[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 4, Issue 2 (Fall-Winter 2020) ::
FOP 2020, 4(2): 115-130 Back to browse issues page
Extending the vase life of Chrysanthemum morifolium (Ramat.) Hemsl. using orange peels extract
Hossein Tavoosi , Jalal Gholamnezhad *
Ardakan University
Abstract:   (2820 Views)
Chrysanthemum morifolium (Ramat.) Hemsl. belongs to the Asteraceae family. It has a relatively long vase life but the flowers wilt after two weeks or more of harvesting. This study aimed to investigate the effect of supplementation of various levels of orange peels extract on chrysanthemum vase life. concentrations of 0, 5, 15 and 25 ppm of orange peels extract was used in the vase solutions. The study was performed as a factorial experiment based on a completely randomized design with three replications and the treatments were long-term and short-term (24 hr pulses). The studied characters included vase life, number of stem ends bacteria, total protein content, catalase and peroxidase activity, soluble weight, flower weight, petal water content and chlorophyll content. Orange peels extract increased the vase life of chrysanthemum, the longest vase life (16.33 days) was belonged to long-term treatment using 25 ppm orange peel extract. The lowest population of stem ends bacteria with the 228.84 Log10 CFU ml-1 was belonged to the treatment of 25 ppm orange peels extract which with decreasing the concentration of the extract, the population of bacteria at the stem ends increased significantly. The activity of catalase and peroxidase enzymes was significantly increased by treatment of 25 ppm orange peels extract compared with control treatment as 3.04 and 1.41 mg protein-1min-1, respectively. Overall, the concentration of 25 ppm orange peels extract is considered as an effective concentration for increasing chrysanthemum vase life and quality.
Keywords: Orange peels extract, Vase life, chrysanthemum
Full-Text [PDF 348 kb]   (758 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/12/20 | Accepted: 2020/11/12 | Published: 2020/12/8
References
1. Alam, I., Lee, D.G., Park, C.H., Kim, K.H., Sharmin, S.A., Lee, H.Y. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Biosciences, 35, 49-62. [DOI:10.1007/s12038-010-0007-5]
2. Anjum, N.A., Umar, S., Chan, M.T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer. [DOI:10.1007/978-90-481-9404-9]
3. Bahraminejad, S., Asenstorfer, R.E., Riley, I.T., Schultz, C.J. (2008). Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots oats (Avena sativa L.). Journal of Phytopathology, 156, 1-7.
4. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils. A review. Food Chemistry and Toxicology, 46, 446-475. [DOI:10.1016/j.fct.2007.09.106]
5. Balestra, G.M., Agostini, R., Bellincontro, A., Mencarelli, L.F. (2008). Varvaro Bacterial populations related to Gerbera (Gerbera jamesonii L.) stem break. Phytopathologia Mediterranean, 44, 291-299.
6. Bounatirou, S., Simitis, S., Miguel, M.G., Faleiri, L., Rejeb, M.N., Neffati, M., Casta, M.M., Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Chemical composition, antioxidant and antimicrobial activities of essential oils isolated from Tunisian Thymus capitatus. Food Chemistry, 105, 146-155. [DOI:10.1016/j.foodchem.2007.03.059]
7. Bowyer, T.M.C., Wills, T.R.B.H., Badiyan, D., Ku, V.V.V. (2003). Extending the postharvest life of carnations with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 3, 281-286. [DOI:10.1016/S0925-5214(03)00114-5]
8. Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S., Scagliusi, S.M., Da Silva, P.R., Wiethölter, P., Torres, G.A.M., Lau, E.Y. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5, 157-176. [DOI:10.1007/s12571-013-0248-x]
9. Curtis, T. and Halford, N.G. (2013). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annul Applied Biology, 164, 354-372. [DOI:10.1111/aab.12108]
10. Damunupola, J.W., Qian, T., Muusers, R., Joyce, D.C., Irving, D.E., Van Meeteren U. (2010). Effect of Scarvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology, 55, 66-69. [DOI:10.1016/j.postharvbio.2009.07.009]
11. Devi, R., Kaur, N., Gupta, A.K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal Biochemistry Biophys, 49, 257-265.
