[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 1 (Spring and Summer 2023) ::
FOP 2023, 8(1): 141-154 Back to browse issues page
Effects of potassium dichromate on some morphological and biochemical indicators of three rose cultivars suitable for urban green spaces
Masoumeh Rahimi , Mahmoud Shoor * , Ali Tehranifar , Jafar Nabati
Ferdowsi University of Mashhad
Abstract:   (784 Views)
Chromium is one of the most important heavy metals, that has been excessively added to the environment in recent years due to extensive uses in industry, agricultural toxins and the release of industrial wastes into the water. To evaluate the impact of stress at different levels of chromium (0, 75, and 150 mg/kg soil) on three cultivars of rose (White, Mohandesi, and Haft rang) a greenhouse factorial experiment was conducted in a completely randomized design (CRD) with three replications in pots at the Faculty of Agriculture, Ferdowsi University of Mashhad in 2018. Four months after planting, morphological and biochemical traits were evaluated. According to the results, it was found that the greatest decrease in chlorophyll a and the ratio of chlorophyll a/b was in Haft rang cultivar with a decrease of 53.3 and 80.3%, respectively. Amount of carotenoids in the White cultivar was 85.6%, amount of chlorophyll b in the Mohandesi cultivar showed 5.1% decrease in comparison to the control at a concentration of 150 mg/kg of soil chromium. The highest amount of chromium accumulation at a concentration of 150 mg/kg was in the roots of the Haft rang rose cultivar and the leaves of the Mohandesi rose cultivar, with a ratio of 610 and 3915 times respectively, compared to the control of these cultivars. The highest accumulation of chromium in the leaves was in the Mohandesi cultivar with an average of 3915 ppm, in the root of Haft rang cultivar with an average of 10988 ppm, and the soil in the white variety with an average of 597 ppm at the concentration of 150 mg/kg of chromium. With the increase in chromium concentration, the content of soluble carbohydrates increased, and this increase was higher in the Mohandesi cultivar than in the other cultivars. Leaf area, chlorophyll index, and wet and dry weight of aerial parts increased in all cultivars with increasing chromium concentration. Also, the results showed that Haft rang cultivar was more resistant to the increase of chromium than the other cultivars.
 
Keywords: Heavy Elements, Mohandesi Cultivar, Haft rang, White
Full-Text [PDF 635 kb]   (198 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/01/5 | Accepted: 2023/02/5 | Published: 2023/12/22
References
1. Amin, H., Arain, B. A., Amin, F., Surhio, M. A. (2013). Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4(12), 2431. [DOI:10.4236/ajps.2013.412302]
2. Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., Wang, L. (2016). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, & Soil Pollution, 227(9), 1-14. [DOI:10.1007/s11270-016-3013-x]
3. Bah, A. M., Dai, H., Zhao, J., Sun, H., Cao, F., Zhang, G., Wu, F. (2011). Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biological Trace Element Research, 142(1), 77-92.‌ [DOI:10.1007/s12011-010-8746-6]
4. ‌Barzin, M., Khairabadi, H., Vafiuni, M. (2014). Investigation pollution Some heavy metals in surface soils Hamedan using pollution indicators. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil, 19(72), 69-79. (In Persian). [DOI:10.18869/acadpub.jstnar.19.72.7]
5. Belay, A. A. (2010). Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 1(01), 53.‌ [DOI:10.4236/jep.2010.11007]
6. Campanella, L., Conti, M.E., Cubadda, F., Sucapane, C. (2001). Trace metals in sea grass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117-126. [DOI:10.1016/S0269-7491(99)00327-9]
7. Chandra, P., Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313-327. [DOI:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2]
8. Chidambaram, A.A., Murugan, A., Ganesh, K.S., Sundaramoorthy, P. (2006). Effect of chromium on growth and cell division of blackgram (Vigna mungo (L.) Hepper. Plant Archives, 6(2), 763-766.
9. de Oliveira, L.M., Gress, J., De, J., Rathinasabapathi, B., Marchi, G., Chen, Y., Ma, L.Q. (2016). Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulat or Pterisvittata. Chemosphere, 147, 36-43. [DOI:10.1016/j.chemosphere.2015.12.088]
10. Dere, S., Gines, T., Sivaci, R. (1998). Spectrophotometric determination of chlorophyll- a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18.
