[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 1 (Spring & Summer 2025) ::
FOP 2025, 10(1): 71-82 Back to browse issues page
Feasibility of in vitro generation of Sansevieria trifasciata 'Laurentii' plantlets through a thin cell layer
Matin Kazemzadeh Bahnamirei , Mostafa Khoshhal sarmast * , Mehdi Alizadeh , Mohammad Naghi Padasht
Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources
Abstract:   (714 Views)

The Sansevieria plant is widely valued for its upright, fleshy, and attractive leaves, as well as its high adaptability to home conditions. Due to the presence of preclinal chimera tissue in this species and the challenges associated with its propagation via leaf cuttings, finding an effective method to enhance the production of various variegated Sansevieria cultivars is essential. In this study, we examined the longitudinal thin cell layer technique for producing mutated Sansevieria. Our results indicated that plantlets regenerated directly or indirectly from the epidermal layers of the chimeric Sansevieria were, contrary to expectations that they would resemble the mother plant, yellowish mutants, with none resembling the mother plant. In indirect regeneration, shoots were formed from the callus after callus induction. Samples grown in 2,4-D medium were subsequently subcultured in the same medium and showed regeneration without the need for a cytokinin after 80 days. After 80 days of culturing, some samples rooted without requiring IBA. The highest average number of leaves and plantlets in indirect regeneration occurred in the MS medium containing 0.6 mg L-1 of 2,4-D, where approximately 2.5 plantlets were produced after 80 days from the callus. In contrast, the 2,4-D concentration of 0.1 mg L-1 produced about 1.5 plantlets. The MS medium containing 1.2 mg L-1 of BA led to the highest direct shoot regeneration (3.3) using the thin cell layer culture technique. Only 65% of the regenerated samples were able to acclimatize after rooting four months later. Our investigation indicates that producing a preclinal chimera plant resembling the mother plant using the longitudinal thin cell layer culture technique from the outer epidermal layers is not feasible; nearly all produced plants turned out to be yellowish mutants, significantly different from the typical green plants. This finding is noteworthy as no previous studies have investigated the production of variegated ornamental cultivars through thin cell layer culture methods. The results of this research could provide valuable insights for the future production of variegated plant varieties via in vitro culture.

 

Keywords: Clonal propagation, TCL, Sansevieria, Genetic stability
Full-Text [PDF 887 kb]   (147 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/01/11 | Accepted: 2025/04/22 | Published: 2025/09/18
References
1. Blazich, F.A., Novitzky, R.T. (1984). In vitro propagation of Sansevieria trifasciata. HortScience, 19(1), 122- 123. [DOI:10.21273/HORTSCI.19.1.122]
2. Catalano, C., Carra, A., Carimi, F., Motisi, A., Sajeva, M., Butler, A., Lucretti, S., Giorgi, D., Farina, A., Abbate, L. (2023) Somatic embryogenesis and flow cytometric assessment of nuclear genetic stability for Sansevieria spp. An approach for in vitro regeneration of ornamental plants. Horticulturae, 9: 138. [DOI:10.3390/horticulturae9020138]
3. Collado, R., Veitia, N., Bermudez-Caraballoso, I., Garcia, L., Torres, D., Romero, C., Lorenzo, J.R., & Angenon, G. (2013). Efficient in vitro plant regeneration via indirect organogenesis for different common bean cultivars. Scientia Horticulturae, 153, 109-116. https://doi.org/10.1016/j.scienta.2013.02.007 [DOI:10.1016/j.scienta.2013.02.007.]
4. Cousson, A., & Tran, T.V.K. (1992). Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers. Canadian Journal of Botany, 71, 506- 511. [DOI:10.1139/b93-055]
5. Davoudipahnekolayi, M., Nezamdoost Darestani, D., Mirshahi, H. (2024). Multipurpose Impacts of Silver Nitrate on Direct Organogenesis of Begonia rex cv. DS-EYWA via Transverse Thin Cell Layering (tTCL) Technique. Horticulturae, 10(9), 986. [DOI:10.3390/horticulturae10090986]
6. Fiscal, R.R., Dandan, K.B.V. (2016). Development and evaluation of paper from Corn husks (Zea mays L.) and snake plant fibers (Sansevieria zeylanica). IJSR, 5, 867-870. https://doi.org/10.21275/v5i8.3081601 [DOI:10.21275/v5i8.3081601.]
