[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 1 (Spring and Summer 2024) ::
FOP 2024, 9(1): 147-166 Back to browse issues page
Improving the salinity stress tolerance of Phyla nodiflora L. groundcover through potassium humate application
Fatemeh Sadeghi , Somayeh Esmaeili * , Mehrangiz Chehrazi
Shahid Chamran University of Ahvaz
Abstract:   (1744 Views)
This experiment examined how potassium humate affects the salinity tolerance of the groundcover plant Phyla nodiflora L., focusing on its morpho-physiological characteristics. A split-plot design was used for the greenhouse experiment, which included two factors arranged in randomized complete blocks with three replications. The main plot involved NaCl salinity at 5 different levels (0, 4, 8, 12, and 16 dS m-1), while the subplot consisted of three levels of potassium humate (0, 500, and 1000 mg L-1). The results showed that regardless of the fertilizer treatment, the shoot fresh weight and visual quality showed a significant decrease of 19.02% and 24.34%, respectively in the salinity treatment of 16 dS m-1 compared to the control plants. The Phyla plant had a relatively favorable state of plant pigments in the salinity treatment of 16 dS m-1, another positive feature for the plant during salt stress. In addition, the visual quality showed a strong and positive correlation with shoot length, shoot fresh and dry weight, and root fresh weight. Overall, the results showed that Phyla experienced reduced growth characteristics under salinity stress. While high salinity conditions may compromise visual quality, Phyla's vibrant green hue is preserved despite the stress. Based on the results of fresh and dry shoot and root weights, leaf relative water content (RWC), and visual quality, it is evident that Phyla plants thrive best up to a salinity level of 8 dS m-1. There is no need to utilize potassium humate treatment at this stress level. At salinity levels of 12 and 16 dS m-1, the morphophysiological characteristics of the Phyla decreased. As a result, at higher salinity levels such as 12 and 16 dS m-1, to improve the overall condition of the plant, the use of potassium humate is recommended. Therefore, the application of 500 mg L-1 of potassium humate enhanced the shoot length, lateral shoot number, and RWC at a salinity level of 16 dS m-1. Furthermore, the use of 1000 mg L-1 potassium humate led to enhanced plant pigments under a sodium chloride salinity treatment of 12 dS m-1.
 
Keywords: Phyla, Plant pigments, Relative water content, Sodium chloride, Visual quality
Full-Text [PDF 487 kb]   (616 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2024/08/3 | Accepted: 2024/08/28 | Published: 2024/11/3
References
1. Abdelrasheed, K.G., Mazrou, Y., Omara, A.E.D., Osman, H.S., Nehela, Y., Hafez, E.M., Rady, M.S., El-Moneim, D.A., Alowaiesh, B.F., Gowayed, S.M. (2021). Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion under deficit irrigation conditions. Plants, 10(12), 1-25. [DOI:10.3390/plants10122598]
2. Abu-Ria, M., Shukry, W., Abo-Hamed, S., Albaqami, M., Almuqadam, L., Ibraheem, F. (2023). Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. Plants, 12(9), 1-20. [DOI:10.3390/plants12091834]
3. Arvin, P., Firouzeh, R. (2021). Effects of salinity stress on physiological and biochemical traits of some fenugreek (Trigonella foenum-graecum L.) populations. Iranian Journal of Medicinal and Aromatic Plants Research, 37(5), 822-837. (In Persian).
4. Bakry, A.B., Sadak, M.S, El-Karamany, M.F. (2015). Effect of humic acid and sulfur on growth, some biochemical constituents, yield and yield attributes of flax grown under newly reclaimed sandy soils. Journal of Agricultural and Biological Science, 10(7), 247-259.‌
5. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [DOI:10.1007/s11738-013-1455-y]
6. Daneshvar Hakimi Maibodi, N., Kafi, M., Nikbakht, A, Rejali, F. (2012). Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). Journal of Plant Nutrition, 38(2), 224-236. [DOI:10.1080/01904167.2014.939759]
7. Dehghani, M.K. (2020). Influence of Silicon and Humic Acid on Some Morphophysiological Responses in Bell Pepper at Different Levels of Salinity and Boron. MSc Thesis, Shiraz University, Shiraz, Iran. (In Persian).
8. Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G., Sokolik, A., Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65 (5): 1259-1270. [DOI:10.1093/jxb/eru004]
9. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38(12), 1885-1901.‌ [DOI:10.1080/01904167.2015.1069332]
10. Fan, H.M., Wang, X.W., Sun, X., Li, Y.Y., Sun, X.Z., Zheng, C.S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in Chrysanthemum. Scientia Horticulturae, 177, 118-123. [DOI:10.1016/j.scienta.2014.05.010]
11. Goddard, M.A., Dougill, A.J., Benton, T.G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecology and Evolution, 25(2), 90-98. [DOI:10.1016/j.tree.2009.07.016]
12. Heidari, F., Jalilian, J., Gholinezhad, E. (2020). The role of foliar application nano-fertilizers in modulating the negative effects of salt stress in quinoa. Journal of Crops Improvement, 22(3), 587-600. (In Persian).
13. Jabeen, M., Jillani, U., Chaudhary, B. A., Uzair, M. (2016). Phytochemical and pharmacological studies of Phyla Nodiflora (Verbenaceae): A review. Pakistan Journal of Pharmaceutical Research, 2, 49-54. [DOI:10.22200/pjpr.2016149-54]
14. Kafi, M., Daneshvar Hakimi Meybodi, N., Nikbakht, A., Rejali, F., Daneshkhah, M. (2012). The effect of humic acid and mycorrhizal fungi on some characteristics of Lolium grass of the Speedy Green composition. Science and techniques of greenhouse crops, 4(13), 49-58. (In Persian).
15. Karimi, G., Ghorbanli, M., Heidari, H., Assareh, M. (2005). Investigation of salt Tolerance mechanisms in range species of Atriplex verrucifera (M.B). Pajouhesh and Sazandegi in natural resources, 73, 42-48. (In Persian).