12. Eason, J. 2006. Molecular and genetic aspects of flower escence. Stewart Postharvest Solutions, 2,6. [DOI:10.2212/spr.2006.2.6]
13. Feng, H., Liu, W., Zhang, Q., Wang, X., Wang, X., Duan, X., Li, F., Huang, L., Kang Z. (2014). A monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiologu Biochemistry, 76, 7-16. [DOI:10.1016/j.plaphy.2013.12.015]
14. Gholamnejad, J. (2009). Studies on biological control of blue mold in apple by some yeast isolates and their mechanisms of antagonism, M. Sc. dissertation, University of Tehran. 2009; P 152. (In Persian).
15. Gholamnezhad, J. (2017). Effect of plant extracts against apple gray mold caused by Botrytis cinerea. Applied Microbiology in Food Industries, 3(1), 53-66.
16. Gholamnezhad, J. (2019). Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea. Journal of Integrative Agriculture, 17, 1-10. [DOI:10.1016/S2095-3119(18)62104-5]
17. Gholamnezhad, J., Sanjarian, F., Mohammadi goltapeh, E., Safaei, N., Razavi, Kh. (2016). Evaluation of housekeeping gene expression of wheat interaction against Mycosphaerella graminicola with Reverse northern dot blot method. Crop Biotechnology, 12, 1-10. (In Persian).
18. Halevy, A.H. (1976). Treatment to improve water balance of cut flowers. Acta Horticulture, 64, 223-230 [DOI:10.17660/ActaHortic.1976.64.29]
19. Hashemabadi, D., Zarchini, M. 2010. Yield and quality management of rose (Rose hybrida cv. Poison) with plant growth regulators. Plant Omics Journal, 3(6), 167-171.
20. Hashemabadi D., Zaredost, F., Barari Ziyabari, M., Zarchini, M., Kaviani, B., Jadid Solimandarabi, M., Mohammadi Torkashvand, A., Zarchini, S. (2012). Influence of phosphate bio-fertilizer on quality features of marigold (Tagetes erecta L.). Australian Journal of Crop Science, 6(6), 1101-1109.
21. Hinneburg, I., Dorman, H. J.D., Hiltunen, R. (2006). Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chemistry, 97, 122-129. [DOI:10.1016/j.foodchem.2005.03.028]
22. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2009). Evaluation of antioxidant properties of pomegranate pulp extract. Food Chemistry, 96(2):254-260. DOI: 10.1016/j.foodchem.2005.02.033. [DOI:10.1016/j.foodchem.2005.02.033]
23. Liao, L., Yu-Han, L., Huang, K. Chen, W. (2001). Vase life of Eustoma grandiflorumas affected aluminum sulfate. Botanical Bulletin- Academia Sinica Taipei, 42, 35-38.
24. Liu, J., He, Sh., Zhang, Zh., Cao, J., Lv, P., He, S., Cheng, G., Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut Gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54(1), 59-62. [DOI:10.1016/j.postharvbio.2009.05.004]
25. Lu, p., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y., Joyce, D.C. (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biology Techniques, 57, 196-202. [DOI:10.1016/j.postharvbio.2010.04.003]
26. Morrones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ramirez, J.T., Yacamoo, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. [DOI:10.1088/0957-4484/16/10/059]
27. Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., del Río, L.A. (2002). Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521-530. [DOI:10.1016/S0981-9428(02)01404-3]
28. Park, S.H., Oh, S.J., Mun, S.S. (2005). Effect of silver nanoparticles on the fluidity of bilayer in phospholipid liposom. Colloid Surf B: Biointerfaces, 44, 117-122. [DOI:10.1016/j.colsurfb.2005.06.002]
29. Reid, M.S., Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. In: Janick, J. (Ed.), Horticultural Reviews, vol. 40, first ed. John Wiley & Sons, Inc., Hoboken, NJ, Pp:1-54. [DOI:10.1002/9781118351871.ch1]
30. Reuveni, R. (1995). Biochemical marker of disease resistance. In: Singh, R. P., and Singh, U. S. (Ed.) Molecular Methods in Plant Pathology, (pp. 99-114). [DOI:10.1201/9780203746523-8]
31. Silva, J.A. (2003). The cut flower: Postharvest consideration OnLineJ. Biology Science, 3(4), 406 442. [DOI:10.3923/jbs.2003.406.442]
32. Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiolgy and Molecular Biology of Plants, 20(3), 279-285. [DOI:10.1007/s12298-014-0237-3]
