[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 2 (Fall & Winter 2024) ::
FOP 2024, 9(2): 277-298 Back to browse issues page
The impact of various greenhouse floor coverings on the growth of roses
Seyyed Fazel Fazeli Kakhki * , Mahdi Samangani , Nasser Beikzadeh , Morteza Goldani
Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
Abstract:   (1542 Views)
The reaction of the photosynthetic apparatus in capturing light energy depended on the arrangement of the leaves, stems, and side branches. This process accelerates in the substrate when the intensity of the absorbed photon flow passes from the light compensation point. To evaluate the effect of greenhouse floor covering on the growth rate of roses, an experiment was conducted as factorial based on a randomized complete design with three replications in a rose production greenhouse in the spring of 2020. The experimental factors included greenhouse floor mulch in four levels (aluminum foil, ceramic, white plastic, and concrete (control)) and the second factor of eight weeks of growth. The results showed that the maximum photosynthesis (17.1 µmol CO2m–2S–1) was recorded from aluminum mulch in the first growth week and the minimum of it (4.05 µmol CO2.m–2.s–1) was observed in the fourth growth week in concrete mulch. The trend changes in stomatal conductance (gs) was similar to the photosynthesis during the eight weeks of plant growth, but in the abaxial lower leaves, the stomatal conductance was higher than the value of abaxial in upper leaves. The maximum amount of weekly growth (18.7 cm) was due to the application of aluminum mulch in the first week of growth. The amount of plant growth was slow in all treatments, however, in the eighth week, the maximum amount of weekly growth with the amount of 13.3 cm was related to aluminum mulch, and the amount of weekly growth in ceramic, white plastic, and concrete mulches was recorded 12.0, 9.99 and 9.2 cm, respectively. In general, the results showed that the use of mulches that have a higher light reflection coefficient is effective and significant in increasing the photosynthetic power of lower leaves and helping to increase plant growth.

 
Keywords: Chlorophyll, Light reflected, Photosynthesis, Stomata Conductance
Full-Text [PDF 809 kb]   (442 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/06/29 | Accepted: 2024/09/23 | Published: 2025/02/26
References
1. Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P. (2019). Photosynthesis, Productivity, and Enviromental Stress. Willey Backwell Publisher. 352p. [DOI:10.1002/9781119501800]
2. Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Current Science, 101, 47-56.
3. Björkman, O. (1981). Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Zeigler, H. (eds.). Encyclopedia of Plant Physiology, New Series, Vol. 12A, Springer, Berlin, pp 57-107. [DOI:10.1007/978-3-642-68090-8_4]
4. Blankenship, R.E. (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford. 321p. [DOI:10.1002/9780470758472]
5. Carpenter, W.J., Rodriguez, R.C. (1971). Supplemental lighting effects on newly planted and cut-back greenhouse roses. Horticulture Science, 6, 207-208. [DOI:10.21273/HORTSCI.6.3.207]
6. Croce, R., Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501. [DOI:10.1038/nchembio.1555]
7. Cubas, L.C., Gabriel Sales, C.R., Vath, R.L., Bernardo, E.L., Burnett, A., Kromdijk, J. (2023). Lessons from relatives: C4 photosynthesis enhances CO2 assimilation during the low-light phase of fluctuations. Plant Physiology, 193, 1073-1090. [DOI:10.1093/plphys/kiad355]
8. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36, 2725-32. [DOI:10.1016/j.renene.2011.03.005]
9. Fazli, M., Ahmadi, N., Babaei, A.R. (2020). Improving the postharvest quality characteristics of cut rose (Rosa×hybrida L.) 'Red Alert' in response to light intensity. Flower and Ornamental Plants, 4, 74 -86. (In Persian). [DOI:10.29252/flowerjournal.4.2.74]
10. Food and Agriculture Organization (FAO) (2013). Good agricultural practices for greenhouse vegetable crops. FAO Publication. https://www.fao.org/3/i3284e/i3284e.pdf Accessed 7 September 2024.
11. Greer, L., Dole, J.M. (2003). Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect vectored viral diseases of vegetables. HortTechnology, 13, 276- 284. [DOI:10.21273/HORTTECH.13.2.0276]
12. Hatamian, M., Rab, M., Roozban, M.R. (2014). Photosynthetic and nonphotosynthetic pigments of two rose cultivars under different light intensities. Journal of Crops Improvement, 16, 259-270. (In Persian).
13. Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533. [DOI:10.1093/aob/mci050]
14. Jeong, K.Y., Pasian, C.C., Tay, D. (2007). Response of six begonia species to different shading levels. Acta Horticuturae, 761, 215-220 [DOI:10.17660/ActaHortic.2007.761.27]
15. Jin, H., Li, M., Duan, S., Fu, M., Dong, X., Liu, B., Feng, D., Wang, J., Wang, H-B. (2016).
16. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology, 172, 1720-1731. [DOI:10.1104/pp.16.00698]
17. Kakani, V.G., Surabhi, G.K., Reddy, K.R. (2008). Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica, 46, 420-430. [DOI:10.1007/s11099-008-0074-0]
18. Koocheki, A., Nasiri Mahalati, M. (1994). Crops Ecology. Jahad Daneshgahi Press, Iran, Mashhad. 291p. (In Persian).
19. Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer publisher. 285p.
20. Lu, N., Maruo, T., Jophkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., Shinohara, Y. (2012). Effects of supplemental lighting within the canopy at different developing stages on tomato yield and quality of single- truss tomato plants grown at high density. Environmental Control in Biology, 50, 1-11. [DOI:10.2525/ecb.50.1]
21. Marler, T.E. (2020). Artifleck: The study of artifactual responses to light flecks with inappropriate leaves. Plants (Basel), 9, 905. doi: 10.3390/plants9070905 [DOI:10.3390/plants9070905]
22. Medeiros, D.B., da Luz, L.M., Oliveria, H.O., Araujo, W.L., Daloso, D.M., Fernie, A.R. (2019). Metabolomics for understanding stomatal movements. Theoretical and Experimental Plant Physiology, 31, 91-102. [DOI:10.1007/s40626-019-00139-9]
23. Meyer, G.E., Paparozzi, E.G., Walter‐Shea, E.T., Blankenship, E.A., Adams, S.A. (2012). An investigation of reflective mulches for use over capillary mat systems for winter‐time greenhouse strawberry production. Applied Engineering in Agriculture, 28, 271-279. [DOI:10.13031/2013.41345]
24. Moher, H., Schopfer, P. (2012). Plant Physiology. Springer Berlin, Heidelberg. 629p.
25. Mortensen, L.M. (2014). The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. American Journal of Plant Sciences, 5, 1489-1498. [DOI:10.4236/ajps.2014.511164]
26. Niinemets, U., Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology, 6, 254-268. [DOI:10.1055/s-2004-817881]
27. Pan, X., Cao, P., Su, X., Liu, Z., Li, M. (2020). Structural analysis and comparison of light-harvesting complexes I and II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861, 148038. doi: 10.1016/j.bbabio.2019.06.010. [DOI:10.1016/j.bbabio.2019.06.010]
28. Pandy, S.N., Sinha, B.K. (2005). Plant Physiology. Vikas Publishing Private Limited, India. 671p.
29. Stasiak, M., Cote, RT., Grodzinski, B., Dixon, M. (1999). Light piping to the inner plant canopy enhances plant growth and increases O2, CO2, H2O and ethylene gas exchange rates. SAE Technical Paper 1999-01-2103. 8p. DOI: 10.4271/1999-01-2103. [DOI:10.4271/1999-01-2103]
30. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland: Sinauer Associates. 690p.
31. Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P. (2019). Photosynthesis, Productivity, and Enviromental Stress. Willey Backwell Publisher. 352p. [DOI:10.1002/9781119501800]
32. Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Current Science, 101, 47-56.
33. Björkman, O. (1981). Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Zeigler, H. (eds.). Encyclopedia of Plant Physiology, New Series, Vol. 12A, Springer, Berlin, pp 57-107. [DOI:10.1007/978-3-642-68090-8_4]
34. Blankenship, R.E. (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford. 321p. [DOI:10.1002/9780470758472]
35. Carpenter, W.J., Rodriguez, R.C. (1971). Supplemental lighting effects on newly planted and cut-back greenhouse roses. Horticulture Science, 6, 207-208. [DOI:10.21273/HORTSCI.6.3.207]
36. Croce, R., Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501. [DOI:10.1038/nchembio.1555]
37. Cubas, L.C., Gabriel Sales, C.R., Vath, R.L., Bernardo, E.L., Burnett, A., Kromdijk, J. (2023). Lessons from relatives: C4 photosynthesis enhances CO2 assimilation during the low-light phase of fluctuations. Plant Physiology, 193, 1073-1090. [DOI:10.1093/plphys/kiad355]
38. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36, 2725-32. [DOI:10.1016/j.renene.2011.03.005]
39. Fazli, M., Ahmadi, N., Babaei, A.R. (2020). Improving the postharvest quality characteristics of cut rose (Rosa×hybrida L.) 'Red Alert' in response to light intensity. Flower and Ornamental Plants, 4, 74 -86. (In Persian). [DOI:10.29252/flowerjournal.4.2.74]
40. Food and Agriculture Organization (FAO) (2013). Good agricultural practices for greenhouse vegetable crops. FAO Publication. https://www.fao.org/3/i3284e/i3284e.pdf Accessed 7 September 2024.
