[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 1 (Spring and Summer 2023) ::
FOP 2023, 8(1): 171-182 Back to browse issues page
Investigating the vegetative growth and mineral elements uptake by Damask rose irrigated with various levels of Sodium Chloride
Mohamad Tahmasebi , Mohamadreza Salehi Salmi * , Mokhtar Heidari , Babak Pakdaman Sardrood
Agricultural Sciences and Natural Resource University of Khuzestan
Abstract:   (1291 Views)
This study examined how salinity affects the growth and mineral uptake of Damask rose seedlings in hot and dry areas, where soil and salt water are major challenges for plant cultivation. Four levels of salinity (0, 25, 50, and 75 mM NaCl) were applied to the seedlings under field condition. The following traits were measured: wet and dry weights of shoots and roots, proline and malondialdehyde contents, guaiacol peroxidase and catalase activities, soluble carbohydrates, chlorophyll and carotenoid levels, and concentrations of nitrogen, potassium, sodium, phosphorus, iron, copper, manganese, and zinc in the leaves. The results indicated that salinity reduced the vegetative growth and the chlorophyll and carotenoid levels of the seedlings. Salinity also increased the proline and soluble carbohydrate contents and the antioxidant enzymes activities in the leaves, which were biochemical responses to salt stress. Moreover, salinity disrupted the mineral balance in the leaves by increasing the sodium accumulation and decreasing the uptake of the other elements. To mitigate the adverse effects of salinity and supply adequate nutrients, the use of fertilizer solutions is recommended.
Keywords: Antioxidant, Chlorophyll, Element, Salt water, Tolerance
Full-Text [PDF 715 kb]   (347 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/10/21 | Accepted: 2023/01/21 | Published: 2024/01/5
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 112-121. [DOI:10.1016/S0076-6879(84)05016-3]
2. Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97, 253-261. [DOI:10.1016/j.carbpol.2013.04.072]
3. Anonymous. (2015). Statistical information of agricultural crops production in Iran. Department of Statistics. Ministry of Jihad-e-Keshavarzi (in Persian).
4. Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87-94. [DOI:10.1016/j.envexpbot.2005.01.008]
5. Ballester, G.F., Garcia-Sanchez, F., Cerda, A., Martinez, V. (2003). Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology, 23, 256-271. [DOI:10.1093/treephys/23.4.265]
6. Bandeoglu, E., Eyidogan, F., Yucel, M., Oktem, H.A. (2004). Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation, 42, 69-77. [DOI:10.1023/B:GROW.0000014891.35427.7b]
7. Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
8. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099-1111. [DOI:10.2307/3870060]
9. Cabrera, R.I., Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38, 533-536. [DOI:10.21273/HORTSCI.38.4.533]
10. Cabrera, R.I., Solis-Perez A.R., Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44, 2000-2008. [DOI:10.21273/HORTSCI.44.7.2000]
11. Demir Kaya, M., Gamze Oke, U., Atak, M., Yakup, C. (2006). Seed treatments overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. [DOI:10.1016/j.eja.2005.08.001]
12. Ferreira-Silva, S.L., Silveira, J., Voigt, E., Soares, L., Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20, 51-59. [DOI:10.1590/S1677-04202008000100006]
13. Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157. [DOI:10.1016/S0304-4238(98)00192-7]
14. Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology, 164, 728-736. [DOI:10.1016/j.jplph.2005.12.009]
15. Heath, R.L., Packer, L. (1968). Photoperoxidarion in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. [DOI:10.1016/0003-9861(68)90654-1]
16. Izzo, R., Navari-Izzo F., Quartacci M.F. (1991). Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition, 14, 687-699. [DOI:10.1080/01904169109364235]
17. Kasukabe, Y., Marshall, N., Fanton, B. (2004). Salt stress causes depletion in CO2 assimilation in Okra. Plant and Cell Physiology, 45, 1016-1019.
18. Kaya, C., Higges, D., Kirnak, H. (2021). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Journal of Plant Physiology, 127, 47-59.
19. Kumar, K., Xia, Y.P., Zhu, Zh., Le., Ch., Wijeratne, A.W. (2010). Some deleterious effects of long-term salt stress on growth, nutrition, and physiology of gerbera (Gerbera jamesonii L.) and potential indicators of its salt tolerance. Journal of Plant Nutrition, 33, 2010-2027. [DOI:10.1080/01904167.2010.512058]
20. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. [DOI:10.1042/bst0110591]
21. Lin, C.C., Kao, C.H. (1999). NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. [DOI:10.1023/A:1004714506156]
22. Mahboubi, M. (2016). Rosa damascena as holy ancient herb with novel applications. Journal of Traditional and Complementary Medicine, 6, 10-16. [DOI:10.1016/j.jtcme.2015.09.005]
23. Mirmohamadi, A., Ghareyazi, B. (2002). Physiological aspect and breeding. Isfahan University of Thecnology Press. 276 p. (in Persian).
24. Mirzaei, S., Dastoory, M. (2018). Effect of drought and salt stress on physiological and morphological characteristics of the green covers (Phyla nodiflora L. and Frankenia thymifolia Desf.). Flower and Ornamental Plants, 3, 61-74 (in Persian).