11. Diwan, H., Khan, I., Ahmad, A., Iqbal, M. (2010). Induction of phytochelatins and antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97-107.‌ [DOI:10.1007/s10725-010-9454-0]
12. Dubey, R. S., Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 42(2), 233-239.‌ [DOI:10.1023/A:1002160618700]
13. Dubois, M., Gilles, K. A.. Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [DOI:10.1021/ac60111a017]
14. Fatahi, B,. Arzani, K,. Suri, M,. Barzegar, M. (2020). The effect of cadmium and lead on characteristics Morphophysiological and photosynthetic indices of basil plant (Ocimum basilicum L.). Horticultural Sciences of Iran, 50(4), 839-849. (In Persian).
15. Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120, 154-164. [DOI:10.1016/j.chemosphere.2014.06.029]
16. Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., Gupta, V. K. (2020). Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240, 124944.‌ [DOI:10.1016/j.chemosphere.2019.124944]
17. Hayat, S., Khalique, G., Irfan, M., Wani, A.S., Tripathi, B.N., Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: An overview. Protoplasma, 249, 599-611. [DOI:10.1007/s00709-011-0331-0]
18. Huang, T. L., Huang, L. Y., Fu, S. F., Trinh, N. N., Huang, H. J. (2014). Genomic profiling of rice roots with short-and long-term chromium stress. Plant Molecular Biology, 86(1), 157-170.‌ [DOI:10.1007/s11103-014-0219-4]
19. Huang, W.; Jiao, J.; Ru, M.; Bai, Z.; Yuan, H.; Bao, Z.; Liang, Z. (2018). Localization and Speciation of Chromium in Coptis chinensis Franch. using Synchrotron Radiation X-ray Technology and Laser Ablation ICP-MS. Scientific Reports, 8(1), 1-14. [DOI:10.1038/s41598-018-26774-x]
20. Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M. Babar, M. A. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2), 355-363.‌ [DOI:10.30848/PJB2020-2(24)]
21. Khavarinejad, R., Najafi, F., Aslani, F. (2014). The effect of different concentrations of potassium dichromate on the growth and content of some antioxidants in corn plant (Zea mays L). Plant Research (Biology of Iran), 28(2), 285 - 296. (In Persian).
22. Kundu, D., Dey, S., Raychaudhuri, S. S. (2018). Chromium (VI)-induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40(1), 1-13.‌ [DOI:10.1186/s41021-018-0109-0]
23. Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., Hu, C. (2009). Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil, 322(1), 187-195.‌ [DOI:10.1007/s11104-009-9907-2]
24. López-Luna, J., González-Chávez, M. C., Esparza-Garcia, F. J., Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2-3), 829-834.‌ [DOI:10.1016/j.jhazmat.2008.07.034]
25. Michalak I, Zielinska A, Chojnacka K, Matul JA, (2007). Biosorption of Cr (III) by microalgae and macroalgae: equilibrium of the process. American Journal of Agricultural and Biological Sciences, 2 (4): 284-290. [DOI:10.3844/ajabssp.2007.284.290]
26. Nojabaii, S, I,. Qajar Sepanlu, M,. Bahmanyar, M, Ali. (2017). Examining the concentration of lead and chromium in the leaves of parsley and cress plants In soil irrigated with contaminated water. Water Research in Agriculture, 31(2), 181-194. (In Persian).
27. Panda, A., Patra, D. K., Acharya, S., Pradhan, C., Patra, H. K. (2020). Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environmental Technology & Innovation, 20, 101042.‌ [DOI:10.1016/j.eti.2020.101042]
28. Piroz, P., Manouchehri Kalantari, Kh., Nasibi, F. (2012). Physiological investigation of sunflower plant under chromium stress: effect on growth, accumulation and induction of oxidative stress in sunflower root (Helianthus annuus). Journal of Plant Biology, 4(11), 73-86. (In Persian).
29. Piroz, P., Manouchehri Kalantari, Kh. (2012). The effect of chromium heavy metal on accumulation rate, growth factors and induction of oxidative stress in sunflower plant (Helianthus annuus). Journal of Plant Biology, 4(13), 97-114. (In Persian).
30. Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., Prado, F. E. (2010). Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 177(1-3), 546-553. [DOI:10.1016/j.jhazmat.2009.12.067]
31. Rahbarian, R,. Azizi, B., Mirbulok, A. (2019). Investigating the tolerance of purslane (Portulaca oleracea L.) to chromium stress based on growth, photosynthesis indices and the activity of antioxidant enzymes. Journal of Applied Biology, 32(1), 33-56. (In Persian).