7. Giovannini, P., Howes, M.J.R. (2017). Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. Journal of Ethnopharmacology, 199, 240-256. https://doi.org/10.1016/j.jep.2017.02.011 [DOI:10.1016/j.jep.2017.02.011.]
8. Kazemzadeh Bahnamirei, M., Sarmast, MK., Padasht Dahkaei, MN., Alizadeh M. (2024). Evaluation of mother-plant growing beds, explant type, and different disinfection treatments in control of Sansevieria rhizome contamination under in vitro conditions. J. Plant Physiol Breed. 14(2), 23-38.
9. Henley, R.W. (1982). Sansevieria in Florida-past and present. Proc Fla State Hortic Soc, 95, 295-298.
10. Kaur, J., Mudgal, G. (2021). An efficient and quick protocol for in vitro multiplication of snake plant, Sansevieria trifasciata var. Laurentii [Prain]. Plant Cell Tissue and Organ Culture 147, 405-411 [DOI:10.1007/s11240-021-02132-0]
11. Manokari, M., Faisal, M., Alatar, A.A., Shekhawat, M.P. (2024). Optimization of in vitro regeneration of Ferocactus peninsulae (Barrel Cactus) through transverse thin cell layer (tTCL) culture: a strategy for large-scale propagation. Plant Cell Tiss. Organ Cult. 159, 48. [DOI:10.1007/s11240-024-02910-6]
12. Mohana, V.R., Rajeshb, A., Athiperumalsamia, T., Sutha, S. (2008). Ethnomedicinal plants of the Tirunelveli District, Tamil Nadu, India. Ethnobot Leafl, 12, 79-95.
13. Nakamura, M., Ohzono, M., Iwai, H., Arai, K. (2006). Anthracnose of Sansevieria trifasciata caused by Colletotrichum sansevieriae sp. nov. The Journal of General Plant Pathology, 72, 253-256. DOI 10.1007/s10327-006-0280-1. [DOI:10.1007/s10327-006-0280-1]
14. Newton, L.E. (2020). Sansevieria ruscaceae. In: Eggli U, Nyfeller R (eds) Bromeliaceae to xanthorrhoeaceae, 2nd edn. Illustrated handbook of succulent plants-Monocotyledons, vol 2. Springer, Berlin, pp 271-284. [DOI:10.1007/978-3-662-56486-8_29]
15. Nhut, D.T., Bui, V.L., Teixeira da Silva, J.A., Aswath, C.R. (2001) Thin cell layer culture system in Lilium: regeneration and transformation perspectives. In Vitro Cellular and Developmental Biology - Plant 37, 516-523 [DOI:10.1007/s11627-001-0090-2]
16. Qin, H., Guo, J., Jin, Y. et al. (2024). Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC Plant Biology, 24, 731. [DOI:10.1186/s12870-024-05450-5]
17. Said, A., Aboutabl, E.A., Melek, F.R., Abdel Jaleel, G.A., R., Raslan, M. (2015). Steroidal saponins and homoisoflavanone from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochemistry Letters, 12, 113-118. https://doi.org/10.1016/j.phytol.2015.03.006 [DOI:10.1016/j.phytol.2015.03.006.]
18. Sarmast, M.K., Dolati, M., Abbasabad, M., Seyfi, E., Alizadeh, M. (2023). Appraisal of leaf cutting, soil mixture and leaf explants on production of Sansevieria trifasciata under ex/in vitro condition. Flower and Ornamental Plants, 7(2), 261-276. [DOI:10.61186/flowerjournal.7.2.261]
19. Sarmast, M.K., Salehi, H., Khosh-Khui, M. (2014). Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants. 3 Biotech 4, 599-604. [DOI:10.1007/s13205-013-0191-8]
20. Sarmast, M.K., Salehi, M., Salehi, H. (2009). The potential of different parts of Sansevieria trifasciata L. leaf for meristemoids production. Australian Journal of Basic and Applied Sciences, 3(3), 2506-2509.
