[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 8، شماره 1 - ( بهار و تابستان 1402 ) ::
جلد 8 شماره 1 صفحات 182-171 برگشت به فهرست نسخه ها
بررسی رشد رویشی و بیوشیمیایی معدنی گل محمدی آبیاری شده با سطوح مختلف کلریدسدیم
محمد طهماسبی ، محمدرضا صالحی سلمی* ، مختار حیدری ، بابک پاکدامن سردرود
دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
چکیده:   (682 مشاهده)
خاک و آب شور دو مشکل اساسی کاشت گیاهان در مناطق گرم و خشک هستند. در این پژوهش برای بررسی اثر شوری بر رشد و جذب عناصر معدنی نهال‌‌های گل‌‌محمدی، 4 سطح شوری 0، 25، 50 و 75 میلی‌‌مولار کلریدسدیم در شرایط مزرعه‌‌ای به کار رفت. در این پژوهش، ویژگی‌‌های وزن‌‌تر و خشک شاخساره، وزن‌‌تر و خشک ریشه، میزان پرولین، مالون ‌‌دی‌‌آلدئید، فعالیت آنزیم‌‌های گایاکول‌‌ پراکسیداز و کاتالاز، کربوهیدرات‌‌های محلول، سبزینه و کاروتنوئید برگ اندازه‌‌گیری شد. همچنین غلظت عناصر موجود در برگ شامل نیتروژن، پتاسیم، سدیم، فسفر، آهن، مس، منگنز و روی اندازه‌‌گیری گردید. نتایج نشان داد که افزایش غلظت کلریدسدیم در آب آبیاری اثر منفی بر شاخص‌‌های رشد رویشی، و همچنین اثر معنی‌‌داری بر کاهش سبزینه و کاروتنوئیدها داشت. آبیاری با آب دارای کلریدسدیم سبب انباشت پرولین و کربوهیدرات‌‌های محلول در برگ گردید، افزون بر این، افزایش فعالیت آنزیم‌‌های آنتی‌‌اکسیدانت و مجموع این تغییرات بیوشیمیایی سبب کاهش رشد رویشی گل‌‌محمدی شد. با افزایش شوری، انباشت یون سدیم در برگ‌‌ها افزایش یافت ولی در جذب عناصر دیگر اختلال به‌‌وجود آمد. پیشنهاد می‌‌شود برای کاهش اثر شوری و تأمین عناصر غذایی، محلول‌‌پاشی غذایی انجام شود.
واژه‌های کلیدی: آب شور، آنتی اکسیدانت، تحمل، عنصر، سبزینه
متن کامل [PDF 715 kb]   (178 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/7/29 | پذیرش: 1401/11/1 | انتشار: 1402/10/15
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 112-121. [DOI:10.1016/S0076-6879(84)05016-3]
2. Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97, 253-261. [DOI:10.1016/j.carbpol.2013.04.072]
3. Anonymous. (2015). Statistical information of agricultural crops production in Iran. Department of Statistics. Ministry of Jihad-e-Keshavarzi (in Persian).
4. Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87-94. [DOI:10.1016/j.envexpbot.2005.01.008]
5. Ballester, G.F., Garcia-Sanchez, F., Cerda, A., Martinez, V. (2003). Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology, 23, 256-271. [DOI:10.1093/treephys/23.4.265]
6. Bandeoglu, E., Eyidogan, F., Yucel, M., Oktem, H.A. (2004). Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation, 42, 69-77. [DOI:10.1023/B:GROW.0000014891.35427.7b]
7. Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
8. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099-1111. [DOI:10.2307/3870060]
9. Cabrera, R.I., Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38, 533-536. [DOI:10.21273/HORTSCI.38.4.533]
10. Cabrera, R.I., Solis-Perez A.R., Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44, 2000-2008. [DOI:10.21273/HORTSCI.44.7.2000]
11. Demir Kaya, M., Gamze Oke, U., Atak, M., Yakup, C. (2006). Seed treatments overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. [DOI:10.1016/j.eja.2005.08.001]
12. Ferreira-Silva, S.L., Silveira, J., Voigt, E., Soares, L., Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20, 51-59. [DOI:10.1590/S1677-04202008000100006]
13. Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157. [DOI:10.1016/S0304-4238(98)00192-7]
14. Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology, 164, 728-736. [DOI:10.1016/j.jplph.2005.12.009]
15. Heath, R.L., Packer, L. (1968). Photoperoxidarion in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. [DOI:10.1016/0003-9861(68)90654-1]
16. Izzo, R., Navari-Izzo F., Quartacci M.F. (1991). Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition, 14, 687-699. [DOI:10.1080/01904169109364235]
17. Kasukabe, Y., Marshall, N., Fanton, B. (2004). Salt stress causes depletion in CO2 assimilation in Okra. Plant and Cell Physiology, 45, 1016-1019.