33. Solgi, M., Kafi. M., Taghavi, T.S., Naderi, R. (2009). Essential oils and silvernanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers. Postharvest Biology and Technology, 53, 155-158. [DOI:10.1016/j.postharvbio.2009.04.003]
34. Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J., Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding ERs, and EIN3s in two cut rose cultivars. Postharvest Physiology and Technology, 40, 97-105. [DOI:10.1016/j.postharvbio.2006.01.007]
35. Tripathi, P., Dubay, N.K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables review. Postharvest Biology and Technology, 32, 235-245. [DOI:10.1016/j.postharvbio.2003.11.005]
36. Van Doorn, W.G., Woltering, E.J. (2004). Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, 55, 2147-2153. [DOI:10.1093/jxb/erh264]
37. Van Meeteren, U.anj, Arevalo-Galaza, L., Van Dooren, W.G. (2006). Inhibition of water uptake after dry of cut flowers: Postharvest Biology and Technology, 41, 70-77. Hardenburg, 1968 [DOI:10.1016/j.postharvbio.2006.03.005]
38. Viret, O., Keller, M., Jaudzems, V.G., Cole, M. (2004). Botrytis cinerea infection of grape flowers: light and electron microscopical studies of infection sites. Phytopathology, 94(8), 850-857. [DOI:10.1094/PHYTO.2004.94.8.850]
39. Wu, H.M.A., Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Molecular Biology, 44, 267-281. [DOI:10.1023/A:1026536324081]
40. Alam, I., Lee, D.G., Park, C.H., Kim, K.H., Sharmin, S.A., Lee, H.Y. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Biosciences, 35, 49-62. [DOI:10.1007/s12038-010-0007-5]
41. Anjum, N.A., Umar, S., Chan, M.T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer. [DOI:10.1007/978-90-481-9404-9]
42. Bahraminejad, S., Asenstorfer, R.E., Riley, I.T., Schultz, C.J. (2008). Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots oats (Avena sativa L.). Journal of Phytopathology, 156, 1-7.
43. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils. A review. Food Chemistry and Toxicology, 46, 446-475. [DOI:10.1016/j.fct.2007.09.106]
44. Balestra, G.M., Agostini, R., Bellincontro, A., Mencarelli, L.F. (2008). Varvaro Bacterial populations related to Gerbera (Gerbera jamesonii L.) stem break. Phytopathologia Mediterranean, 44, 291-299.
45. Bounatirou, S., Simitis, S., Miguel, M.G., Faleiri, L., Rejeb, M.N., Neffati, M., Casta, M.M., Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Chemical composition, antioxidant and antimicrobial activities of essential oils isolated from Tunisian Thymus capitatus. Food Chemistry, 105, 146-155. [DOI:10.1016/j.foodchem.2007.03.059]
46. Bowyer, T.M.C., Wills, T.R.B.H., Badiyan, D., Ku, V.V.V. (2003). Extending the postharvest life of carnations with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 3, 281-286. [DOI:10.1016/S0925-5214(03)00114-5]
47. Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S., Scagliusi, S.M., Da Silva, P.R., Wiethölter, P., Torres, G.A.M., Lau, E.Y. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5, 157-176. [DOI:10.1007/s12571-013-0248-x]
48. Curtis, T. and Halford, N.G. (2013). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annul Applied Biology, 164, 354-372. [DOI:10.1111/aab.12108]
49. Damunupola, J.W., Qian, T., Muusers, R., Joyce, D.C., Irving, D.E., Van Meeteren U. (2010). Effect of Scarvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology, 55, 66-69. [DOI:10.1016/j.postharvbio.2009.07.009]
50. Devi, R., Kaur, N., Gupta, A.K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal Biochemistry Biophys, 49, 257-265.
51. Eason, J. 2006. Molecular and genetic aspects of flower escence. Stewart Postharvest Solutions, 2,6. [DOI:10.2212/spr.2006.2.6]
52. Feng, H., Liu, W., Zhang, Q., Wang, X., Wang, X., Duan, X., Li, F., Huang, L., Kang Z. (2014). A monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiologu Biochemistry, 76, 7-16. [DOI:10.1016/j.plaphy.2013.12.015]
53. Gholamnejad, J. (2009). Studies on biological control of blue mold in apple by some yeast isolates and their mechanisms of antagonism, M. Sc. dissertation, University of Tehran. 2009; P 152. (In Persian).
54. Gholamnezhad, J. (2017). Effect of plant extracts against apple gray mold caused by Botrytis cinerea. Applied Microbiology in Food Industries, 3(1), 53-66.