16. Karimian, Z., Samiei, L., Nabati, J. (2018). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 73-82.‌ [DOI:10.24326/asphc.2019.5.7]
17. Kazemi, F., Salahshoor, F., Farhadi, H. (2019). Effect of humic acid and mulches on characteristics of tall fescue (Festuca arundinacea Schreb.). Desert, 24(1), 51-59.
18. Khafagy, H., Ahmed, M., Abdel-Azeem, S. (2019). Impact of mineral fertilizers with or without bio-fertilizers or potassium humate on some soil properties, yield and quality of pea plants under salt affected soil conditions. Journal of Agricultural Chemistry and Biotechnology, 10(1), 19-27. [DOI:10.21608/jacb.2019.36785]
19. Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.‌ [DOI:10.17221/4/2010-SWR]
20. Khan, A.N., Qureshi, R.H., Ahmad, N., Rashid, A. (1995). Response of cotton cultivars to salinity at various growth development stages. Sarhad Journal of Agriculture, 11, 729-731.
21. Khan, M.A., Ungar, I.A., Showalter, A.M. (2000). Effects of salinity on growth, water relations and ions accumulation of the subtropical perennial halophyte Atriplex griffthii var. stocksii. Annals of Botany, 85(2), 225-232. [DOI:10.1006/anbo.1999.1022]
22. Khaninejad, S., Kafi, M., Khazaei, H.R., Shabahang, J., Nabati, J. (2012). Investigating the effect of different levels of nitrogen and phosphorus on the characteristics and yield of Kochia scoparia in irrigation with two levels of salinity. Iranian Journal of Field Crops Research, 11(2), 275-283. (In Persian).
23. Khodashenas, M., Nasibi, F., Ashraf Gangooei, F.A., Rahneshan, Z. (2020). Physiological and antioxidative responses of a halophytic grass Leptochloa fusca L. kunth (Kallar grass) to salinity. Journal of Plant Process and Function, 8(34), 71-78.‎
24. Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H., Khorsan, A.(2010). Effect of salinity (NaCl) on growth yield essential oil content and composition of Agastach foeniculum Kuntz. Iranian Journal of Medicinal and Aromatic Plants, 26(3), 438-451. In Persian))
25. Kurban. H., Saneoka. H., Nehira. K., Adilla. R., Premachandra. G.S, Fujita. K. (1999). Effect of salinity on growth, photosynthesis and mineral composition in legurninous plant Alhagi psedoalhagi (Bieb.). Soil Science and Plant Nutrition, 45, 851-862. [DOI:10.1080/00380768.1999.10414334]
26. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in Enzymology. Academic Press. New York, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
27. Liu, H., Todd, J.L., Luo, H. (2023). Turfgrass Salinity Stress and Tolerance-A Review. Plants, 12(4), 1-25. [DOI:10.3390/plants12040925]
28. Maas, E.V. (1986). Salt tolerance of plants. Applied Agricultural Research, 1, 12-26.
29. Majidi, A., Kharazmi, K. (2014). Potassium and Magnesium Interaction in Alfalfa (Medicago sativa L.). Agronomy Journal (Pajouhesh and Sazandegi), 108, 1-7. In Persian))Nikbakht, A., Kafi, M., Babalar, M., Ping Xia, Y., Luo, A., Etemadi, N.A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition. 31(12), 2155-2167. [DOI:10.1080/01904160802462819]
30. Niu, G., Rodriguez, D.S. (2006). Relative salt tolerance of selected herbaceous perennials and groundcovers. Scientia Horticulturae, 110(4), 352-358. [DOI:10.1016/j.scienta.2006.07.020]
31. Pham, A.C., Vo, T.C., Bui, T.D., Van, T.T.H., Tran, D.Q. (2024). Evaluating growth and physiological responses of a medicinal plant Phyla nodiflora to salinity. International Journal of Plant Biology, 15(1), 187-197.‌ [DOI:10.3390/ijpb15010015]
32. Pourghasemi, D., Chehrazi, M., Rezaei Nejad, A. (2016). Effects of salinity stress on some quantitative and qualitative characteristics of Alternanthera repens genotypes: "Entire Leaf" and "Undulate Leaf". Plant Production Technology, 10(1), 1-11. (In Persian).
33. Rajabi Fakhrabad, A., Sharifan, H., Hossam, M. Zakarinia, M. (2017). The effect of salinity stress on ion leakage and nutrient concentration of spinach under different levels of irrigation. In: Second National Congress of Irrigation and Drainage of Iran. Iran, Isfahan. Conference paper. (In Persian).
34. Rasouli, M., Hatamzadeh, A., Ghasemnezhad, M., Samizadeh Lahiji, H. (2017). The increase of salinity tolerance in three turf grass species using trinexapac-ethyl. Nova Biologica Reperta, 4(1), 28-37. (In Persian). [DOI:10.21859/acadpub.nbr.4.1.29]
35. Rodríguez‐Hernández, M.D.C., Garmendia, I. (2021). Optimum growth and quality of the edible ice plant under saline conditions. Journal of the Science of Food and Agriculture, 102(7), 2686-2692. [DOI:10.1002/jsfa.11608]
36. Sabet Teimouri, S.T., Khazaie, H., Nezami, A., Nasiri Mahallati, M. (2007). Investigation of different levels of salinity on physiological characteristics and leaf antioxidant enzyme rate of sesame (Sesamum indicum L.). Journal of Agricultural Research, 7, 171-190.
37. Saeedi Pooya, E., Tehranifar, A., Sadeqi, M., Vahdati Mashhadian, N. (2017). Can we reduce salinity effects by the application of humic acid on native turfgrasses in order to attain sustainable landscape? Journal of Ornamental Plants, 8(2), 121-133.
38. Sairam, R.K., Rao, K.V., Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
39. Salehi, L. (2015). Effect of Humi potas and potassium sulfate on quantitative and qualitative characteristics wallflower (Matthiola incana L.). Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. (In Persian).