18. Kaya, C., Higges, D., Kirnak, H. (2021). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Journal of Plant Physiology, 127, 47-59.
19. Kumar, K., Xia, Y.P., Zhu, Zh., Le., Ch., Wijeratne, A.W. (2010). Some deleterious effects of long-term salt stress on growth, nutrition, and physiology of gerbera (Gerbera jamesonii L.) and potential indicators of its salt tolerance. Journal of Plant Nutrition, 33, 2010-2027. [DOI:10.1080/01904167.2010.512058]
20. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. [DOI:10.1042/bst0110591]
21. Lin, C.C., Kao, C.H. (1999). NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. [DOI:10.1023/A:1004714506156]
22. Mahboubi, M. (2016). Rosa damascena as holy ancient herb with novel applications. Journal of Traditional and Complementary Medicine, 6, 10-16. [DOI:10.1016/j.jtcme.2015.09.005]
23. Mirmohamadi, A., Ghareyazi, B. (2002). Physiological aspect and breeding. Isfahan University of Thecnology Press. 276 p. (in Persian).
24. Mirzaei, S., Dastoory, M. (2018). Effect of drought and salt stress on physiological and morphological characteristics of the green covers (Phyla nodiflora L. and Frankenia thymifolia Desf.). Flower and Ornamental Plants, 3, 61-74 (in Persian).
25. Misra, A.N., Latowski, D., Strzalka, K. (2006). The Xanthophylls cycle activity in Kidnay Bean and Cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53, 102-109. [DOI:10.1134/S1021443706010134]
26. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
27. Nenova, V. (2008). Growth and mineral content ratios of pea plants under different salinity levels and iron supply. Journal of Plant Physiology, 34, 189-202.
28. Niu, G., Starman, T., Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. HortScience, 48, 756-761. [DOI:10.21273/HORTSCI.48.6.756]
29. Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A., Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnology Letters, 17, 7227-7236.
30. Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
31. Pitman, M.G., Läuchli, A. (2012). Global impact of salinity and agricultural ecosystems. In: Läuchli, A. and Lüttge, U., (Eds.). Salinity: Environment-Plants-Molecules. Kluwer Academic Publishers, Dordrecht, pp. 3-20. [DOI:10.1007/0-306-48155-3_1]
32. Saber, M., Mobarak, Z.M., Salama, Z.A. (2019). Micronutrient spray as a tool to increase tolerance of rose to salinity. Proc. of XIV Intl. Plant Nutrition Colloquium, 28 July- 4 Aug., 2019, Hanover, Germany, pp. 422-423.
33. Sekmen, A.H., Turkan, I., Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131, 399-411. [DOI:10.1111/j.1399-3054.2007.00970.x]
34. Sherameti, I., Tripathi, S., Varma A., Oelmuller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions Journal, 21, 799-807. [DOI:10.1094/MPMI-21-6-0799]
35. Silveria, J.A., Viegas Rade, A., de Rocha, I.M., Moreira, A.C, Moreira Rade, A., Oliveira, J.T. (2003). Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in Cashew leaves. Journal of Plant Physiology, 16, 115-23. [DOI:10.1078/0176-1617-00890]
36. Sotiropoulos, T.E., Therios, I.N., Almaliotis, D., Papadakis, I., Dimassi, K.N. (2006). Response of cherry rootstocks to boron and salinity. Journal of Plant Nutrition, 29, 1691-1698. [DOI:10.1080/01904160600851650]
37. Storey, R., Gorham, J., Pitman, M.C., Hanson, M.G., Gage, D. (1993). Response of Melanthera biflora to salinity and water stress. Journal of Experimental Botany, 44, 1551-1561. [DOI:10.1093/jxb/44.10.1551]
38. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123, 272-279. [DOI:10.1016/j.scienta.2009.09.006]