32. Rafati, M,. Khorasani, N. A., Moraghebi, F., Shirvani, A. (2012). The ability of white mulberry (Morus alba) and Populus alba (Populus alba) species to stabilize and extract heavy metals. Journal of Natural Environment, 65(2), 181-191. (In Persian).
33. Ronyasi, N., Parvizi Mosaed, H. (2016). Investigating the amount of heavy metals in different parts of some vegetables consumed in Karaj city. Iranian Journal of Health and Environment, 9(2), 171-184. (In Persian).
34. Shah, K., Dubey, R. S. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiologiae Plantarum, 20(2), 189-196.‌ [DOI:10.1007/s11738-998-0013-5]
35. Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739-753. [DOI:10.1016/j.envint.2005.02.003]
36. Shanker, A. K., Djanaguiraman, M., Venkateswarlu, B. (2009). Chromium interactions in plants: Current status and future strategies. Metallomics, 1, 375-383. [DOI:10.1039/b904571f]
37. Singh, V. P., Kumar, J., Singh, M., Singh, S., Prasad, S. M., Dwivedi, R., Singh, M. P. V. V. B. (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regulation, 78(1), 79-91.‌ [DOI:10.1007/s10725-015-0076-4]
38. Sinha, V., Pakshirajan, K., Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. Journal of Environmental Management, 206, 715-730.‌ [DOI:10.1016/j.jenvman.2017.10.033]
39. Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46(3), 339-345.‌ [DOI:10.1007/s11099-008-0062-4]
40. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13(9), 4629. [DOI:10.3390/su13094629]
41. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., Baskaran, L. (2010). Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597-607. [DOI:10.1016/j.crvi.2010.03.002]
42. Tabari, M., Salehi, A. (2011). Investigating the effect of irrigation using Municipal sewage on the accumulation of heavy metals in the soil. Environmental Science and Technology Quarterly, 13(4), 49-60.‌ (In Persian).
43. Tashakorizadeh, M., Saeedenjad, A. (2017). The effect of different concentrations of chromium (sh) on the morphological characteristics and chemical composition of basil essential oil. Journal Science of Water and Soil, 27(1), 135-145. (In Persian).
44. Tiwari, K. K., Singh, N. K., Patel, M. P., Tiwari, M. R., Rai, U. N. (2011). Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety, 74(6), 1670-1677.‌ [DOI:10.1016/j.ecoenv.2011.04.029]
45. Tripathi, D. K., Singh, V. P., Kumar, D., Chauhan, D. K. (2012). Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiologiae Plantarum, 34(1), 279-289.‌ [DOI:10.1007/s11738-011-0826-5]
46. Usman, K., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports, 9(1), 1-11.‌ [DOI:10.1038/s41598-019-42029-9]
47. Verma, S., Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum, 44(1), 117-123.‌ [DOI:10.1023/A:1017938809311]
48. Vernay, P., Gauthier-Moussard, C., Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563-1575.‌ [DOI:10.1016/j.chemosphere.2007.02.052]
49. Zou, J., Wang, M., Jiang, W., Liu, D. (2006). Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biologica Cracoviensia Series Botanica, 48(1), 7-12.‌
50. Amin, H., Arain, B. A., Amin, F., Surhio, M. A. (2013). Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4(12), 2431. [DOI:10.4236/ajps.2013.412302]
51. Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., Wang, L. (2016). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, & Soil Pollution, 227(9), 1-14. [DOI:10.1007/s11270-016-3013-x]
52. Bah, A. M., Dai, H., Zhao, J., Sun, H., Cao, F., Zhang, G., Wu, F. (2011). Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biological Trace Element Research, 142(1), 77-92.‌ [DOI:10.1007/s12011-010-8746-6]
53. ‌Barzin, M., Khairabadi, H., Vafiuni, M. (2014). Investigation pollution Some heavy metals in surface soils Hamedan using pollution indicators. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil, 19(72), 69-79. (In Persian). [DOI:10.18869/acadpub.jstnar.19.72.7]
54. Belay, A. A. (2010). Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 1(01), 53.‌ [DOI:10.4236/jep.2010.11007]
55. Campanella, L., Conti, M.E., Cubadda, F., Sucapane, C. (2001). Trace metals in sea grass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117-126. [DOI:10.1016/S0269-7491(99)00327-9]
56. Chandra, P., Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313-327. [DOI:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2]
57. Chidambaram, A.A., Murugan, A., Ganesh, K.S., Sundaramoorthy, P. (2006). Effect of chromium on growth and cell division of blackgram (Vigna mungo (L.) Hepper. Plant Archives, 6(2), 763-766.