25. Misra, A.N., Latowski, D., Strzalka, K. (2006). The Xanthophylls cycle activity in Kidnay Bean and Cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53, 102-109. [DOI:10.1134/S1021443706010134]
26. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
27. Nenova, V. (2008). Growth and mineral content ratios of pea plants under different salinity levels and iron supply. Journal of Plant Physiology, 34, 189-202.
28. Niu, G., Starman, T., Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. HortScience, 48, 756-761. [DOI:10.21273/HORTSCI.48.6.756]
29. Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A., Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnology Letters, 17, 7227-7236.
30. Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
31. Pitman, M.G., Läuchli, A. (2012). Global impact of salinity and agricultural ecosystems. In: Läuchli, A. and Lüttge, U., (Eds.). Salinity: Environment-Plants-Molecules. Kluwer Academic Publishers, Dordrecht, pp. 3-20. [DOI:10.1007/0-306-48155-3_1]
32. Saber, M., Mobarak, Z.M., Salama, Z.A. (2019). Micronutrient spray as a tool to increase tolerance of rose to salinity. Proc. of XIV Intl. Plant Nutrition Colloquium, 28 July- 4 Aug., 2019, Hanover, Germany, pp. 422-423.
33. Sekmen, A.H., Turkan, I., Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131, 399-411. [DOI:10.1111/j.1399-3054.2007.00970.x]
34. Sherameti, I., Tripathi, S., Varma A., Oelmuller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions Journal, 21, 799-807. [DOI:10.1094/MPMI-21-6-0799]
35. Silveria, J.A., Viegas Rade, A., de Rocha, I.M., Moreira, A.C, Moreira Rade, A., Oliveira, J.T. (2003). Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in Cashew leaves. Journal of Plant Physiology, 16, 115-23. [DOI:10.1078/0176-1617-00890]
36. Sotiropoulos, T.E., Therios, I.N., Almaliotis, D., Papadakis, I., Dimassi, K.N. (2006). Response of cherry rootstocks to boron and salinity. Journal of Plant Nutrition, 29, 1691-1698. [DOI:10.1080/01904160600851650]
37. Storey, R., Gorham, J., Pitman, M.C., Hanson, M.G., Gage, D. (1993). Response of Melanthera biflora to salinity and water stress. Journal of Experimental Botany, 44, 1551-1561. [DOI:10.1093/jxb/44.10.1551]
38. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123, 272-279. [DOI:10.1016/j.scienta.2009.09.006]
39. Tunctürk, M., Tunctürk, R., Yildirim, B., Ciftci, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10, 1827-1832.
40. Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99. [DOI:10.1016/j.scienta.2004.04.009]
41. Wahome, P.K., Jesch, H.H., Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis 'Major' and R. rubiginosa. Scientia Horticulturae, 87, 207-216. [DOI:10.1016/S0304-4238(00)00168-0]
42. Yahya, A. (1998). Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. Journal of Plant Nutrition, 21, 1439-1451. [DOI:10.1080/01904169809365494]
43. Yousfi, S., Wissal, M., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Journal of Plant Physiology and Biochemistry, 45, 309-314. [DOI:10.1016/j.plaphy.2007.03.013]
44. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 112-121. [DOI:10.1016/S0076-6879(84)05016-3]
45. Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97, 253-261. [DOI:10.1016/j.carbpol.2013.04.072]
46. Anonymous. (2015). Statistical information of agricultural crops production in Iran. Department of Statistics. Ministry of Jihad-e-Keshavarzi (in Persian).
47. Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87-94. [DOI:10.1016/j.envexpbot.2005.01.008]
48. Ballester, G.F., Garcia-Sanchez, F., Cerda, A., Martinez, V. (2003). Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology, 23, 256-271. [DOI:10.1093/treephys/23.4.265]
49. Bandeoglu, E., Eyidogan, F., Yucel, M., Oktem, H.A. (2004). Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation, 42, 69-77. [DOI:10.1023/B:GROW.0000014891.35427.7b]
50. Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
51. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099-1111. [DOI:10.2307/3870060]
52. Cabrera, R.I., Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38, 533-536. [DOI:10.21273/HORTSCI.38.4.533]
53. Cabrera, R.I., Solis-Perez A.R., Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44, 2000-2008. [DOI:10.21273/HORTSCI.44.7.2000]
54. Demir Kaya, M., Gamze Oke, U., Atak, M., Yakup, C. (2006). Seed treatments overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. [DOI:10.1016/j.eja.2005.08.001]
55. Ferreira-Silva, S.L., Silveira, J., Voigt, E., Soares, L., Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20, 51-59. [DOI:10.1590/S1677-04202008000100006]
56. Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157. [DOI:10.1016/S0304-4238(98)00192-7]
57. Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology, 164, 728-736. [DOI:10.1016/j.jplph.2005.12.009]
58. Heath, R.L., Packer, L. (1968). Photoperoxidarion in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. [DOI:10.1016/0003-9861(68)90654-1]
59. Izzo, R., Navari-Izzo F., Quartacci M.F. (1991). Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition, 14, 687-699. [DOI:10.1080/01904169109364235]
60. Kasukabe, Y., Marshall, N., Fanton, B. (2004). Salt stress causes depletion in CO2 assimilation in Okra. Plant and Cell Physiology, 45, 1016-1019.