21. Shahzad, A., Ahmasd, N., Rather, MA., Husain, M.K., Anis M. (2009). Improved shoot regeneration system through leaf derived callus and nodule culture of Sansevieria cylindrical. Biologia Plantarum, 53, 745-749. [DOI:10.1007/s10535-009-0136-6]
22. Shinoyama, H., Anderson, N., Furuta, H., Mochizuki, A., Nomura, Y., Singh, R.P., Datta, S.K., Wang, B-C., Teixeira da Silva, J.A. (2006) Chrysanthemum biotechnology. In: Teixeira da Silva JA (ed.) Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st edn, Vol II), Global Science Books, London, UK, pp 140-163
23. Short, D.E., Osborne L.S., Henley R.W.. (1991-92) Insect and related arthropod management guide for commercial foliage plants in Florida. Extension Entomology Report, 53. 13 pp.
24. Takawira-Nyenya, R., Stedje, B. (2011). Ethnobotanical studies in the genus Sansevieria Thunb. (Asparagaceae) in Zimbabwe. Ethnobotany Research and Applications, 9, 421-444. [DOI:10.17348/era.9.0.421-443]
25. Takawira-Nyenya, R., Newton, L.E., Wabuyele, E., Stedje, B. (2014). Ethnobotanical uses of Sansevieria Thunb (Asparagaceae) in coast province of Kenya. Ethnobotany Research and Applications, 12, 51-69.
26. Teixeira da Silva, J.A., Dobra'nszki, J. (2014). Dissecting the concept of the Thin Cell Layer: theoretical basis. Journal of Plant Growth Regulators. 33, 881-895. https://doi.org/10.1007/s00344-014-9437-x [DOI:10.1007/s00344-014-9437-x.]
27. Teixeira da Silva, J.A., & Dobra'nszki, J. 2019. Recent advances and novelties in the thin cell layer-based plant biotechnology - a mini-review. Journal of Biotechnology, Computational Biology and Bionanotechnology, 100, 89-96 [DOI:10.5114/bta.2019.83215]
28. Teixeira, D.SJ.A. Fukai, S. (2002). Increasing transient and subsequent stable transgene expression in chrysanthemum (Dendranthema x grandiflora (Ramat.) Kitamura) following optimization of particle bombardment and Agroinfection parameters. Plant Biotechnology, 19, 229-240. [DOI:10.5511/plantbiotechnology.19.229]
29. Thu, Z.M., Oo, S.M., Nwe, T.M., Aung, H.T., Armijos, C., Hussain, F.H.S., Vidari, G. (2021). Structures and bioactivities of steroidal saponins isolated from the genera Dracaenaand Sansevieria. Molecules, 26(7), 1916. https://doi.org/10.3390/molecules26071916 [DOI:10.3390/molecules26071916.]
30. Van, K.T.T. (1980). Control of morphogenesis by inherent and exogenously applied factors in thin cell layers [Plants, de novo buds, roots]. International Review of Cytology, 32, 291-311.
31. Zhou, S., Ma, K., Mower, J.P., Liu, Y., Zhou, R. (2024). Leaf variegation caused by plastome structural variation: an example from Dianella tasmanica. Horticulture Research, 11, 1-12. [DOI:10.1093/hr/uhae009]
32. Blazich, F.A., Novitzky, R.T. (1984). In vitro propagation of Sansevieria trifasciata. HortScience, 19(1), 122- 123. [DOI:10.21273/HORTSCI.19.1.122]
33. Catalano, C., Carra, A., Carimi, F., Motisi, A., Sajeva, M., Butler, A., Lucretti, S., Giorgi, D., Farina, A., Abbate, L. (2023) Somatic embryogenesis and flow cytometric assessment of nuclear genetic stability for Sansevieria spp. An approach for in vitro regeneration of ornamental plants. Horticulturae, 9: 138. [DOI:10.3390/horticulturae9020138]
34. Collado, R., Veitia, N., Bermudez-Caraballoso, I., Garcia, L., Torres, D., Romero, C., Lorenzo, J.R., & Angenon, G. (2013). Efficient in vitro plant regeneration via indirect organogenesis for different common bean cultivars. Scientia Horticulturae, 153, 109-116. https://doi.org/10.1016/j.scienta.2013.02.007 [DOI:10.1016/j.scienta.2013.02.007.]