58. de Oliveira, L.M., Gress, J., De, J., Rathinasabapathi, B., Marchi, G., Chen, Y., Ma, L.Q. (2016). Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulat or Pterisvittata. Chemosphere, 147, 36-43. [DOI:10.1016/j.chemosphere.2015.12.088]
59. Dere, S., Gines, T., Sivaci, R. (1998). Spectrophotometric determination of chlorophyll- a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18.
60. Diwan, H., Khan, I., Ahmad, A., Iqbal, M. (2010). Induction of phytochelatins and antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97-107.‌ [DOI:10.1007/s10725-010-9454-0]
61. Dubey, R. S., Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 42(2), 233-239.‌ [DOI:10.1023/A:1002160618700]
62. Dubois, M., Gilles, K. A.. Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [DOI:10.1021/ac60111a017]
63. Fatahi, B,. Arzani, K,. Suri, M,. Barzegar, M. (2020). The effect of cadmium and lead on characteristics Morphophysiological and photosynthetic indices of basil plant (Ocimum basilicum L.). Horticultural Sciences of Iran, 50(4), 839-849. (In Persian).
64. Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120, 154-164. [DOI:10.1016/j.chemosphere.2014.06.029]
65. Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., Gupta, V. K. (2020). Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240, 124944.‌ [DOI:10.1016/j.chemosphere.2019.124944]
66. Hayat, S., Khalique, G., Irfan, M., Wani, A.S., Tripathi, B.N., Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: An overview. Protoplasma, 249, 599-611. [DOI:10.1007/s00709-011-0331-0]
67. Huang, T. L., Huang, L. Y., Fu, S. F., Trinh, N. N., Huang, H. J. (2014). Genomic profiling of rice roots with short-and long-term chromium stress. Plant Molecular Biology, 86(1), 157-170.‌ [DOI:10.1007/s11103-014-0219-4]
68. Huang, W.; Jiao, J.; Ru, M.; Bai, Z.; Yuan, H.; Bao, Z.; Liang, Z. (2018). Localization and Speciation of Chromium in Coptis chinensis Franch. using Synchrotron Radiation X-ray Technology and Laser Ablation ICP-MS. Scientific Reports, 8(1), 1-14. [DOI:10.1038/s41598-018-26774-x]
69. Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M. Babar, M. A. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52(2), 355-363.‌ [DOI:10.30848/PJB2020-2(24)]
70. Khavarinejad, R., Najafi, F., Aslani, F. (2014). The effect of different concentrations of potassium dichromate on the growth and content of some antioxidants in corn plant (Zea mays L). Plant Research (Biology of Iran), 28(2), 285 - 296. (In Persian).
71. Kundu, D., Dey, S., Raychaudhuri, S. S. (2018). Chromium (VI)-induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40(1), 1-13.‌ [DOI:10.1186/s41021-018-0109-0]
72. Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., Hu, C. (2009). Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil, 322(1), 187-195.‌ [DOI:10.1007/s11104-009-9907-2]
73. López-Luna, J., González-Chávez, M. C., Esparza-Garcia, F. J., Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2-3), 829-834.‌ [DOI:10.1016/j.jhazmat.2008.07.034]
74. Michalak I, Zielinska A, Chojnacka K, Matul JA, (2007). Biosorption of Cr (III) by microalgae and macroalgae: equilibrium of the process. American Journal of Agricultural and Biological Sciences, 2 (4): 284-290. [DOI:10.3844/ajabssp.2007.284.290]
75. Nojabaii, S, I,. Qajar Sepanlu, M,. Bahmanyar, M, Ali. (2017). Examining the concentration of lead and chromium in the leaves of parsley and cress plants In soil irrigated with contaminated water. Water Research in Agriculture, 31(2), 181-194. (In Persian).
76. Panda, A., Patra, D. K., Acharya, S., Pradhan, C., Patra, H. K. (2020). Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environmental Technology & Innovation, 20, 101042.‌ [DOI:10.1016/j.eti.2020.101042]
77. Piroz, P., Manouchehri Kalantari, Kh., Nasibi, F. (2012). Physiological investigation of sunflower plant under chromium stress: effect on growth, accumulation and induction of oxidative stress in sunflower root (Helianthus annuus). Journal of Plant Biology, 4(11), 73-86. (In Persian).
