Zielinska A, Chojnacka K, Matul JA, (2007). Biosorption of Cr (III) by microalgae and macroalgae: equilibrium of the process. American Journal of Agricultural and Biological Sciences, 2 (4): 284-290. [DOI:10.3844/ajabssp.2007.284.290]
26. Nojabaii, S, I,. Qajar Sepanlu, M,. Bahmanyar, M, Ali. (2017). Examining the concentration of lead and chromium in the leaves of parsley and cress plants In soil irrigated with contaminated water. Water Research in Agriculture, 31(2), 181-194. (In Persian).
27. Panda, A., Patra, D. K., Acharya, S., Pradhan, C., Patra, H. K. (2020). Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environmental Technology & Innovation, 20, 101042.‌ [DOI:10.1016/j.eti.2020.101042]
28. Piroz, P., Manouchehri Kalantari, Kh., Nasibi, F. (2012). Physiological investigation of sunflower plant under chromium stress: effect on growth, accumulation and induction of oxidative stress in sunflower root (Helianthus annuus). Journal of Plant Biology, 4(11), 73-86. (In Persian).
29. Piroz, P., Manouchehri Kalantari, Kh. (2012). The effect of chromium heavy metal on accumulation rate, growth factors and induction of oxidative stress in sunflower plant (Helianthus annuus). Journal of Plant Biology, 4(13), 97-114. (In Persian).
30. Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., Prado, F. E. (2010). Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 177(1-3), 546-553. [DOI:10.1016/j.jhazmat.2009.12.067]
31. Rahbarian, R,. Azizi, B., Mirbulok, A. (2019). Investigating the tolerance of purslane (Portulaca oleracea L.) to chromium stress based on growth, photosynthesis indices and the activity of antioxidant enzymes. Journal of Applied Biology, 32(1), 33-56. (In Persian).
32. Rafati, M,. Khorasani, N. A., Moraghebi, F., Shirvani, A. (2012). The ability of white mulberry (Morus alba) and Populus alba (Populus alba) species to stabilize and extract heavy metals. Journal of Natural Environment, 65(2), 181-191. (In Persian).
33. Ronyasi, N., Parvizi Mosaed, H. (2016). Investigating the amount of heavy metals in different parts of some vegetables consumed in Karaj city. Iranian Journal of Health and Environment, 9(2), 171-184. (In Persian).
34. Shah, K., Dubey, R. S. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiologiae Plantarum, 20(2), 189-196.‌ [DOI:10.1007/s11738-998-0013-5]
35. Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739-753. [DOI:10.1016/j.envint.2005.02.003]
36. Shanker, A. K., Djanaguiraman, M., Venkateswarlu, B. (2009). Chromium interactions in plants: Current status and future strategies. Metallomics, 1, 375-383. [DOI:10.1039/b904571f]
37. Singh, V. P., Kumar, J., Singh, M., Singh, S., Prasad, S. M., Dwivedi, R., Singh, M. P. V. V. B. (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regulation, 78(1), 79-91.‌ [DOI:10.1007/s10725-015-0076-4]
38. Sinha, V., Pakshirajan, K., Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. Journal of Environmental Management, 206, 715-730.‌ [DOI:10.1016/j.jenvman.2017.10.033]
39. Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46(3), 339-345.‌ [DOI:10.1007/s11099-008-0062-4]
40. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13(9), 4629. [DOI:10.3390/su13094629]
41. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., Baskaran, L. (2010). Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597-607. [DOI:10.1016/j.crvi.2010.03.002]
42. Tabari, M., Salehi, A. (2011). Investigating the effect of irrigation using Municipal sewage on the accumulation of heavy metals in the soil. Environmental Science and Technology Quarterly, 13(4), 49-60.‌ (In Persian).
43. Tashakorizadeh, M., Saeedenjad, A. (2017). The effect of different concentrations of chromium (sh) on the morphological characteristics and chemical composition of basil essential oil. Journal Science of Water and Soil, 27(1), 135-145. (In Persian).