35. Cousson, A., & Tran, T.V.K. (1992). Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers. Canadian Journal of Botany, 71, 506- 511. [DOI:10.1139/b93-055]
36. Davoudipahnekolayi, M., Nezamdoost Darestani, D., Mirshahi, H. (2024). Multipurpose Impacts of Silver Nitrate on Direct Organogenesis of Begonia rex cv. DS-EYWA via Transverse Thin Cell Layering (tTCL) Technique. Horticulturae, 10(9), 986. [DOI:10.3390/horticulturae10090986]
37. Fiscal, R.R., Dandan, K.B.V. (2016). Development and evaluation of paper from Corn husks (Zea mays L.) and snake plant fibers (Sansevieria zeylanica). IJSR, 5, 867-870. https://doi.org/10.21275/v5i8.3081601 [DOI:10.21275/v5i8.3081601.]
38. Giovannini, P., Howes, M.J.R. (2017). Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. Journal of Ethnopharmacology, 199, 240-256. https://doi.org/10.1016/j.jep.2017.02.011 [DOI:10.1016/j.jep.2017.02.011.]
39. Kazemzadeh Bahnamirei, M., Sarmast, MK., Padasht Dahkaei, MN., Alizadeh M. (2024). Evaluation of mother-plant growing beds, explant type, and different disinfection treatments in control of Sansevieria rhizome contamination under in vitro conditions. J. Plant Physiol Breed. 14(2), 23-38.
40. Henley, R.W. (1982). Sansevieria in Florida-past and present. Proc Fla State Hortic Soc, 95, 295-298.
41. Kaur, J., Mudgal, G. (2021). An efficient and quick protocol for in vitro multiplication of snake plant, Sansevieria trifasciata var. Laurentii [Prain]. Plant Cell Tissue and Organ Culture 147, 405-411 [DOI:10.1007/s11240-021-02132-0]
42. Manokari, M., Faisal, M., Alatar, A.A., Shekhawat, M.P. (2024). Optimization of in vitro regeneration of Ferocactus peninsulae (Barrel Cactus) through transverse thin cell layer (tTCL) culture: a strategy for large-scale propagation. Plant Cell Tiss. Organ Cult. 159, 48. [DOI:10.1007/s11240-024-02910-6]
43. Mohana, V.R., Rajeshb, A., Athiperumalsamia, T., Sutha, S. (2008). Ethnomedicinal plants of the Tirunelveli District, Tamil Nadu, India. Ethnobot Leafl, 12, 79-95.
44. Nakamura, M., Ohzono, M., Iwai, H., Arai, K. (2006). Anthracnose of Sansevieria trifasciata caused by Colletotrichum sansevieriae sp. nov. The Journal of General Plant Pathology, 72, 253-256. DOI 10.1007/s10327-006-0280-1. [DOI:10.1007/s10327-006-0280-1]
45. Newton, L.E. (2020). Sansevieria ruscaceae. In: Eggli U, Nyfeller R (eds) Bromeliaceae to xanthorrhoeaceae, 2nd edn. Illustrated handbook of succulent plants-Monocotyledons, vol 2. Springer, Berlin, pp 271-284. [DOI:10.1007/978-3-662-56486-8_29]
46. Nhut, D.T., Bui, V.L., Teixeira da Silva, J.A., Aswath, C.R. (2001) Thin cell layer culture system in Lilium: regeneration and transformation perspectives. In Vitro Cellular and Developmental Biology - Plant 37, 516-523 [DOI:10.1007/s11627-001-0090-2]
47. Qin, H., Guo, J., Jin, Y. et al. (2024). Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC Plant Biology, 24, 731. [DOI:10.1186/s12870-024-05450-5]
48. Said, A., Aboutabl, E.A., Melek, F.R., Abdel Jaleel, G.A., R., Raslan, M. (2015). Steroidal saponins and homoisoflavanone from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochemistry Letters, 12, 113-118. https://doi.org/10.1016/j.phytol.2015.03.006 [DOI:10.1016/j.phytol.2015.03.006.]