78. Piroz, P., Manouchehri Kalantari, Kh. (2012). The effect of chromium heavy metal on accumulation rate, growth factors and induction of oxidative stress in sunflower plant (Helianthus annuus). Journal of Plant Biology, 4(13), 97-114. (In Persian).
79. Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., Prado, F. E. (2010). Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 177(1-3), 546-553. [DOI:10.1016/j.jhazmat.2009.12.067]
80. Rahbarian, R,. Azizi, B., Mirbulok, A. (2019). Investigating the tolerance of purslane (Portulaca oleracea L.) to chromium stress based on growth, photosynthesis indices and the activity of antioxidant enzymes. Journal of Applied Biology, 32(1), 33-56. (In Persian).
81. Rafati, M,. Khorasani, N. A., Moraghebi, F., Shirvani, A. (2012). The ability of white mulberry (Morus alba) and Populus alba (Populus alba) species to stabilize and extract heavy metals. Journal of Natural Environment, 65(2), 181-191. (In Persian).
82. Ronyasi, N., Parvizi Mosaed, H. (2016). Investigating the amount of heavy metals in different parts of some vegetables consumed in Karaj city. Iranian Journal of Health and Environment, 9(2), 171-184. (In Persian).
83. Shah, K., Dubey, R. S. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiologiae Plantarum, 20(2), 189-196.‌ [DOI:10.1007/s11738-998-0013-5]
84. Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739-753. [DOI:10.1016/j.envint.2005.02.003]
85. Shanker, A. K., Djanaguiraman, M., Venkateswarlu, B. (2009). Chromium interactions in plants: Current status and future strategies. Metallomics, 1, 375-383. [DOI:10.1039/b904571f]
86. Singh, V. P., Kumar, J., Singh, M., Singh, S., Prasad, S. M., Dwivedi, R., Singh, M. P. V. V. B. (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regulation, 78(1), 79-91.‌ [DOI:10.1007/s10725-015-0076-4]
87. Sinha, V., Pakshirajan, K., Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. Journal of Environmental Management, 206, 715-730.‌ [DOI:10.1016/j.jenvman.2017.10.033]
88. Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46(3), 339-345.‌ [DOI:10.1007/s11099-008-0062-4]
89. Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., Chakrabarty, D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13(9), 4629. [DOI:10.3390/su13094629]
90. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., Baskaran, L. (2010). Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597-607. [DOI:10.1016/j.crvi.2010.03.002]
91. Tabari, M., Salehi, A. (2011). Investigating the effect of irrigation using Municipal sewage on the accumulation of heavy metals in the soil. Environmental Science and Technology Quarterly, 13(4), 49-60.‌ (In Persian).
92. Tashakorizadeh, M., Saeedenjad, A. (2017). The effect of different concentrations of chromium (sh) on the morphological characteristics and chemical composition of basil essential oil. Journal Science of Water and Soil, 27(1), 135-145. (In Persian).
93. Tiwari, K. K., Singh, N. K., Patel, M. P., Tiwari, M. R., Rai, U. N. (2011). Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety, 74(6), 1670-1677.‌ [DOI:10.1016/j.ecoenv.2011.04.029]
94. Tripathi, D. K., Singh, V. P., Kumar, D., Chauhan, D. K. (2012). Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiologiae Plantarum, 34(1), 279-289.‌ [DOI:10.1007/s11738-011-0826-5]
95. Usman, K., Al-Ghouti, M. A., Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports, 9(1), 1-11.‌ [DOI:10.1038/s41598-019-42029-9]
96. Verma, S., Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum, 44(1), 117-123.‌ [DOI:10.1023/A:1017938809311]
97. Vernay, P., Gauthier-Moussard, C., Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563-1575.‌ [DOI:10.1016/j.chemosphere.2007.02.052]
98. Zou, J., Wang, M., Jiang, W., Liu, D. (2006). Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biologica Cracoviensia Series Botanica, 48(1), 7-12.‌
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi M, shoor M, tehranifar A, Nabati J. Effects of potassium dichromate on some morphological and biochemical indicators of three rose cultivars suitable for urban green spaces. FOP 2023; 8 (1) :141-154
URL: http://flowerjournal.ir/article-1-266-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Spring and Summer 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660