61. Kaya, C., Higges, D., Kirnak, H. (2021). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Journal of Plant Physiology, 127, 47-59.
62. Kumar, K., Xia, Y.P., Zhu, Zh., Le., Ch., Wijeratne, A.W. (2010). Some deleterious effects of long-term salt stress on growth, nutrition, and physiology of gerbera (Gerbera jamesonii L.) and potential indicators of its salt tolerance. Journal of Plant Nutrition, 33, 2010-2027. [DOI:10.1080/01904167.2010.512058]
63. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. [DOI:10.1042/bst0110591]
64. Lin, C.C., Kao, C.H. (1999). NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147-153. [DOI:10.1023/A:1004714506156]
65. Mahboubi, M. (2016). Rosa damascena as holy ancient herb with novel applications. Journal of Traditional and Complementary Medicine, 6, 10-16. [DOI:10.1016/j.jtcme.2015.09.005]
66. Mirmohamadi, A., Ghareyazi, B. (2002). Physiological aspect and breeding. Isfahan University of Thecnology Press. 276 p. (in Persian).
67. Mirzaei, S., Dastoory, M. (2018). Effect of drought and salt stress on physiological and morphological characteristics of the green covers (Phyla nodiflora L. and Frankenia thymifolia Desf.). Flower and Ornamental Plants, 3, 61-74 (in Persian).
68. Misra, A.N., Latowski, D., Strzalka, K. (2006). The Xanthophylls cycle activity in Kidnay Bean and Cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53, 102-109. [DOI:10.1134/S1021443706010134]
69. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
70. Nenova, V. (2008). Growth and mineral content ratios of pea plants under different salinity levels and iron supply. Journal of Plant Physiology, 34, 189-202.
71. Niu, G., Starman, T., Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. HortScience, 48, 756-761. [DOI:10.21273/HORTSCI.48.6.756]
72. Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A., Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnology Letters, 17, 7227-7236.
73. Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
74. Pitman, M.G., Läuchli, A. (2012). Global impact of salinity and agricultural ecosystems. In: Läuchli, A. and Lüttge, U., (Eds.). Salinity: Environment-Plants-Molecules. Kluwer Academic Publishers, Dordrecht, pp. 3-20. [DOI:10.1007/0-306-48155-3_1]
75. Saber, M., Mobarak, Z.M., Salama, Z.A. (2019). Micronutrient spray as a tool to increase tolerance of rose to salinity. Proc. of XIV Intl. Plant Nutrition Colloquium, 28 July- 4 Aug., 2019, Hanover, Germany, pp. 422-423.
76. Sekmen, A.H., Turkan, I., Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131, 399-411. [DOI:10.1111/j.1399-3054.2007.00970.x]
77. Sherameti, I., Tripathi, S., Varma A., Oelmuller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions Journal, 21, 799-807. [DOI:10.1094/MPMI-21-6-0799]
78. Silveria, J.A., Viegas Rade, A., de Rocha, I.M., Moreira, A.C, Moreira Rade, A., Oliveira, J.T. (2003). Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in Cashew leaves. Journal of Plant Physiology, 16, 115-23. [DOI:10.1078/0176-1617-00890]
79. Sotiropoulos, T.E., Therios, I.N., Almaliotis, D., Papadakis, I., Dimassi, K.N. (2006). Response of cherry rootstocks to boron and salinity. Journal of Plant Nutrition, 29, 1691-1698. [DOI:10.1080/01904160600851650]
80. Storey, R., Gorham, J., Pitman, M.C., Hanson, M.G., Gage, D. (1993). Response of Melanthera biflora to salinity and water stress. Journal of Experimental Botany, 44, 1551-1561. [DOI:10.1093/jxb/44.10.1551]
81. Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123, 272-279. [DOI:10.1016/j.scienta.2009.09.006]
82. Tunctürk, M., Tunctürk, R., Yildirim, B., Ciftci, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10, 1827-1832.
83. Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99. [DOI:10.1016/j.scienta.2004.04.009]
84. Wahome, P.K., Jesch, H.H., Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis 'Major' and R. rubiginosa. Scientia Horticulturae, 87, 207-216. [DOI:10.1016/S0304-4238(00)00168-0]
85. Yahya, A. (1998). Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. Journal of Plant Nutrition, 21, 1439-1451. [DOI:10.1080/01904169809365494]
86. Yousfi, S., Wissal, M., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Journal of Plant Physiology and Biochemistry, 45, 309-314. [DOI:10.1016/j.plaphy.2007.03.013]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasebi M, Salehi Salmi M, Heidari M, Pakdaman Sardrood B. Investigating the vegetative growth and mineral elements uptake by Damask rose irrigated with various levels of Sodium Chloride. FOP 2023; 8 (1) :171-182
URL: http://flowerjournal.ir/article-1-254-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Spring and Summer 2023) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660