41. Greer, L., Dole, J.M. (2003). Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect vectored viral diseases of vegetables. HortTechnology, 13, 276- 284. [DOI:10.21273/HORTTECH.13.2.0276]
42. Hatamian, M., Rab, M., Roozban, M.R. (2014). Photosynthetic and nonphotosynthetic pigments of two rose cultivars under different light intensities. Journal of Crops Improvement, 16, 259-270. (In Persian).
43. Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533. [DOI:10.1093/aob/mci050]
44. Jeong, K.Y., Pasian, C.C., Tay, D. (2007). Response of six begonia species to different shading levels. Acta Horticuturae, 761, 215-220 [DOI:10.17660/ActaHortic.2007.761.27]
45. Jin, H., Li, M., Duan, S., Fu, M., Dong, X., Liu, B., Feng, D., Wang, J., Wang, H-B. (2016).
46. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology, 172, 1720-1731. [DOI:10.1104/pp.16.00698]
47. Kakani, V.G., Surabhi, G.K., Reddy, K.R. (2008). Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica, 46, 420-430. [DOI:10.1007/s11099-008-0074-0]
48. Koocheki, A., Nasiri Mahalati, M. (1994). Crops Ecology. Jahad Daneshgahi Press, Iran, Mashhad. 291p. (In Persian).
49. Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer publisher. 285p.
50. Lu, N., Maruo, T., Jophkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., Shinohara, Y. (2012). Effects of supplemental lighting within the canopy at different developing stages on tomato yield and quality of single- truss tomato plants grown at high density. Environmental Control in Biology, 50, 1-11. [DOI:10.2525/ecb.50.1]
51. Marler, T.E. (2020). Artifleck: The study of artifactual responses to light flecks with inappropriate leaves. Plants (Basel), 9, 905. doi: 10.3390/plants9070905 [DOI:10.3390/plants9070905]
52. Medeiros, D.B., da Luz, L.M., Oliveria, H.O., Araujo, W.L., Daloso, D.M., Fernie, A.R. (2019). Metabolomics for understanding stomatal movements. Theoretical and Experimental Plant Physiology, 31, 91-102. [DOI:10.1007/s40626-019-00139-9]
53. Meyer, G.E., Paparozzi, E.G., Walter‐Shea, E.T., Blankenship, E.A., Adams, S.A. (2012). An investigation of reflective mulches for use over capillary mat systems for winter‐time greenhouse strawberry production. Applied Engineering in Agriculture, 28, 271-279. [DOI:10.13031/2013.41345]
54. Moher, H., Schopfer, P. (2012). Plant Physiology. Springer Berlin, Heidelberg. 629p.
55. Mortensen, L.M. (2014). The effect of wide-range photosynthetic active radiations on photosynthesis, growth and flowering of Rosa sp. and Kalanchoe blossfeldiana. American Journal of Plant Sciences, 5, 1489-1498. [DOI:10.4236/ajps.2014.511164]
56. Niinemets, U., Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology, 6, 254-268. [DOI:10.1055/s-2004-817881]
57. Pan, X., Cao, P., Su, X., Liu, Z., Li, M. (2020). Structural analysis and comparison of light-harvesting complexes I and II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861, 148038. doi: 10.1016/j.bbabio.2019.06.010. [DOI:10.1016/j.bbabio.2019.06.010]
58. Pandy, S.N., Sinha, B.K. (2005). Plant Physiology. Vikas Publishing Private Limited, India. 671p.
59. Stasiak, M., Cote, RT., Grodzinski, B., Dixon, M. (1999). Light piping to the inner plant canopy enhances plant growth and increases O2, CO2, H2O and ethylene gas exchange rates. SAE Technical Paper 1999-01-2103. 8p. DOI: 10.4271/1999-01-2103. [DOI:10.4271/1999-01-2103]
60. Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland: Sinauer Associates. 690p.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fazeli Kakhki S F, Samangani M, Beikzadeh N, Goldani M. The impact of various greenhouse floor coverings on the growth of roses. FOP 2024; 9 (2) :277-298
URL: http://flowerjournal.ir/article-1-310-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (Fall & Winter 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.03 seconds with 37 queries by YEKTAWEB 4732