44. Tiwari, K. K., Singh, N. K., Patel, M. P., Tiwari, M. R., Rai, U. N. (2011). Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety, 74(6), 1670-1677.‌ [DOI:10.1016/j.ecoenv.2011.04.029]
45. Tripathi, D. K., Singh, V. P., Kumar, D., Chauhan, D. K. (2012). Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiologiae Plantarum, 34(1), 279-289.‌ [DOI:10.1007/s11738-011-0826-5]
46. Usman, K., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports, 9(1), 1-11.‌ [DOI:10.1038/s41598-019-42029-9]
47. Verma, S., Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum, 44(1), 117-123.‌ [DOI:10.1023/A:1017938809311]
48. Vernay, P., Gauthier-Moussard, C., Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563-1575.‌ [DOI:10.1016/j.chemosphere.2007.02.052]
49. Zou, J., Wang, M., Jiang, W., Liu, D. (2006). Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biologica Cracoviensia Series Botanica, 48(1), 7-12.‌
50. Amin, H., Arain, B. A., Amin, F., Surhio, M. A. (2013). Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4(12), 2431. [DOI:10.4236/ajps.2013.412302]
51. Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., Wang, L. (2016). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, & Soil Pollution, 227(9), 1-14. [DOI:10.1007/s11270-016-3013-x]
52. Bah, A. M., Dai, H., Zhao, J., Sun, H., Cao, F., Zhang, G., Wu, F. (2011). Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biological Trace Element Research, 142(1), 77-92.‌ [DOI:10.1007/s12011-010-8746-6]
53. ‌Barzin, M., Khairabadi, H., Vafiuni, M. (2014). Investigation pollution Some heavy metals in surface soils Hamedan using pollution indicators. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil, 19(72), 69-79. (In Persian). [DOI:10.18869/acadpub.jstnar.19.72.7]
54. Belay, A. A. (2010). Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 1(01), 53.‌ [DOI:10.4236/jep.2010.11007]
55. Campanella, L., Conti, M.E., Cubadda, F., Sucapane, C. (2001). Trace metals in sea grass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117-126. [DOI:10.1016/S0269-7491(99)00327-9]
56. Chandra, P., Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313-327. [DOI:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2]
57. Chidambaram, A.A., Murugan, A., Ganesh, K.S., Sundaramoorthy, P. (2006). Effect of chromium on growth and cell division of blackgram (Vigna mungo (L.) Hepper. Plant Archives, 6(2), 763-766.
58. de Oliveira, L.M., Gress, J., De, J., Rathinasabapathi, B., Marchi, G., Chen, Y., Ma, L.Q. (2016). Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulat or Pterisvittata. Chemosphere, 147, 36-43. [DOI:10.1016/j.chemosphere.2015.12.088]
59. Dere, S., Gines, T., Sivaci, R. (1998). Spectrophotometric determination of chlorophyll- a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18.
60. Diwan, H., Khan, I., Ahmad, A., Iqbal, M. (2010). Induction of phytochelatins and antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97-107.‌ [DOI:10.1007/s10725-010-9454-0]
61. Dubey, R. S., Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 42(2), 233-239.‌ [DOI:10.1023/A:1002160618700]
62. Dubois, M., Gilles, K. A.. Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [DOI:10.1021/ac60111a017]
63. Fatahi, B,. Arzani, K,. Suri, M,. Barzegar, M. (2020). The effect of cadmium and lead on characteristics Morphophysiological and photosynthetic indices of basil plant (Ocimum basilicum L.). Horticultural Sciences of Iran, 50(4), 839-849. (In Persian).
64. Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120, 154-164. [DOI:10.1016/j.chemosphere.2014.06.029]
65. Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., Gupta, V. K. (2020). Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240, 124944.‌ [DOI:10.1016/j.chemosphere.2019.124944]
66. Hayat, S., Khalique, G., Irfan, M., Wani, A.S., Tripathi, B.N., Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: An overview. Protoplasma, 249, 599-611. [DOI:10.1007/s00709-011-0331-0]
67. Huang, T. L., Huang, L. Y., Fu, S. F., Trinh, N. N., Huang, H. J. (2014). Genomic profiling of rice roots with short-and long-term chromium stress. Plant Molecular Biology, 86(1), 157-170.‌ [DOI:10.1007/s11103-014-0219-4]
68. Huang, W.; Jiao, J.; Ru, M.; Bai, Z.; Yuan, H.; Bao, Z.; Liang, Z. (2018). Localization and Speciation of Chromium in Coptis chinensis Franch. using Synchrotron Radiation X-ray Technology and Laser Ablation ICP-MS. Scientific Reports, 8(1), 1-14. [DOI:10.1038/s41598-018-26774-x]
69. Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M. Babar, M. A. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2), 355-363.‌ [DOI:10.30848/PJB2020-2(24)]
70. Khavarinejad, R., Najafi, F., Aslani, F. (2014). The effect of different concentrations of potassium dichromate on the growth and content of some antioxidants in corn plant (Zea mays L). Plant Research (Biology of Iran), 28(2), 285 - 296. (In Persian).
71. Kundu, D., Dey, S., Raychaudhuri, S. S. (2018). Chromium (VI)-induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40(1), 1-13.‌ [DOI:10.1186/s41021-018-0109-0]
72. Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., Hu, C. (2009). Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil, 322(1), 187-195.‌ [DOI:10.1007/s11104-009-9907-2]
73. López-Luna, J., González-Chávez, M. C., Esparza-Garcia, F. J., Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2-3), 829-834.‌ [DOI:10.1016/j.jhazmat.2008.07.034]
74. Michalak I, Zielinska A, Chojnacka K, Matul JA, (2007). Biosorption of Cr (III) by microalgae and macroalgae: equilibrium of the process. American Journal of Agricultural and Biological Sciences, 2 (4): 284-290. [DOI:10.3844/ajabssp.2007.284.290]
75. Nojabaii, S, I,. Qajar Sepanlu, M,. Bahmanyar, M, Ali. (2017). Examining the concentration of lead and chromium in the leaves of parsley and cress plants In soil irrigated with contaminated water. Water Research in Agriculture, 31(2), 181-194. (In Persian).