55. Gholamnezhad, J. (2019). Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea. Journal of Integrative Agriculture, 17, 1-10. [DOI:10.1016/S2095-3119(18)62104-5]
56. Gholamnezhad, J., Sanjarian, F., Mohammadi goltapeh, E., Safaei, N., Razavi, Kh. (2016). Evaluation of housekeeping gene expression of wheat interaction against Mycosphaerella graminicola with Reverse northern dot blot method. Crop Biotechnology, 12, 1-10. (In Persian).
57. Halevy, A.H. (1976). Treatment to improve water balance of cut flowers. Acta Horticulture, 64, 223-230. [DOI:10.17660/ActaHortic.1976.64.29]
58. Hashemabadi, D., Zarchini, M. 2010. Yield and quality management of rose (Rose hybrida cv. Poison) with plant growth regulators. Plant Omics Journal, 3(6), 167-171.
59. Hashemabadi D., Zaredost, F., Barari Ziyabari, M., Zarchini, M., Kaviani, B., Jadid Solimandarabi, M., Mohammadi Torkashvand, A., Zarchini, S. (2012). Influence of phosphate bio-fertilizer on quality features of marigold (Tagetes erecta L.). Australian Journal of Crop Science, 6(6), 1101-1109.
60. Hinneburg, I., Dorman, H. J.D., Hiltunen, R. (2006). Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chemistry, 97, 122-129. [DOI:10.1016/j.foodchem.2005.03.028]
61. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2009). Evaluation of antioxidant properties of pomegranate pulp extract. Food Chemistry, 96(2):254-260. DOI: 10.1016/j.foodchem.2005.02.033. [DOI:10.1016/j.foodchem.2005.02.033]
62. Liao, L., Yu-Han, L., Huang, K. Chen, W. (2001). Vase life of Eustoma grandiflorumas affected aluminum sulfate. Botanical Bulletin- Academia Sinica Taipei, 42, 35-38.
63. Liu, J., He, Sh., Zhang, Zh., Cao, J., Lv, P., He, S., Cheng, G., Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut Gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54(1), 59-62. [DOI:10.1016/j.postharvbio.2009.05.004]
64. Lu, p., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y., Joyce, D.C. (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biology Techniques, 57, 196-202. [DOI:10.1016/j.postharvbio.2010.04.003]
65. Morrones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ramirez, J.T., Yacamoo, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. [DOI:10.1088/0957-4484/16/10/059]
66. Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., del Río, L.A. (2002). Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521-530. [DOI:10.1016/S0981-9428(02)01404-3]
67. Park, S.H., Oh, S.J., Mun, S.S. (2005). Effect of silver nanoparticles on the fluidity of bilayer in phospholipid liposom. Colloid Surf B: Biointerfaces, 44, 117-122. [DOI:10.1016/j.colsurfb.2005.06.002]
68. Reid, M.S., Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. In: Janick, J. (Ed.), Horticultural Reviews, vol. 40, first ed. John Wiley & Sons, Inc., Hoboken, NJ, Pp:1-54. [DOI:10.1002/9781118351871.ch1]
69. Reuveni, R. (1995). Biochemical marker of disease resistance. In: Singh, R. P., and Singh, U. S. (Ed.) Molecular Methods in Plant Pathology, (pp. 99-114). [DOI:10.1201/9780203746523-8]
70. Silva, J.A. (2003). The cut flower: Postharvest consideration OnLineJ. Biology Science, 3(4), 406 442. [DOI:10.3923/jbs.2003.406.442]
71. Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiolgy and Molecular Biology of Plants, 20(3), 279-285. [DOI:10.1007/s12298-014-0237-3]
72. Solgi, M., Kafi. M., Taghavi, T.S., Naderi, R. (2009). Essential oils and silvernanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers. Postharvest Biology and Technology, 53, 155-158. [DOI:10.1016/j.postharvbio.2009.04.003]
73. Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J., Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding ERs, and EIN3s in two cut rose cultivars. Postharvest Physiology and Technology, 40, 97-105. [DOI:10.1016/j.postharvbio.2006.01.007]
74. Tripathi, P., Dubay, N.K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables review. Postharvest Biology and Technology, 32, 235-245. [DOI:10.1016/j.postharvbio.2003.11.005]
75. Van Doorn, W.G., Woltering, E.J. (2004). Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, 55, 2147-2153. [DOI:10.1093/jxb/erh264]
76. Van Meeteren, U.anj, Arevalo-Galaza, L., Van Dooren, W.G. (2006). Inhibition of water uptake after dry of cut flowers: Postharvest Biology and Technology, 41, 70-77. Hardenburg, 1968. [DOI:10.1016/j.postharvbio.2006.03.005]
77. Viret, O., Keller, M., Jaudzems, V.G., Cole, M. (2004). Botrytis cinerea infection of grape flowers: light and electron microscopical studies of infection sites. Phytopathology, 94(8), 850-857. [DOI:10.1094/PHYTO.2004.94.8.850]
78. Wu, H.M.A., Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Molecular Biology, 44, 267-281. [DOI:10.1023/A:1026536324081]
79. Alam, I., Lee, D.G., Park, C.H., Kim, K.H., Sharmin, S.A., Lee, H.Y. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Biosciences, 35, 49-62. [DOI:10.1007/s12038-010-0007-5]
80. Anjum, N.A., Umar, S., Chan, M.T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer. [DOI:10.1007/978-90-481-9404-9]
81. Bahraminejad, S., Asenstorfer, R.E., Riley, I.T., Schultz, C.J. (2008). Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots oats (Avena sativa L.). Journal of Phytopathology, 156, 1-7.
82. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils. A review. Food Chemistry and Toxicology, 46, 446-475. [DOI:10.1016/j.fct.2007.09.106]
83. Balestra, G.M., Agostini, R., Bellincontro, A., Mencarelli, L.F. (2008). Varvaro Bacterial populations related to Gerbera (Gerbera jamesonii L.) stem break. Phytopathologia Mediterranean, 44, 291-299.
84. Bounatirou, S., Simitis, S., Miguel, M.G., Faleiri, L., Rejeb, M.N., Neffati, M., Casta, M.M., Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Chemical composition, antioxidant and antimicrobial activities of essential oils isolated from Tunisian Thymus capitatus. Food Chemistry, 105, 146-155. [DOI:10.1016/j.foodchem.2007.03.059]
85. Bowyer, T.M.C., Wills, T.R.B.H., Badiyan, D., Ku, V.V.V. (2003). Extending the postharvest life of carnations with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 3, 281-286. [DOI:10.1016/S0925-5214(03)00114-5]
86. Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S., Scagliusi, S.M., Da Silva, P.R., Wiethölter, P., Torres, G.A.M., Lau, E.Y. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5, 157-176. [DOI:10.1007/s12571-013-0248-x]
87. Curtis, T. and Halford, N.G. (2013). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annul Applied Biology, 164, 354-372. [DOI:10.1111/aab.12108]
88. Damunupola, J.W., Qian, T., Muusers, R., Joyce, D.C., Irving, D.E., Van Meeteren U. (2010). Effect of Scarvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology, 55, 66-69. [DOI:10.1016/j.postharvbio.2009.07.009]
89. Devi, R., Kaur, N., Gupta, A.K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal Biochemistry Biophys, 49, 257-265.
90. Eason, J. 2006. Molecular and genetic aspects of flower escence. Stewart Postharvest Solutions, 2,6. [DOI:10.2212/spr.2006.2.6]
91. Feng, H., Liu, W., Zhang, Q., Wang, X., Wang, X., Duan, X., Li, F., Huang, L., Kang Z. (2014). A monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiologu Biochemistry, 76, 7-16. [DOI:10.1016/j.plaphy.2013.12.015]
92. Gholamnejad, J. (2009). Studies on biological control of blue mold in apple by some yeast isolates and their mechanisms of antagonism, M. Sc. dissertation, University of Tehran. 2009; P 152. (In Persian).
93. Gholamnezhad, J. (2017). Effect of plant extracts against apple gray mold caused by Botrytis cinerea. Applied Microbiology in Food Industries, 3(1), 53-66.
94. Gholamnezhad, J. (2019). Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea. Journal of Integrative Agriculture, 17, 1-10. [DOI:10.1016/S2095-3119(18)62104-5]
95. Gholamnezhad, J., Sanjarian, F., Mohammadi goltapeh, E., Safaei, N., Razavi, Kh. (2016). Evaluation of housekeeping gene expression of wheat interaction against Mycosphaerella graminicola with Reverse northern dot blot method. Crop Biotechnology, 12, 1-10. (In Persian).