39. Tunctürk, M., Tunctürk, R., Yildirim, B., Ciftci, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10, 1827-1832.
40. Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99. [DOI:10.1016/j.scienta.2004.04.009]
41. Wahome, P.K., Jesch, H.H., Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis 'Major' and R. rubiginosa. Scientia Horticulturae, 87, 207-216. [DOI:10.1016/S0304-4238(00)00168-0]
42. Yahya, A. (1998). Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. Journal of Plant Nutrition, 21, 1439-1451. [DOI:10.1080/01904169809365494]
43. Yousfi, S., Wissal, M., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Journal of Plant Physiology and Biochemistry, 45, 309-314. [DOI:10.1016/j.plaphy.2007.03.013]
44. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 112-121. [DOI:10.1016/S0076-6879(84)05016-3]
45. Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97, 253-261. [DOI:10.1016/j.carbpol.2013.04.072]
46. Anonymous. (2015). Statistical information of agricultural crops production in Iran. Department of Statistics. Ministry of Jihad-e-Keshavarzi (in Persian).
47. Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87-94. [DOI:10.1016/j.envexpbot.2005.01.008]
48. Ballester, G.F., Garcia-Sanchez, F., Cerda, A., Martinez, V. (2003). Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology, 23, 256-271. [DOI:10.1093/treephys/23.4.265]
49. Bandeoglu, E., Eyidogan, F., Yucel, M., Oktem, H.A. (2004). Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation, 42, 69-77. [DOI:10.1023/B:GROW.0000014891.35427.7b]
50. Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
51. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099-1111. [DOI:10.2307/3870060]
52. Cabrera, R.I., Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38, 533-536. [DOI:10.21273/HORTSCI.38.4.533]
53. Cabrera, R.I., Solis-Perez A.R., Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44, 2000-2008. [DOI:10.21273/HORTSCI.44.7.2000]
54. Demir Kaya, M., Gamze Oke, U., Atak, M., Yakup, C. (2006). Seed treatments overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. [DOI:10.1016/j.eja.2005.08.001]
55. Ferreira-Silva, S.L., Silveira, J., Voigt, E., Soares, L., Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20, 51-59. [DOI:10.1590/S1677-04202008000100006]
56. Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157. [DOI:10.1016/S0304-4238(98)00192-7]
57. Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology, 164, 728-736. [DOI:10.1016/j.jplph.2005.12.009]
58. Heath, R.L., Packer, L. (1968). Photoperoxidarion in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. [DOI:10.1016/0003-9861(68)90654-1]
59. Izzo, R., Navari-Izzo F., Quartacci M.F. (1991). Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition, 14, 687-699. [DOI:10.1080/01904169109364235]
60. Kasukabe, Y., Marshall, N., Fanton, B. (2004). Salt stress causes depletion in CO2 assimilation in Okra. Plant and Cell Physiology, 45, 1016-1019.
61. Kaya, C., Higges, D., Kirnak, H. (2021). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Journal of Plant Physiology, 127, 47-59.
62. Kumar, K., Xia, Y.P., Zhu, Zh., Le., Ch., Wijeratne, A.W. (2010). Some deleterious effects of long-term salt stress on growth, nutrition, and physiology of gerbera (Gerbera jamesonii L.) and potential indicators of its salt tolerance. Journal of Plant Nutrition, 33, 2010-2027. [DOI:10.1080/01904167.2010.512058]
63. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. [DOI:10.1042/bst0110591]
64. Lin, C.C., Kao, C.H. (1999). NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. [DOI:10.1023/A:1004714506156]
65. Mahboubi, M. (2016). Rosa damascena as holy ancient herb with novel applications. Journal of Traditional and Complementary Medicine, 6, 10-16. [DOI:10.1016/j.jtcme.2015.09.005]
66. Mirmohamadi, A., Ghareyazi, B. (2002). Physiological aspect and breeding. Isfahan University of Thecnology Press. 276 p. (in Persian).