76. Panda, A., Patra, D. K., Acharya, S., Pradhan, C., Patra, H. K. (2020). Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environmental Technology & Innovation, 20, 101042.‌ [DOI:10.1016/j.eti.2020.101042]
77. Piroz, P., Manouchehri Kalantari, Kh., Nasibi, F. (2012). Physiological investigation of sunflower plant under chromium stress: effect on growth, accumulation and induction of oxidative stress in sunflower root (Helianthus annuus). Journal of Plant Biology, 4(11), 73-86. (In Persian).
78. Piroz, P., Manouchehri Kalantari, Kh. (2012). The effect of chromium heavy metal on accumulation rate, growth factors and induction of oxidative stress in sunflower plant (Helianthus annuus). Journal of Plant Biology, 4(13), 97-114. (In Persian).
79. Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., Prado, F. E. (2010). Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 177(1-3), 546-553. [DOI:10.1016/j.jhazmat.2009.12.067]
80. Rahbarian, R,. Azizi, B., Mirbulok, A. (2019). Investigating the tolerance of purslane (Portulaca oleracea L.) to chromium stress based on growth, photosynthesis indices and the activity of antioxidant enzymes. Journal of Applied Biology, 32(1), 33-56. (In Persian).
81. Rafati, M,. Khorasani, N. A., Moraghebi, F., Shirvani, A. (2012). The ability of white mulberry (Morus alba) and Populus alba (Populus alba) species to stabilize and extract heavy metals. Journal of Natural Environment, 65(2), 181-191. (In Persian).
82. Ronyasi, N., Parvizi Mosaed, H. (2016). Investigating the amount of heavy metals in different parts of some vegetables consumed in Karaj city. Iranian Journal of Health and Environment, 9(2), 171-184. (In Persian).
83. Shah, K., Dubey, R. S. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiologiae Plantarum, 20(2), 189-196.‌ [DOI:10.1007/s11738-998-0013-5]
84. Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739-753. [DOI:10.1016/j.envint.2005.02.003]
85. Shanker, A. K., Djanaguiraman, M., Venkateswarlu, B. (2009). Chromium interactions in plants: Current status and future strategies. Metallomics, 1, 375-383. [DOI:10.1039/b904571f]
86. Singh, V. P., Kumar, J., Singh, M., Singh, S., Prasad, S. M., Dwivedi, R., Singh, M. P. V. V. B. (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regulation, 78(1), 79-91.‌ [DOI:10.1007/s10725-015-0076-4]
87. Sinha, V., Pakshirajan, K., Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. Journal of Environmental Management, 206, 715-730.‌ [DOI:10.1016/j.jenvman.2017.10.033]
88. Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46(3), 339-345.‌ [DOI:10.1007/s11099-008-0062-4]
89. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13(9), 4629. [DOI:10.3390/su13094629]
90. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., Baskaran, L. (2010). Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597-607. [DOI:10.1016/j.crvi.2010.03.002]
91. Tabari, M., Salehi, A. (2011). Investigating the effect of irrigation using Municipal sewage on the accumulation of heavy metals in the soil. Environmental Science and Technology Quarterly, 13(4), 49-60.‌ (In Persian).
92. Tashakorizadeh, M., Saeedenjad, A. (2017). The effect of different concentrations of chromium (sh) on the morphological characteristics and chemical composition of basil essential oil. Journal Science of Water and Soil, 27(1), 135-145. (In Persian).
93. Tiwari, K. K., Singh, N. K., Patel, M. P., Tiwari, M. R., Rai, U. N. (2011). Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety, 74(6), 1670-1677.‌ [DOI:10.1016/j.ecoenv.2011.04.029]
94. Tripathi, D. K., Singh, V. P., Kumar, D., Chauhan, D. K. (2012). Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiologiae Plantarum, 34(1), 279-289.‌ [DOI:10.1007/s11738-011-0826-5]
95. Usman, K., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports, 9(1), 1-11.‌ [DOI:10.1038/s41598-019-42029-9]
96. Verma, S., Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum, 44(1), 117-123.‌ [DOI:10.1023/A:1017938809311]
97. Vernay, P., Gauthier-Moussard, C., Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563-1575.‌ [DOI:10.1016/j.chemosphere.2007.02.052]
98. Zou, J., Wang, M., Jiang, W., Liu, D. (2006). Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biologica Cracoviensia Series Botanica, 48(1), 7-12.‌
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi M, shoor M, tehranifar A, Nabati J. Effects of potassium dichromate on some morphological and biochemical indicators of three rose cultivars suitable for urban green spaces. FOP 2023; 8 (1) :141-154
URL: http://flowerjournal.ir/article-1-266-fa.html

رحیمی معصومه، شور محمود، تهرانی فر علی، نباتی جعفر. اثر دی کرومات پتاسیم بر شاخص‌های مورفولوژیک و بیوشیمیایی سه رقم رز مناسب فضای سبز شهری. گل و گیاهان زینتی. 1402; 8 (1) :141-154

URL: http://flowerjournal.ir/article-1-266-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 1 - ( بهار و تابستان 1402 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.02 seconds with 45 queries by YEKTAWEB 4710