1. Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P. (2019). Photosynthesis, Productivity, and Enviromental Stress. Willey Backwell Publisher. 352p. [ DOI:10.1002/9781119501800] 2. Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Current Science, 101, 47-56. 3. Björkman, O. (1981). Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Zeigler, H. (eds.). Encyclopedia of Plant Physiology, New Series, Vol. 12A, Springer, Berlin, pp 57-107. [ DOI:10.1007/978-3-642-68090-8_4] 4. Blankenship, R.E. (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford. 321p. [ DOI:10.1002/9780470758472] 5. Carpenter, W.J., Rodriguez, R.C. (1971). Supplemental lighting effects on newly planted and cut-back greenhouse roses. Horticulture Science, 6, 207-208. [ DOI:10.21273/HORTSCI.6.3.207] 6. Croce, R., Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501. [ DOI:10.1038/nchembio.1555] 7. Cubas, L.C., Gabriel Sales, C.R., Vath, R.L., Bernardo, E.L., Burnett, A., Kromdijk, J. (2023). Lessons from relatives: C4 photosynthesis enhances CO2 assimilation during the low-light phase of fluctuations. Plant Physiology, 193, 1073-1090. [ DOI:10.1093/plphys/kiad355] 8. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36, 2725-32. [ DOI:10.1016/j.renene.2011.03.005] 9. Fazli, M., Ahmadi, N., Babaei, A.R. (2020). Improving the postharvest quality characteristics of cut rose (Rosa×hybrida L.) 'Red Alert' in response to light intensity. Flower and Ornamental Plants, 4, 74 -86. (In Persian). [ DOI:10.29252/flowerjournal.4.2.74] 10. Food and Agriculture Organization (FAO) (2013). Good agricultural practices for greenhouse vegetable crops. FAO Publication. https://www.fao.org/3/i3284e/i3284e.pdf Accessed 7 September 2024. 11. Greer, L., Dole, J.M. (2003). Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect vectored viral diseases of vegetables. HortTechnology, 13, 276- 284. [ DOI:10.21273/HORTTECH.13.2.0276] 12. Hatamian, M., Rab, M., Roozban, M.R. (2014). Photosynthetic and nonphotosynthetic pigments of two rose cultivars under different light intensities. Journal of Crops Improvement, 16, 259-270. (In Persian). 13. Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533. [ DOI:10.1093/aob/mci050] 14. Jeong, K.Y., Pasian, C.C., Tay, D. (2007). Response of six begonia species to different shading levels. Acta Horticuturae, 761, 215-220 [ DOI:10.17660/ActaHortic.2007.761.27] 15. Jin, H., Li, M., Duan, S., Fu, M., Dong, X., Liu, B., Feng, D., Wang, J., Wang, H-B. (2016). 16. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology, 172, 1720-1731. [ DOI:10.1104/pp.16.00698] 17. Kakani, V.G., Surabhi, G.K., Reddy, K.R. (2008). Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica, 46, 420-430. [ DOI:10.1007/s11099-008-0074-0] 18. Koocheki, A., Nasiri Mahalati, M. (1994). Crops Ecology. Jahad Daneshgahi Press, Iran, Mashhad. 291p. (In Persian). 19. Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer publisher. 285p. 20. Lu, N., Maruo, T., Jophkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., Shinohara, Y. (2012). Effects of supplemental lighting within the canopy at different developing stages on tomato yield and quality of single- truss tomato plants grown at high density. Environmental Control in Biology, 50, 1-11. [ DOI:10.2525/ecb.50.1] 21. Marler, T.E. (2020). Artifleck: The study of artifactual responses to light flecks with inappropriate leaves. Plants (Basel), 9, 905. doi: 10.3390/plants9070905 [ DOI:10.3390/plants9070905] 22. Medeiros, D.B., da Luz, L.M., Oliveria, H.O., Araujo, W.L., Daloso, D.M., Fernie, A.R. (2019). Metabolomics for understanding stomatal movements. Theoretical and Experimental Plant Physiology, 31, 91-102. [ DOI:10.1007/s40626-019-00139-9] 23. Meyer, G.E., Paparozzi, E.G., Walter‐Shea, E.T., Blankenship, E.A., Adams, S.A. (2012). An investigation of reflective mulches for use over capillary mat systems for winter‐time greenhouse strawberry production. Applied Engineering in Agriculture, 28, 271-279. [ DOI:10.13031/2013.41345] 24. Moher, H., Schopfer, P. (2012). Plant Physiology. Springer Berlin, Heidelberg. 629p. 25. Mortensen, L.M. (2014). The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. American Journal of Plant Sciences, 5, 1489-1498. [ DOI:10.4236/ajps.2014.511164] 26. Niinemets, U., Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology, 6, 254-268. [ DOI:10.1055/s-2004-817881] 27. Pan, X., Cao, P., Su, X., Liu, Z., Li, M. (2020). Structural analysis and comparison of light-harvesting complexes I and II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861, 148038. doi: 10.1016/j.bbabio.2019.06.010. [ DOI:10.1016/j.bbabio.2019.06.010] 28. Pandy, S.N., Sinha, B.K. (2005). Plant Physiology. Vikas Publishing Private Limited, India. 671p. 29. Stasiak, M., Cote, RT., Grodzinski, B., Dixon, M. (1999). Light piping to the inner plant canopy enhances plant growth and increases O2, CO2, H2O and ethylene gas exchange rates. SAE Technical Paper 1999-01-2103. 8p. DOI: 10.4271/1999-01-2103. [ DOI:10.4271/1999-01-2103] 30. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland: Sinauer Associates. 690p. 31. Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P. (2019). Photosynthesis, Productivity, and Enviromental Stress. Willey Backwell Publisher. 352p. [ DOI:10.1002/9781119501800] 32. Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Current Science, 101, 47-56. 33. Björkman, O. (1981). Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Zeigler, H. (eds.). Encyclopedia of Plant Physiology, New Series, Vol. 12A, Springer, Berlin, pp 57-107. [ DOI:10.1007/978-3-642-68090-8_4] 34. Blankenship, R.E. (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford. 321p. [ DOI:10.1002/9780470758472] 35. Carpenter, W.J., Rodriguez, R.C. (1971). Supplemental lighting effects on newly planted and cut-back greenhouse roses. Horticulture Science, 6, 207-208. [ DOI:10.21273/HORTSCI.6.3.207] 36. Croce, R., Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501. [ DOI:10.1038/nchembio.1555] 37. Cubas, L.C., Gabriel Sales, C.R., Vath, R.L., Bernardo, E.L., Burnett, A., Kromdijk, J. (2023). Lessons from relatives: C4 photosynthesis enhances CO2 assimilation during the low-light phase of fluctuations. Plant Physiology, 193, 1073-1090. [ DOI:10.1093/plphys/kiad355] 38. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36, 2725-32. [ DOI:10.1016/j.renene.2011.03.005] 39. Fazli, M., Ahmadi, N., Babaei, A.R. (2020). Improving the postharvest quality characteristics of cut rose (Rosa×hybrida L.) 'Red Alert' in response to light intensity. Flower and Ornamental Plants, 4, 74 -86. (In Persian). [ DOI:10.29252/flowerjournal.4.2.74] 40. Food and Agriculture Organization (FAO) (2013). Good agricultural practices for greenhouse vegetable crops. FAO Publication. https://www.fao.org/3/i3284e/i3284e.pdf Accessed 7 September 2024. 41. Greer, L., Dole, J.M. (2003). Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect vectored viral diseases of vegetables. HortTechnology, 13, 276- 284. [ DOI:10.21273/HORTTECH.13.2.0276] 42. Hatamian, M., Rab, M., Roozban, M.R. (2014). Photosynthetic and nonphotosynthetic pigments of two rose cultivars under different light intensities. Journal of Crops Improvement, 16, 259-270. (In Persian). 43. Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533. [ DOI:10.1093/aob/mci050] 44. Jeong, K.Y., Pasian, C.C., Tay, D. (2007). Response of six begonia species to different shading levels. Acta Horticuturae, 761, 215-220 [ DOI:10.17660/ActaHortic.2007.761.27] 45. Jin, H., Li, M., Duan, S., Fu, M., Dong, X., Liu, B., Feng, D., Wang, J., Wang, H-B. (2016). 46. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology, 172, 1720-1731. [ DOI:10.1104/pp.16.00698] 47. Kakani, V.G., Surabhi, G.K., Reddy, K.R. (2008). Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica, 46, 420-430. [ DOI:10.1007/s11099-008-0074-0] 48. Koocheki, A., Nasiri Mahalati, M. (1994). Crops Ecology. Jahad Daneshgahi Press, Iran, Mashhad. 291p. (In Persian). 49. Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer publisher. 285p. 50. Lu, N., Maruo, T., Jophkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., Shinohara, Y. (2012). Effects of supplemental lighting within the canopy at different developing stages on tomato yield and quality of single- truss tomato plants grown at high density. Environmental Control in Biology, 50, 1-11. [ DOI:10.2525/ecb.50.1] 51. Marler, T.E. (2020). Artifleck: The study of artifactual responses to light flecks with inappropriate leaves. Plants (Basel), 9, 905. doi: 10.3390/plants9070905 [ DOI:10.3390/plants9070905] 52. Medeiros, D.B., da Luz, L.M., Oliveria, H.O., Araujo, W.L., Daloso, D.M., Fernie, A.R. (2019). Metabolomics for understanding stomatal movements. Theoretical and Experimental Plant Physiology, 31, 91-102. [ DOI:10.1007/s40626-019-00139-9] 53. Meyer, G.E., Paparozzi, E.G., Walter‐Shea, E.T., Blankenship, E.A., Adams, S.A. (2012). An investigation of reflective mulches for use over capillary mat systems for winter‐time greenhouse strawberry production. Applied Engineering in Agriculture, 28, 271-279. [ DOI:10.13031/2013.41345] 54. Moher, H., Schopfer, P. (2012). Plant Physiology. Springer Berlin, Heidelberg. 629p. 55. Mortensen, L.M. (2014). The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. American Journal of Plant Sciences, 5, 1489-1498. [ DOI:10.4236/ajps.2014.511164] 56. Niinemets, U., Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology, 6, 254-268. [ DOI:10.1055/s-2004-817881] 57. Pan, X., Cao, P., Su, X., Liu, Z., Li, M. (2020). Structural analysis and comparison of light-harvesting complexes I and II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861, 148038. doi: 10.1016/j.bbabio.2019.06.010. [ DOI:10.1016/j.bbabio.2019.06.010] 58. Pandy, S.N., Sinha, B.K. (2005). Plant Physiology. Vikas Publishing Private Limited, India. 671p. 59. Stasiak, M., Cote, RT., Grodzinski, B., Dixon, M. (1999). Light piping to the inner plant canopy enhances plant growth and increases O2, CO2, H2O and ethylene gas exchange rates. SAE Technical Paper 1999-01-2103. 8p. DOI: 10.4271/1999-01-2103. [ DOI:10.4271/1999-01-2103] 60. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland: Sinauer Associates. 690p.
|