96. Halevy, A.H. (1976). Treatment to improve water balance of cut flowers. Acta Horticulture, 64, 223-230 [DOI:10.17660/ActaHortic.1976.64.29]
97. Hashemabadi, D., Zarchini, M. 2010. Yield and quality management of rose (Rose hybrida cv. Poison) with plant growth regulators. Plant Omics Journal, 3(6), 167-171.
98. Hashemabadi D., Zaredost, F., Barari Ziyabari, M., Zarchini, M., Kaviani, B., Jadid Solimandarabi, M., Mohammadi Torkashvand, A., Zarchini, S. (2012). Influence of phosphate bio-fertilizer on quality features of marigold (Tagetes erecta L.). Australian Journal of Crop Science, 6(6), 1101-1109.
99. Hinneburg, I., Dorman, H. J.D., Hiltunen, R. (2006). Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chemistry, 97, 122-129. [DOI:10.1016/j.foodchem.2005.03.028]
100. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2009). Evaluation of antioxidant properties of pomegranate pulp extract. Food Chemistry, 96(2):254-260. DOI: 10.1016/j.foodchem.2005.02.033. [DOI:10.1016/j.foodchem.2005.02.033]
101. Liao, L., Yu-Han, L., Huang, K. Chen, W. (2001). Vase life of Eustoma grandiflorumas affected aluminum sulfate. Botanical Bulletin- Academia Sinica Taipei, 42, 35-38.
102. Liu, J., He, Sh., Zhang, Zh., Cao, J., Lv, P., He, S., Cheng, G., Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut Gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54(1), 59-62. [DOI:10.1016/j.postharvbio.2009.05.004]
103. Lu, p., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y., Joyce, D.C. (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biology Techniques, 57, 196-202. [DOI:10.1016/j.postharvbio.2010.04.003]
104. Morrones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ramirez, J.T., Yacamoo, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. [DOI:10.1088/0957-4484/16/10/059]
105. Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., del Río, L.A. (2002). Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521-530. [DOI:10.1016/S0981-9428(02)01404-3]
106. Park, S.H., Oh, S.J., Mun, S.S. (2005). Effect of silver nanoparticles on the fluidity of bilayer in phospholipid liposom. Colloid Surf B: Biointerfaces, 44, 117-122. [DOI:10.1016/j.colsurfb.2005.06.002]
107. Reid, M.S., Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. In: Janick, J. (Ed.), Horticultural Reviews, vol. 40, first ed. John Wiley & Sons, Inc., Hoboken, NJ, Pp:1-54. [DOI:10.1002/9781118351871.ch1]
108. Reuveni, R. (1995). Biochemical marker of disease resistance. In: Singh, R. P., and Singh, U. S. (Ed.) Molecular Methods in Plant Pathology, (pp. 99-114). [DOI:10.1201/9780203746523-8]
109. Silva, J.A. (2003). The cut flower: Postharvest consideration OnLineJ. Biology Science, 3(4), 406 442. [DOI:10.3923/jbs.2003.406.442]
110. Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiolgy and Molecular Biology of Plants, 20(3), 279-285. [DOI:10.1007/s12298-014-0237-3]
111. Solgi, M., Kafi. M., Taghavi, T.S., Naderi, R. (2009). Essential oils and silvernanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers. Postharvest Biology and Technology, 53, 155-158. [DOI:10.1016/j.postharvbio.2009.04.003]
112. Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J., Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding ERs, and EIN3s in two cut rose cultivars. Postharvest Physiology and Technology, 40, 97-105. [DOI:10.1016/j.postharvbio.2006.01.007]
113. Tripathi, P., Dubay, N.K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables review. Postharvest Biology and Technology, 32, 235-245. [DOI:10.1016/j.postharvbio.2003.11.005]
114. Van Doorn, W.G., Woltering, E.J. (2004). Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, 55, 2147-2153. [DOI:10.1093/jxb/erh264]
115. Van Meeteren, U.anj, Arevalo-Galaza, L., Van Dooren, W.G. (2006). Inhibition of water uptake after dry of cut flowers: Postharvest Biology and Technology, 41, 70-77. Hardenburg, 1968 [DOI:10.1016/j.postharvbio.2006.03.005]
116. Viret, O., Keller, M., Jaudzems, V.G., Cole, M. (2004). Botrytis cinerea infection of grape flowers: light and electron microscopical studies of infection sites. Phytopathology, 94(8), 850-857. [DOI:10.1094/PHYTO.2004.94.8.850]
117. Wu, H.M.A., Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Molecular Biology, 44, 267-281. [DOI:10.1023/A:1026536324081]
118. Alam, I., Lee, D.G., Park, C.H., Kim, K.H., Sharmin, S.A., Lee, H.Y. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Biosciences, 35, 49-62. [DOI:10.1007/s12038-010-0007-5]
119. Anjum, N.A., Umar, S., Chan, M.T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer. [DOI:10.1007/978-90-481-9404-9]
120. Bahraminejad, S., Asenstorfer, R.E., Riley, I.T., Schultz, C.J. (2008). Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots oats (Avena sativa L.). Journal of Phytopathology, 156, 1-7.
121. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils. A review. Food Chemistry and Toxicology, 46, 446-475. [DOI:10.1016/j.fct.2007.09.106]
122. Balestra, G.M., Agostini, R., Bellincontro, A., Mencarelli, L.F. (2008). Varvaro Bacterial populations related to Gerbera (Gerbera jamesonii L.) stem break. Phytopathologia Mediterranean, 44, 291-299.
123. Bounatirou, S., Simitis, S., Miguel, M.G., Faleiri, L., Rejeb, M.N., Neffati, M., Casta, M.M., Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Chemical composition, antioxidant and antimicrobial activities of essential oils isolated from Tunisian Thymus capitatus. Food Chemistry, 105, 146-155. [DOI:10.1016/j.foodchem.2007.03.059]
124. Bowyer, T.M.C., Wills, T.R.B.H., Badiyan, D., Ku, V.V.V. (2003). Extending the postharvest life of carnations with nitric oxide-comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 3, 281-286. [DOI:10.1016/S0925-5214(03)00114-5]
125. Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S., Scagliusi, S.M., Da Silva, P.R., Wiethölter, P., Torres, G.A.M., Lau, E.Y. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5, 157-176. [DOI:10.1007/s12571-013-0248-x]
126. Curtis, T. and Halford, N.G. (2013). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annul Applied Biology, 164, 354-372. [DOI:10.1111/aab.12108]
127. Damunupola, J.W., Qian, T., Muusers, R., Joyce, D.C., Irving, D.E., Van Meeteren U. (2010). Effect of Scarvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology, 55, 66-69. [DOI:10.1016/j.postharvbio.2009.07.009]
128. Devi, R., Kaur, N., Gupta, A.K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal Biochemistry Biophys, 49, 257-265.
129. Eason, J. 2006. Molecular and genetic aspects of flower escence. Stewart Postharvest Solutions, 2,6. [DOI:10.2212/spr.2006.2.6]
130. Feng, H., Liu, W., Zhang, Q., Wang, X., Wang, X., Duan, X., Li, F., Huang, L., Kang Z. (2014). A monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiologu Biochemistry, 76, 7-16. [DOI:10.1016/j.plaphy.2013.12.015]
131. Gholamnejad, J. (2009). Studies on biological control of blue mold in apple by some yeast isolates and their mechanisms of antagonism, M. Sc. dissertation, University of Tehran. 2009; P 152. (In Persian).
132. Gholamnezhad, J. (2017). Effect of plant extracts against apple gray mold caused by Botrytis cinerea. Applied Microbiology in Food Industries, 3(1), 53-66.
133. Gholamnezhad, J. (2019). Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea. Journal of Integrative Agriculture, 17, 1-10. [DOI:10.1016/S2095-3119(18)62104-5]
134. Gholamnezhad, J., Sanjarian, F., Mohammadi goltapeh, E., Safaei, N., Razavi, Kh. (2016). Evaluation of housekeeping gene expression of wheat interaction against Mycosphaerella graminicola with Reverse northern dot blot method. Crop Biotechnology, 12, 1-10. (In Persian).
135. Halevy, A.H. (1976). Treatment to improve water balance of cut flowers. Acta Horticulture, 64, 223-230. [DOI:10.17660/ActaHortic.1976.64.29]
136. Hashemabadi, D., Zarchini, M. 2010. Yield and quality management of rose (Rose hybrida cv. Poison) with plant growth regulators. Plant Omics Journal, 3(6), 167-171.