40. Sharma, R. A., Singh, R. (2013). A review on Phyla nodiflora Linn.: A wild wetland medicinal herb. International Journal of Pharmaceutical Sciences Review and Research, 20(1), 57-63.
41. Suarez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L. Brazilian Journal of Plant Physiology, 20, 40-131. [DOI:10.1590/S1677-04202008000200005]
42. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Abdul Rahim. A. (2010). Effect of salinity of tropical turfgrass species. World Congress of Soil Science, Soil Solutions for a Changing World, 29-31.
43. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Hossain, M.A., Abdul Rahim. A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1-10. [DOI:10.1100/2012/905468]
44. Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1-12. [DOI:10.1186/s40538-017-0089-5]
45. Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., Jones, H.G. (2010). Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants, plq006, 1-8. [DOI:10.1093/aobpla/plq006]
46. Wang, D., Shannon, M.C., Grieve, C.M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. [DOI:10.1016/S0378-4290(00)00154-4]
47. Xiong, Y., Liang, H., Yan, H., Guo, B., Niu, M., Chen, S., Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., da Silva, J.A.T. (2019). NaCl-induced stress: physiological responses of six halophyte species in in vitro and in vivo culture. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 531-546. [DOI:10.1007/s11240-019-01697-1]
48. Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A. and Feizian, M. (2019). Effects of different humic acid and salinity levels on some traits of Khuzestani savory (Satureja khuzistanica Jamzad). Applied Ecology and Environmental Research, 17 (3), 5409-5432. [DOI:10.15666/aeer/1703_54095433]
49. Zhang, L., Sun, X.Y, Tian, Y., Gong, X.G. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70-78. [DOI:10.1016/j.scienta.2014.06.021]
50. Abdelrasheed, K.G., Mazrou, Y., Omara, A.E.D., Osman, H.S., Nehela, Y., Hafez, E.M., Rady, M.S., El-Moneim, D.A., Alowaiesh, B.F., Gowayed, S.M. (2021). Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion under deficit irrigation conditions. Plants, 10(12), 1-25. [DOI:10.3390/plants10122598]
51. Abu-Ria, M., Shukry, W., Abo-Hamed, S., Albaqami, M., Almuqadam, L., Ibraheem, F. (2023). Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. Plants, 12(9), 1-20. [DOI:10.3390/plants12091834]
52. Arvin, P., Firouzeh, R. (2021). Effects of salinity stress on physiological and biochemical traits of some fenugreek (Trigonella foenum-graecum L.) populations. Iranian Journal of Medicinal and Aromatic Plants Research, 37(5), 822-837. (In Persian).
53. Bakry, A.B., Sadak, M.S, El-Karamany, M.F. (2015). Effect of humic acid and sulfur on growth, some biochemical constituents, yield and yield attributes of flax grown under newly reclaimed sandy soils. Journal of Agricultural and Biological Science, 10(7), 247-259.‌
54. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [DOI:10.1007/s11738-013-1455-y]
55. Daneshvar Hakimi Maibodi, N., Kafi, M., Nikbakht, A, Rejali, F. (2012). Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). Journal of Plant Nutrition, 38(2), 224-236. [DOI:10.1080/01904167.2014.939759]
56. Dehghani, M.K. (2020). Influence of Silicon and Humic Acid on Some Morphophysiological Responses in Bell Pepper at Different Levels of Salinity and Boron. MSc Thesis, Shiraz University, Shiraz, Iran. (In Persian).
57. Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G., Sokolik, A., Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65 (5): 1259-1270. [DOI:10.1093/jxb/eru004]
58. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38(12), 1885-1901.‌ [DOI:10.1080/01904167.2015.1069332]
59. Fan, H.M., Wang, X.W., Sun, X., Li, Y.Y., Sun, X.Z., Zheng, C.S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in Chrysanthemum. Scientia Horticulturae, 177, 118-123. [DOI:10.1016/j.scienta.2014.05.010]
60. Goddard, M.A., Dougill, A.J., Benton, T.G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecology and Evolution, 25(2), 90-98. [DOI:10.1016/j.tree.2009.07.016]
61. Heidari, F., Jalilian, J., Gholinezhad, E. (2020). The role of foliar application nano-fertilizers in modulating the negative effects of salt stress in quinoa. Journal of Crops Improvement, 22(3), 587-600. (In Persian).
62. Jabeen, M., Jillani, U., Chaudhary, B. A., Uzair, M. (2016). Phytochemical and pharmacological studies of Phyla Nodiflora (Verbenaceae): A review. Pakistan Journal of Pharmaceutical Research, 2, 49-54. [DOI:10.22200/pjpr.2016149-54]
63. Kafi, M., Daneshvar Hakimi Meybodi, N., Nikbakht, A., Rejali, F., Daneshkhah, M. (2012). The effect of humic acid and mycorrhizal fungi on some characteristics of Lolium grass of the Speedy Green composition. Science and techniques of greenhouse crops, 4(13), 49-58. (In Persian).
64. Karimi, G., Ghorbanli, M., Heidari, H., Assareh, M. (2005). Investigation of salt Tolerance mechanisms in range species of Atriplex verrucifera (M.B). Pajouhesh and Sazandegi in natural resources, 73, 42-48. (In Persian).
65. Karimian, Z., Samiei, L., Nabati, J. (2018). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 73-82.‌ [DOI:10.24326/asphc.2019.5.7]
66. Kazemi, F., Salahshoor, F., Farhadi, H. (2019). Effect of humic acid and mulches on characteristics of tall fescue (Festuca arundinacea Schreb.). Desert, 24(1), 51-59.