67. Mirzaei, S., Dastoory, M. (2018). Effect of drought and salt stress on physiological and morphological characteristics of the green covers (Phyla nodiflora L. and Frankenia thymifolia Desf.). Flower and Ornamental Plants, 3, 61-74 (in Persian).
68. Misra, A.N., Latowski, D., Strzalka, K. (2006). The Xanthophylls cycle activity in Kidnay Bean and Cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53, 102-109. [DOI:10.1134/S1021443706010134]
69. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
70. Nenova, V. (2008). Growth and mineral content ratios of pea plants under different salinity levels and iron supply. Journal of Plant Physiology, 34, 189-202.
71. Niu, G., Starman, T., Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. HortScience, 48, 756-761. [DOI:10.21273/HORTSCI.48.6.756]
72. Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A., Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnology Letters, 17, 7227-7236.
73. Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
74. Pitman, M.G., Läuchli, A. (2012). Global impact of salinity and agricultural ecosystems. In: Läuchli, A. and Lüttge, U., (Eds.). Salinity: Environment-Plants-Molecules. Kluwer Academic Publishers, Dordrecht, pp. 3-20. [DOI:10.1007/0-306-48155-3_1]
75. Saber, M., Mobarak, Z.M., Salama, Z.A. (2019). Micronutrient spray as a tool to increase tolerance of rose to salinity. Proc. of XIV Intl. Plant Nutrition Colloquium, 28 July- 4 Aug., 2019, Hanover, Germany, pp. 422-423.
76. Sekmen, A.H., Turkan, I., Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131, 399-411. [DOI:10.1111/j.1399-3054.2007.00970.x]
77. Sherameti, I., Tripathi, S., Varma A., Oelmuller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions Journal, 21, 799-807. [DOI:10.1094/MPMI-21-6-0799]
78. Silveria, J.A., Viegas Rade, A., de Rocha, I.M., Moreira, A.C, Moreira Rade, A., Oliveira, J.T. (2003). Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in Cashew leaves. Journal of Plant Physiology, 16, 115-23. [DOI:10.1078/0176-1617-00890]
79. Sotiropoulos, T.E., Therios, I.N., Almaliotis, D., Papadakis, I., Dimassi, K.N. (2006). Response of cherry rootstocks to boron and salinity. Journal of Plant Nutrition, 29, 1691-1698. [DOI:10.1080/01904160600851650]
80. Storey, R., Gorham, J., Pitman, M.C., Hanson, M.G., Gage, D. (1993). Response of Melanthera biflora to salinity and water stress. Journal of Experimental Botany, 44, 1551-1561. [DOI:10.1093/jxb/44.10.1551]
81. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123, 272-279. [DOI:10.1016/j.scienta.2009.09.006]
82. Tunctürk, M., Tunctürk, R., Yildirim, B., Ciftci, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10, 1827-1832.
83. Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99. [DOI:10.1016/j.scienta.2004.04.009]
84. Wahome, P.K., Jesch, H.H., Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis 'Major' and R. rubiginosa. Scientia Horticulturae, 87, 207-216. [DOI:10.1016/S0304-4238(00)00168-0]
85. Yahya, A. (1998). Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. Journal of Plant Nutrition, 21, 1439-1451. [DOI:10.1080/01904169809365494]
86. Yousfi, S., Wissal, M., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Journal of Plant Physiology and Biochemistry, 45, 309-314. [DOI:10.1016/j.plaphy.2007.03.013]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasebi M, Salehi Salmi M, Heidari M, Pakdaman Sardrood B. Investigating the vegetative growth and mineral elements uptake by Damask rose irrigated with various levels of Sodium Chloride. FOP 2023; 8 (1) :171-182
URL: http://flowerjournal.ir/article-1-254-fa.html

طهماسبی محمد، صالحی سلمی محمدرضا، حیدری مختار، پاکدامن سردرود بابک. بررسی رشد رویشی و بیوشیمیایی معدنی گل محمدی آبیاری شده با سطوح مختلف کلریدسدیم. گل و گیاهان زینتی. 1402; 8 (1) :171-182

URL: http://flowerjournal.ir/article-1-254-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 1 - ( بهار و تابستان 1402 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 44 queries by YEKTAWEB 4645