137. Hashemabadi D., Zaredost, F., Barari Ziyabari, M., Zarchini, M., Kaviani, B., Jadid Solimandarabi, M., Mohammadi Torkashvand, A., Zarchini, S. (2012). Influence of phosphate bio-fertilizer on quality features of marigold (Tagetes erecta L.). Australian Journal of Crop Science, 6(6), 1101-1109.
138. Hinneburg, I., Dorman, H. J.D., Hiltunen, R. (2006). Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chemistry, 97, 122-129. [DOI:10.1016/j.foodchem.2005.03.028]
139. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2009). Evaluation of antioxidant properties of pomegranate pulp extract. Food Chemistry, 96(2):254-260. DOI: 10.1016/j.foodchem.2005.02.033. [DOI:10.1016/j.foodchem.2005.02.033]
140. Liao, L., Yu-Han, L., Huang, K. Chen, W. (2001). Vase life of Eustoma grandiflorumas affected aluminum sulfate. Botanical Bulletin- Academia Sinica Taipei, 42, 35-38.
141. Liu, J., He, Sh., Zhang, Zh., Cao, J., Lv, P., He, S., Cheng, G., Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut Gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54(1), 59-62. [DOI:10.1016/j.postharvbio.2009.05.004]
142. Lu, p., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y., Joyce, D.C. (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biology Techniques, 57, 196-202. [DOI:10.1016/j.postharvbio.2010.04.003]
143. Morrones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ramirez, J.T., Yacamoo, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. [DOI:10.1088/0957-4484/16/10/059]
144. Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., del Río, L.A. (2002). Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521-530. [DOI:10.1016/S0981-9428(02)01404-3]
145. Park, S.H., Oh, S.J., Mun, S.S. (2005). Effect of silver nanoparticles on the fluidity of bilayer in phospholipid liposom. Colloid Surf B: Biointerfaces, 44, 117-122. [DOI:10.1016/j.colsurfb.2005.06.002]
146. Reid, M.S., Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. In: Janick, J. (Ed.), Horticultural Reviews, vol. 40, first ed. John Wiley & Sons, Inc., Hoboken, NJ, Pp:1-54. [DOI:10.1002/9781118351871.ch1]
147. Reuveni, R. (1995). Biochemical marker of disease resistance. In: Singh, R. P., and Singh, U. S. (Ed.) Molecular Methods in Plant Pathology, (pp. 99-114). [DOI:10.1201/9780203746523-8]
148. Silva, J.A. (2003). The cut flower: Postharvest consideration OnLineJ. Biology Science, 3(4), 406 442. [DOI:10.3923/jbs.2003.406.442]
149. Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiolgy and Molecular Biology of Plants, 20(3), 279-285. [DOI:10.1007/s12298-014-0237-3]
150. Solgi, M., Kafi. M., Taghavi, T.S., Naderi, R. (2009). Essential oils and silvernanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. 'Dune') flowers. Postharvest Biology and Technology, 53, 155-158. [DOI:10.1016/j.postharvbio.2009.04.003]
151. Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J., Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding ERs, and EIN3s in two cut rose cultivars. Postharvest Physiology and Technology, 40, 97-105. [DOI:10.1016/j.postharvbio.2006.01.007]
152. Tripathi, P., Dubay, N.K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables review. Postharvest Biology and Technology, 32, 235-245. [DOI:10.1016/j.postharvbio.2003.11.005]
153. Van Doorn, W.G., Woltering, E.J. (2004). Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, 55, 2147-2153. [DOI:10.1093/jxb/erh264]
154. Van Meeteren, U.anj, Arevalo-Galaza, L., Van Dooren, W.G. (2006). Inhibition of water uptake after dry of cut flowers: Postharvest Biology and Technology, 41, 70-77. Hardenburg, 1968. [DOI:10.1016/j.postharvbio.2006.03.005]
155. Viret, O., Keller, M., Jaudzems, V.G., Cole, M. (2004). Botrytis cinerea infection of grape flowers: light and electron microscopical studies of infection sites. Phytopathology, 94(8), 850-857. [DOI:10.1094/PHYTO.2004.94.8.850]
156. Wu, H.M.A., Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Molecular Biology, 44, 267-281. [DOI:10.1023/A:1026536324081]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

tavoosi H, gholamnezhad J. Extending the vase life of Chrysanthemum morifolium (Ramat.) Hemsl. using orange peels extract. FOP 2020; 4 (2) :115-130
URL: http://flowerjournal.ir/article-1-153-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 4, Issue 2 (Fall-Winter 2020) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4645