67. Khafagy, H., Ahmed, M., Abdel-Azeem, S. (2019). Impact of mineral fertilizers with or without bio-fertilizers or potassium humate on some soil properties, yield and quality of pea plants under salt affected soil conditions. Journal of Agricultural Chemistry and Biotechnology, 10(1), 19-27. [DOI:10.21608/jacb.2019.36785]
68. Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.‌ [DOI:10.17221/4/2010-SWR]
69. Khan, A.N., Qureshi, R.H., Ahmad, N., Rashid, A. (1995). Response of cotton cultivars to salinity at various growth development stages. Sarhad Journal of Agriculture, 11, 729-731.
70. Khan, M.A., Ungar, I.A., Showalter, A.M. (2000). Effects of salinity on growth, water relations and ions accumulation of the subtropical perennial halophyte Atriplex griffthii var. stocksii. Annals of Botany, 85(2), 225-232. [DOI:10.1006/anbo.1999.1022]
71. Khaninejad, S., Kafi, M., Khazaei, H.R., Shabahang, J., Nabati, J. (2012). Investigating the effect of different levels of nitrogen and phosphorus on the characteristics and yield of Kochia scoparia in irrigation with two levels of salinity. Iranian Journal of Field Crops Research, 11(2), 275-283. (In Persian).
72. Khodashenas, M., Nasibi, F., Ashraf Gangooei, F.A., Rahneshan, Z. (2020). Physiological and antioxidative responses of a halophytic grass Leptochloa fusca L. kunth (Kallar grass) to salinity. Journal of Plant Process and Function, 8(34), 71-78.‎
73. Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H., Khorsan, A.(2010). Effect of salinity (NaCl) on growth yield essential oil content and composition of Agastach foeniculum Kuntz. Iranian Journal of Medicinal and Aromatic Plants, 26(3), 438-451. In Persian))
74. Kurban. H., Saneoka. H., Nehira. K., Adilla. R., Premachandra. G.S, Fujita. K. (1999). Effect of salinity on growth, photosynthesis and mineral composition in legurninous plant Alhagi psedoalhagi (Bieb.). Soil Science and Plant Nutrition, 45, 851-862. [DOI:10.1080/00380768.1999.10414334]
75. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in Enzymology. Academic Press. New York, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
76. Liu, H., Todd, J.L., Luo, H. (2023). Turfgrass Salinity Stress and Tolerance-A Review. Plants, 12(4), 1-25. [DOI:10.3390/plants12040925]
77. Maas, E.V. (1986). Salt tolerance of plants. Applied Agricultural Research, 1, 12-26.
78. Majidi, A., Kharazmi, K. (2014). Potassium and Magnesium Interaction in Alfalfa (Medicago sativa L.). Agronomy Journal (Pajouhesh and Sazandegi), 108, 1-7. In Persian))Nikbakht, A., Kafi, M., Babalar, M., Ping Xia, Y., Luo, A., Etemadi, N.A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition. 31(12), 2155-2167. [DOI:10.1080/01904160802462819]
79. Niu, G., Rodriguez, D.S. (2006). Relative salt tolerance of selected herbaceous perennials and groundcovers. Scientia Horticulturae, 110(4), 352-358. [DOI:10.1016/j.scienta.2006.07.020]
80. Pham, A.C., Vo, T.C., Bui, T.D., Van, T.T.H., Tran, D.Q. (2024). Evaluating growth and physiological responses of a medicinal plant Phyla nodiflora to salinity. International Journal of Plant Biology, 15(1), 187-197.‌ [DOI:10.3390/ijpb15010015]
81. Pourghasemi, D., Chehrazi, M., Rezaei Nejad, A. (2016). Effects of salinity stress on some quantitative and qualitative characteristics of Alternanthera repens genotypes: "Entire Leaf" and "Undulate Leaf". Plant Production Technology, 10(1), 1-11. (In Persian).
82. Rajabi Fakhrabad, A., Sharifan, H., Hossam, M. Zakarinia, M. (2017). The effect of salinity stress on ion leakage and nutrient concentration of spinach under different levels of irrigation. In: Second National Congress of Irrigation and Drainage of Iran. Iran, Isfahan. Conference paper. (In Persian).
83. Rasouli, M., Hatamzadeh, A., Ghasemnezhad, M., Samizadeh Lahiji, H. (2017). The increase of salinity tolerance in three turf grass species using trinexapac-ethyl. Nova Biologica Reperta, 4(1), 28-37. (In Persian). [DOI:10.21859/acadpub.nbr.4.1.29]
84. Rodríguez‐Hernández, M.D.C., Garmendia, I. (2021). Optimum growth and quality of the edible ice plant under saline conditions. Journal of the Science of Food and Agriculture, 102(7), 2686-2692. [DOI:10.1002/jsfa.11608]
85. Sabet Teimouri, S.T., Khazaie, H., Nezami, A., Nasiri Mahallati, M. (2007). Investigation of different levels of salinity on physiological characteristics and leaf antioxidant enzyme rate of sesame (Sesamum indicum L.). Journal of Agricultural Research, 7, 171-190.
86. Saeedi Pooya, E., Tehranifar, A., Sadeqi, M., Vahdati Mashhadian, N. (2017). Can we reduce salinity effects by the application of humic acid on native turfgrasses in order to attain sustainable landscape? Journal of Ornamental Plants, 8(2), 121-133.
87. Sairam, R.K., Rao, K.V., Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
88. Salehi, L. (2015). Effect of Humi potas and potassium sulfate on quantitative and qualitative characteristics wallflower (Matthiola incana L.). Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. (In Persian).
89. Sharma, R. A., Singh, R. (2013). A review on Phyla nodiflora Linn.: A wild wetland medicinal herb. International Journal of Pharmaceutical Sciences Review and Research, 20(1), 57-63.
90. Suarez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L. Brazilian Journal of Plant Physiology, 20, 40-131. [DOI:10.1590/S1677-04202008000200005]
91. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Abdul Rahim. A. (2010). Effect of salinity of tropical turfgrass species. World Congress of Soil Science, Soil Solutions for a Changing World, 29-31.
92. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Hossain, M.A., Abdul Rahim. A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1-10. [DOI:10.1100/2012/905468]
93. Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1-12. [DOI:10.1186/s40538-017-0089-5]
94. Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., Jones, H.G. (2010). Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants, plq006, 1-8. [DOI:10.1093/aobpla/plq006]
95. Wang, D., Shannon, M.C., Grieve, C.M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. [DOI:10.1016/S0378-4290(00)00154-4]
96. Xiong, Y., Liang, H., Yan, H., Guo, B., Niu, M., Chen, S., Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., da Silva, J.A.T. (2019). NaCl-induced stress: physiological responses of six halophyte species in in vitro and in vivo culture. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 531-546. [DOI:10.1007/s11240-019-01697-1]
97. Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A. and Feizian, M. (2019). Effects of different humic acid and salinity levels on some traits of Khuzestani savory (Satureja khuzistanica Jamzad). Applied Ecology and Environmental Research, 17 (3), 5409-5432. [DOI:10.15666/aeer/1703_54095433]
98. Zhang, L., Sun, X.Y, Tian, Y., Gong, X.G. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70-78. [DOI:10.1016/j.scienta.2014.06.021]
99. Abdelrasheed, K.G., Mazrou, Y., Omara, A.E.D., Osman, H.S., Nehela, Y., Hafez, E.M., Rady, M.S., El-Moneim, D.A., Alowaiesh, B.F., Gowayed, S.M. (2021). Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion under deficit irrigation conditions. Plants, 10(12), 1-25. [DOI:10.3390/plants10122598]
100. Abu-Ria, M., Shukry, W., Abo-Hamed, S., Albaqami, M., Almuqadam, L., Ibraheem, F. (2023). Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. Plants, 12(9), 1-20. [DOI:10.3390/plants12091834]
101. Arvin, P., Firouzeh, R. (2021). Effects of salinity stress on physiological and biochemical traits of some fenugreek (Trigonella foenum-graecum L.) populations. Iranian Journal of Medicinal and Aromatic Plants Research, 37(5), 822-837. (In Persian).
102. Bakry, A.B., Sadak, M.S, El-Karamany, M.F. (2015). Effect of humic acid and sulfur on growth, some biochemical constituents, yield and yield attributes of flax grown under newly reclaimed sandy soils. Journal of Agricultural and Biological Science, 10(7), 247-259.‌
103. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [DOI:10.1007/s11738-013-1455-y]
104. Daneshvar Hakimi Maibodi, N., Kafi, M., Nikbakht, A, Rejali, F. (2012). Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). Journal of Plant Nutrition, 38(2), 224-236. [DOI:10.1080/01904167.2014.939759]
105. Dehghani, M.K. (2020). Influence of Silicon and Humic Acid on Some Morphophysiological Responses in Bell Pepper at Different Levels of Salinity and Boron. MSc Thesis, Shiraz University, Shiraz, Iran. (In Persian).
106. Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G., Sokolik, A., Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65 (5): 1259-1270. [DOI:10.1093/jxb/eru004]
107. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38(12), 1885-1901.‌ [DOI:10.1080/01904167.2015.1069332]
108. Fan, H.M., Wang, X.W., Sun, X., Li, Y.Y., Sun, X.Z., Zheng, C.S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in Chrysanthemum. Scientia Horticulturae, 177, 118-123. [DOI:10.1016/j.scienta.2014.05.010]
109. Goddard, M.A., Dougill, A.J., Benton, T.G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecology and Evolution, 25(2), 90-98. [DOI:10.1016/j.tree.2009.07.016]
110. Heidari, F., Jalilian, J., Gholinezhad, E. (2020). The role of foliar application nano-fertilizers in modulating the negative effects of salt stress in quinoa. Journal of Crops Improvement, 22(3), 587-600. (In Persian).
111. Jabeen, M., Jillani, U., Chaudhary, B. A., Uzair, M. (2016). Phytochemical and pharmacological studies of Phyla Nodiflora (Verbenaceae): A review. Pakistan Journal of Pharmaceutical Research, 2, 49-54. [DOI:10.22200/pjpr.2016149-54]
112. Kafi, M., Daneshvar Hakimi Meybodi, N., Nikbakht, A., Rejali, F., Daneshkhah, M. (2012). The effect of humic acid and mycorrhizal fungi on some characteristics of Lolium grass of the Speedy Green composition. Science and techniques of greenhouse crops, 4(13), 49-58. (In Persian).
113. Karimi, G., Ghorbanli, M., Heidari, H., Assareh, M. (2005). Investigation of salt Tolerance mechanisms in range species of Atriplex verrucifera (M.B). Pajouhesh and Sazandegi in natural resources, 73, 42-48. (In Persian).
114. Karimian, Z., Samiei, L., Nabati, J. (2018). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 73-82.‌ [DOI:10.24326/asphc.2019.5.7]
115. Kazemi, F., Salahshoor, F., Farhadi, H. (2019). Effect of humic acid and mulches on characteristics of tall fescue (Festuca arundinacea Schreb.). Desert, 24(1), 51-59.
116. Khafagy, H., Ahmed, M., Abdel-Azeem, S. (2019). Impact of mineral fertilizers with or without bio-fertilizers or potassium humate on some soil properties, yield and quality of pea plants under salt affected soil conditions. Journal of Agricultural Chemistry and Biotechnology, 10(1), 19-27. [DOI:10.21608/jacb.2019.36785]
117. Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.‌ [DOI:10.17221/4/2010-SWR]
118. Khan, A.N., Qureshi, R.H., Ahmad, N., Rashid, A. (1995). Response of cotton cultivars to salinity at various growth development stages. Sarhad Journal of Agriculture, 11, 729-731.
119. Khan, M.A., Ungar, I.A., Showalter, A.M. (2000). Effects of salinity on growth, water relations and ions accumulation of the subtropical perennial halophyte Atriplex griffthii var. stocksii. Annals of Botany, 85(2), 225-232. [DOI:10.1006/anbo.1999.1022]
120. Khaninejad, S., Kafi, M., Khazaei, H.R., Shabahang, J., Nabati, J. (2012). Investigating the effect of different levels of nitrogen and phosphorus on the characteristics and yield of Kochia scoparia in irrigation with two levels of salinity. Iranian Journal of Field Crops Research, 11(2), 275-283. (In Persian).