49. Sarmast, M.K., Dolati, M., Abbasabad, M., Seyfi, E., Alizadeh, M. (2023). Appraisal of leaf cutting, soil mixture and leaf explants on production of Sansevieria trifasciata under ex/in vitro condition. Flower and Ornamental Plants, 7(2), 261-276. [DOI:10.61186/flowerjournal.7.2.261]
50. Sarmast, M.K., Salehi, H., Khosh-Khui, M. (2014). Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants. 3 Biotech 4, 599-604. [DOI:10.1007/s13205-013-0191-8]
51. Sarmast, M.K., Salehi, M., Salehi, H. (2009). The potential of different parts of Sansevieria trifasciata L. leaf for meristemoids production. Australian Journal of Basic and Applied Sciences, 3(3), 2506-2509.
52. Shahzad, A., Ahmasd, N., Rather, MA., Husain, M.K., Anis M. (2009). Improved shoot regeneration system through leaf derived callus and nodule culture of Sansevieria cylindrical. Biologia Plantarum, 53, 745-749. [DOI:10.1007/s10535-009-0136-6]
53. Shinoyama, H., Anderson, N., Furuta, H., Mochizuki, A., Nomura, Y., Singh, R.P., Datta, S.K., Wang, B-C., Teixeira da Silva, J.A. (2006) Chrysanthemum biotechnology. In: Teixeira da Silva JA (ed.) Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st edn, Vol II), Global Science Books, London, UK, pp 140-163
54. Short, D.E., Osborne L.S., Henley R.W.. (1991-92) Insect and related arthropod management guide for commercial foliage plants in Florida. Extension Entomology Report, 53. 13 pp.
55. Takawira-Nyenya, R., Stedje, B. (2011). Ethnobotanical studies in the genus Sansevieria Thunb. (Asparagaceae) in Zimbabwe. Ethnobotany Research and Applications, 9, 421-444. [DOI:10.17348/era.9.0.421-443]
56. Takawira-Nyenya, R., Newton, L.E., Wabuyele, E., Stedje, B. (2014). Ethnobotanical uses of Sansevieria Thunb (Asparagaceae) in coast province of Kenya. Ethnobotany Research and Applications, 12, 51-69.
57. Teixeira da Silva, J.A., Dobra'nszki, J. (2014). Dissecting the concept of the Thin Cell Layer: theoretical basis. Journal of Plant Growth Regulators. 33, 881-895. https://doi.org/10.1007/s00344-014-9437-x [DOI:10.1007/s00344-014-9437-x.]
58. Teixeira da Silva, J.A., & Dobra'nszki, J. 2019. Recent advances and novelties in the thin cell layer-based plant biotechnology - a mini-review. Journal of Biotechnology, Computational Biology and Bionanotechnology, 100, 89-96 [DOI:10.5114/bta.2019.83215]
59. Teixeira, D.SJ.A. Fukai, S. (2002). Increasing transient and subsequent stable transgene expression in chrysanthemum (Dendranthema x grandiflora (Ramat.) Kitamura) following optimization of particle bombardment and Agroinfection parameters. Plant Biotechnology, 19, 229-240. [DOI:10.5511/plantbiotechnology.19.229]
60. Thu, Z.M., Oo, S.M., Nwe, T.M., Aung, H.T., Armijos, C., Hussain, F.H.S., Vidari, G. (2021). Structures and bioactivities of steroidal saponins isolated from the genera Dracaenaand Sansevieria. Molecules, 26(7), 1916. https://doi.org/10.3390/molecules26071916 [DOI:10.3390/molecules26071916.]
61. Van, K.T.T. (1980). Control of morphogenesis by inherent and exogenously applied factors in thin cell layers [Plants, de novo buds, roots]. International Review of Cytology, 32, 291-311.
62. Zhou, S., Ma, K., Mower, J.P., Liu, Y., Zhou, R. (2024). Leaf variegation caused by plastome structural variation: an example from Dianella tasmanica. Horticulture Research, 11, 1-12. [DOI:10.1093/hr/uhae009]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemzadeh Bahnamirei M, khoshhal sarmast M, Alizadeh M, Padasht M N. Feasibility of in vitro generation of Sansevieria trifasciata 'Laurentii' plantlets through a thin cell layer. FOP 2025; 10 (1) :71-82
URL: http://flowerjournal.ir/article-1-336-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 1 (Spring & Summer 2025) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.03 seconds with 37 queries by YEKTAWEB 4732