121. Khodashenas, M., Nasibi, F., Ashraf Gangooei, F.A., Rahneshan, Z. (2020). Physiological and antioxidative responses of a halophytic grass Leptochloa fusca L. kunth (Kallar grass) to salinity. Journal of Plant Process and Function, 8(34), 71-78.‎
122. Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H., Khorsan, A.(2010). Effect of salinity (NaCl) on growth yield essential oil content and composition of Agastach foeniculum Kuntz. Iranian Journal of Medicinal and Aromatic Plants, 26(3), 438-451. In Persian))
123. Kurban. H., Saneoka. H., Nehira. K., Adilla. R., Premachandra. G.S, Fujita. K. (1999). Effect of salinity on growth, photosynthesis and mineral composition in legurninous plant Alhagi psedoalhagi (Bieb.). Soil Science and Plant Nutrition, 45, 851-862. [DOI:10.1080/00380768.1999.10414334]
124. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in Enzymology. Academic Press. New York, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
125. Liu, H., Todd, J.L., Luo, H. (2023). Turfgrass Salinity Stress and Tolerance-A Review. Plants, 12(4), 1-25. [DOI:10.3390/plants12040925]
126. Maas, E.V. (1986). Salt tolerance of plants. Applied Agricultural Research, 1, 12-26.
127. Majidi, A., Kharazmi, K. (2014). Potassium and Magnesium Interaction in Alfalfa (Medicago sativa L.). Agronomy Journal (Pajouhesh and Sazandegi), 108, 1-7. In Persian))Nikbakht, A., Kafi, M., Babalar, M., Ping Xia, Y., Luo, A., Etemadi, N.A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition. 31(12), 2155-2167. [DOI:10.1080/01904160802462819]
128. Niu, G., Rodriguez, D.S. (2006). Relative salt tolerance of selected herbaceous perennials and groundcovers. Scientia Horticulturae, 110(4), 352-358. [DOI:10.1016/j.scienta.2006.07.020]
129. Pham, A.C., Vo, T.C., Bui, T.D., Van, T.T.H., Tran, D.Q. (2024). Evaluating growth and physiological responses of a medicinal plant Phyla nodiflora to salinity. International Journal of Plant Biology, 15(1), 187-197.‌ [DOI:10.3390/ijpb15010015]
130. Pourghasemi, D., Chehrazi, M., Rezaei Nejad, A. (2016). Effects of salinity stress on some quantitative and qualitative characteristics of Alternanthera repens genotypes: "Entire Leaf" and "Undulate Leaf". Plant Production Technology, 10(1), 1-11. (In Persian).
131. Rajabi Fakhrabad, A., Sharifan, H., Hossam, M. Zakarinia, M. (2017). The effect of salinity stress on ion leakage and nutrient concentration of spinach under different levels of irrigation. In: Second National Congress of Irrigation and Drainage of Iran. Iran, Isfahan. Conference paper. (In Persian).
132. Rasouli, M., Hatamzadeh, A., Ghasemnezhad, M., Samizadeh Lahiji, H. (2017). The increase of salinity tolerance in three turf grass species using trinexapac-ethyl. Nova Biologica Reperta, 4(1), 28-37. (In Persian). [DOI:10.21859/acadpub.nbr.4.1.29]
133. Rodríguez‐Hernández, M.D.C., Garmendia, I. (2021). Optimum growth and quality of the edible ice plant under saline conditions. Journal of the Science of Food and Agriculture, 102(7), 2686-2692. [DOI:10.1002/jsfa.11608]
134. Sabet Teimouri, S.T., Khazaie, H., Nezami, A., Nasiri Mahallati, M. (2007). Investigation of different levels of salinity on physiological characteristics and leaf antioxidant enzyme rate of sesame (Sesamum indicum L.). Journal of Agricultural Research, 7, 171-190.
135. Saeedi Pooya, E., Tehranifar, A., Sadeqi, M., Vahdati Mashhadian, N. (2017). Can we reduce salinity effects by the application of humic acid on native turfgrasses in order to attain sustainable landscape? Journal of Ornamental Plants, 8(2), 121-133.
136. Sairam, R.K., Rao, K.V., Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
137. Salehi, L. (2015). Effect of Humi potas and potassium sulfate on quantitative and qualitative characteristics wallflower (Matthiola incana L.). Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. (In Persian).
138. Sharma, R. A., Singh, R. (2013). A review on Phyla nodiflora Linn.: A wild wetland medicinal herb. International Journal of Pharmaceutical Sciences Review and Research, 20(1), 57-63.
139. Suarez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L. Brazilian Journal of Plant Physiology, 20, 40-131. [DOI:10.1590/S1677-04202008000200005]
140. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Abdul Rahim. A. (2010). Effect of salinity of tropical turfgrass species. World Congress of Soil Science, Soil Solutions for a Changing World, 29-31.
141. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Hossain, M.A., Abdul Rahim. A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1-10. [DOI:10.1100/2012/905468]
142. Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1-12. [DOI:10.1186/s40538-017-0089-5]
143. Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., Jones, H.G. (2010). Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants, plq006, 1-8. [DOI:10.1093/aobpla/plq006]
144. Wang, D., Shannon, M.C., Grieve, C.M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. [DOI:10.1016/S0378-4290(00)00154-4]
145. Xiong, Y., Liang, H., Yan, H., Guo, B., Niu, M., Chen, S., Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., da Silva, J.A.T. (2019). NaCl-induced stress: physiological responses of six halophyte species in in vitro and in vivo culture. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 531-546. [DOI:10.1007/s11240-019-01697-1]
146. Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A. and Feizian, M. (2019). Effects of different humic acid and salinity levels on some traits of Khuzestani savory (Satureja khuzistanica Jamzad). Applied Ecology and Environmental Research, 17 (3), 5409-5432. [DOI:10.15666/aeer/1703_54095433]
147. Zhang, L., Sun, X.Y, Tian, Y., Gong, X.G. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70-78. [DOI:10.1016/j.scienta.2014.06.021]
148. Abdelrasheed, K.G., Mazrou, Y., Omara, A.E.D., Osman, H.S., Nehela, Y., Hafez, E.M., Rady, M.S., El-Moneim, D.A., Alowaiesh, B.F., Gowayed, S.M. (2021). Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion under deficit irrigation conditions. Plants, 10(12), 1-25. [DOI:10.3390/plants10122598]
149. Abu-Ria, M., Shukry, W., Abo-Hamed, S., Albaqami, M., Almuqadam, L., Ibraheem, F. (2023). Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. Plants, 12(9), 1-20. [DOI:10.3390/plants12091834]
150. Arvin, P., Firouzeh, R. (2021). Effects of salinity stress on physiological and biochemical traits of some fenugreek (Trigonella foenum-graecum L.) populations. Iranian Journal of Medicinal and Aromatic Plants Research, 37(5), 822-837. (In Persian).
151. Bakry, A.B., Sadak, M.S, El-Karamany, M.F. (2015). Effect of humic acid and sulfur on growth, some biochemical constituents, yield and yield attributes of flax grown under newly reclaimed sandy soils. Journal of Agricultural and Biological Science, 10(7), 247-259.‌
152. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [DOI:10.1007/s11738-013-1455-y]
153. Daneshvar Hakimi Maibodi, N., Kafi, M., Nikbakht, A, Rejali, F. (2012). Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). Journal of Plant Nutrition, 38(2), 224-236. [DOI:10.1080/01904167.2014.939759]
154. Dehghani, M.K. (2020). Influence of Silicon and Humic Acid on Some Morphophysiological Responses in Bell Pepper at Different Levels of Salinity and Boron. MSc Thesis, Shiraz University, Shiraz, Iran. (In Persian).
155. Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G., Sokolik, A., Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65 (5): 1259-1270. [DOI:10.1093/jxb/eru004]
156. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38(12), 1885-1901.‌ [DOI:10.1080/01904167.2015.1069332]
157. Fan, H.M., Wang, X.W., Sun, X., Li, Y.Y., Sun, X.Z., Zheng, C.S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in Chrysanthemum. Scientia Horticulturae, 177, 118-123. [DOI:10.1016/j.scienta.2014.05.010]
158. Goddard, M.A., Dougill, A.J., Benton, T.G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecology and Evolution, 25(2), 90-98. [DOI:10.1016/j.tree.2009.07.016]
159. Heidari, F., Jalilian, J., Gholinezhad, E. (2020). The role of foliar application nano-fertilizers in modulating the negative effects of salt stress in quinoa. Journal of Crops Improvement, 22(3), 587-600. (In Persian).
160. Jabeen, M., Jillani, U., Chaudhary, B. A., Uzair, M. (2016). Phytochemical and pharmacological studies of Phyla Nodiflora (Verbenaceae): A review. Pakistan Journal of Pharmaceutical Research, 2, 49-54. [DOI:10.22200/pjpr.2016149-54]
161. Kafi, M., Daneshvar Hakimi Meybodi, N., Nikbakht, A., Rejali, F., Daneshkhah, M. (2012). The effect of humic acid and mycorrhizal fungi on some characteristics of Lolium grass of the Speedy Green composition. Science and techniques of greenhouse crops, 4(13), 49-58. (In Persian).
162. Karimi, G., Ghorbanli, M., Heidari, H., Assareh, M. (2005). Investigation of salt Tolerance mechanisms in range species of Atriplex verrucifera (M.B). Pajouhesh and Sazandegi in natural resources, 73, 42-48. (In Persian).
163. Karimian, Z., Samiei, L., Nabati, J. (2018). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 73-82.‌ [DOI:10.24326/asphc.2019.5.7]
164. Kazemi, F., Salahshoor, F., Farhadi, H. (2019). Effect of humic acid and mulches on characteristics of tall fescue (Festuca arundinacea Schreb.). Desert, 24(1), 51-59.
165. Khafagy, H., Ahmed, M., Abdel-Azeem, S. (2019). Impact of mineral fertilizers with or without bio-fertilizers or potassium humate on some soil properties, yield and quality of pea plants under salt affected soil conditions. Journal of Agricultural Chemistry and Biotechnology, 10(1), 19-27. [DOI:10.21608/jacb.2019.36785]
166. Khaled, H., Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.‌ [DOI:10.17221/4/2010-SWR]
167. Khan, A.N., Qureshi, R.H., Ahmad, N., Rashid, A. (1995). Response of cotton cultivars to salinity at various growth development stages. Sarhad Journal of Agriculture, 11, 729-731.
168. Khan, M.A., Ungar, I.A., Showalter, A.M. (2000). Effects of salinity on growth, water relations and ions accumulation of the subtropical perennial halophyte Atriplex griffthii var. stocksii. Annals of Botany, 85(2), 225-232. [DOI:10.1006/anbo.1999.1022]
169. Khaninejad, S., Kafi, M., Khazaei, H.R., Shabahang, J., Nabati, J. (2012). Investigating the effect of different levels of nitrogen and phosphorus on the characteristics and yield of Kochia scoparia in irrigation with two levels of salinity. Iranian Journal of Field Crops Research, 11(2), 275-283. (In Persian).
170. Khodashenas, M., Nasibi, F., Ashraf Gangooei, F.A., Rahneshan, Z. (2020). Physiological and antioxidative responses of a halophytic grass Leptochloa fusca L. kunth (Kallar grass) to salinity. Journal of Plant Process and Function, 8(34), 71-78.‎
171. Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H., Khorsan, A.(2010). Effect of salinity (NaCl) on growth yield essential oil content and composition of Agastach foeniculum Kuntz. Iranian Journal of Medicinal and Aromatic Plants, 26(3), 438-451. In Persian))
172. Kurban. H., Saneoka. H., Nehira. K., Adilla. R., Premachandra. G.S, Fujita. K. (1999). Effect of salinity on growth, photosynthesis and mineral composition in legurninous plant Alhagi psedoalhagi (Bieb.). Soil Science and Plant Nutrition, 45, 851-862. [DOI:10.1080/00380768.1999.10414334]
173. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in Enzymology. Academic Press. New York, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
174. Liu, H., Todd, J.L., Luo, H. (2023). Turfgrass Salinity Stress and Tolerance-A Review. Plants, 12(4), 1-25. [DOI:10.3390/plants12040925]
175. Maas, E.V. (1986). Salt tolerance of plants. Applied Agricultural Research, 1, 12-26.
176. Majidi, A., Kharazmi, K. (2014). Potassium and Magnesium Interaction in Alfalfa (Medicago sativa L.). Agronomy Journal (Pajouhesh and Sazandegi), 108, 1-7. In Persian))Nikbakht, A., Kafi, M., Babalar, M., Ping Xia, Y., Luo, A., Etemadi, N.A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition. 31(12), 2155-2167. [DOI:10.1080/01904160802462819]
177. Niu, G., Rodriguez, D.S. (2006). Relative salt tolerance of selected herbaceous perennials and groundcovers. Scientia Horticulturae, 110(4), 352-358. [DOI:10.1016/j.scienta.2006.07.020]
178. Pham, A.C., Vo, T.C., Bui, T.D., Van, T.T.H., Tran, D.Q. (2024). Evaluating growth and physiological responses of a medicinal plant Phyla nodiflora to salinity. International Journal of Plant Biology, 15(1), 187-197.‌ [DOI:10.3390/ijpb15010015]
179. Pourghasemi, D., Chehrazi, M., Rezaei Nejad, A. (2016). Effects of salinity stress on some quantitative and qualitative characteristics of Alternanthera repens genotypes: "Entire Leaf" and "Undulate Leaf". Plant Production Technology, 10(1), 1-11. (In Persian).
180. Rajabi Fakhrabad, A., Sharifan, H., Hossam, M. Zakarinia, M. (2017). The effect of salinity stress on ion leakage and nutrient concentration of spinach under different levels of irrigation. In: Second National Congress of Irrigation and Drainage of Iran. Iran, Isfahan. Conference paper. (In Persian).
181. Rasouli, M., Hatamzadeh, A., Ghasemnezhad, M., Samizadeh Lahiji, H. (2017). The increase of salinity tolerance in three turf grass species using trinexapac-ethyl. Nova Biologica Reperta, 4(1), 28-37. (In Persian). [DOI:10.21859/acadpub.nbr.4.1.29]
182. Rodríguez‐Hernández, M.D.C., Garmendia, I. (2021). Optimum growth and quality of the edible ice plant under saline conditions. Journal of the Science of Food and Agriculture, 102(7), 2686-2692. [DOI:10.1002/jsfa.11608]
183. Sabet Teimouri, S.T., Khazaie, H., Nezami, A., Nasiri Mahallati, M. (2007). Investigation of different levels of salinity on physiological characteristics and leaf antioxidant enzyme rate of sesame (Sesamum indicum L.). Journal of Agricultural Research, 7, 171-190.
184. Saeedi Pooya, E., Tehranifar, A., Sadeqi, M., Vahdati Mashhadian, N. (2017). Can we reduce salinity effects by the application of humic acid on native turfgrasses in order to attain sustainable landscape? Journal of Ornamental Plants, 8(2), 121-133.
185. Sairam, R.K., Rao, K.V., Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
186. Salehi, L. (2015). Effect of Humi potas and potassium sulfate on quantitative and qualitative characteristics wallflower (Matthiola incana L.). Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. (In Persian).
187. Sharma, R. A., Singh, R. (2013). A review on Phyla nodiflora Linn.: A wild wetland medicinal herb. International Journal of Pharmaceutical Sciences Review and Research, 20(1), 57-63.
188. Suarez, N., Medina, E. (2008). Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans L. Brazilian Journal of Plant Physiology, 20, 40-131. [DOI:10.1590/S1677-04202008000200005]
189. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Abdul Rahim. A. (2010). Effect of salinity of tropical turfgrass species. World Congress of Soil Science, Soil Solutions for a Changing World, 29-31.
190. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R., Hossain, M.A., Abdul Rahim. A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1-10. [DOI:10.1100/2012/905468]
191. Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1-12. [DOI:10.1186/s40538-017-0089-5]
192. Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., Jones, H.G. (2010). Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants, plq006, 1-8. [DOI:10.1093/aobpla/plq006]
193. Wang, D., Shannon, M.C., Grieve, C.M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. [DOI:10.1016/S0378-4290(00)00154-4]
194. Xiong, Y., Liang, H., Yan, H., Guo, B., Niu, M., Chen, S., Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., da Silva, J.A.T. (2019). NaCl-induced stress: physiological responses of six halophyte species in in vitro and in vivo culture. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 531-546. [DOI:10.1007/s11240-019-01697-1]
195. Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A. and Feizian, M. (2019). Effects of different humic acid and salinity levels on some traits of Khuzestani savory (Satureja khuzistanica Jamzad). Applied Ecology and Environmental Research, 17 (3), 5409-5432. [DOI:10.15666/aeer/1703_54095433]
196. Zhang, L., Sun, X.Y, Tian, Y., Gong, X.G. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70-78. [DOI:10.1016/j.scienta.2014.06.021]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi F, Esmaeili S, Chehrazi M. Improving the salinity stress tolerance of Phyla nodiflora L. groundcover through potassium humate application. FOP 2024; 9 (1) :147-166
URL: http://flowerjournal.ir/article-1-318-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Spring and Summer 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 35 queries by YEKTAWEB 4732