[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 1 (Spring & Summer 2025) ::
FOP 2025, 10(1): 99-116 Back to browse issues page
Effect of foliar spray with different concentrations of calcium silicate on the performance and quality of two cut rose flowers
Saeed Khosravi , Ali Tehranifar * , Yahya Selahvarzi , Amir Hossein Khoshgoftarmanesh , Leyla Cheheltanan
Ferdowsi University of Mashhad
Abstract:   (688 Views)
Roses are among the most important cut flowers worldwide. Nutrients play an important role in improving the performance and quality of cut flowers, including roses. Therefore, this research was designed to evaluate the effect of pre-harvest foliar spray with different concentrations of calcium silicate on the growth and vase life of rose flowers. For this purpose, an experimental trial was conducted in a factorial experiment based on a randomized complete design with two factors: different concentrations of calcium silicate (0%, 50%, and 100%) applied to two popular rose cultivars, Samurai and Jumilia, with 6 replications. The results indicated that foliar application of calcium silicate had a significant effect on improving flower diameter and stem diameter in the Jumilia and Samurai cultivars. Additionally, stem length in the Jumilia cultivar and leaf area in the Samurai cultivar, were influenced by calcium silicate at 100%, but calcium silicate did not have a significant effect on the dry weight to fresh weight ratio of stems and roots in rose cultivars. The foliar application of 100% calcium silicate solution in the Jumilia cultivar resulted in a 3.32% increase in the number of flower branches. The rate of photosynthesis and transpiration significantly increased in Jumilia and Samurai cultivars treated with calcium silicate compared to the control. However, there was no significant difference between the two concentrations of 50% and 100% calcium silicate. Foliar application of calcium silicate led to a significant increase in calcium concentration in the leaves and roots of Jumilia and Samurai cultivars. This increase was 30% and 13.8%, respectively, for the Jumilia cultivar and 92% and 8.5%, respectively, for the Samurai cultivar when using 100% calcium silicate concentration compared to the corresponding control treatment. Calcium silicate caused an increase in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and peroxidase in Jumilia and Samurai cultivars. Additionally, in the Samurai cultivar, the activity levels of superoxide dismutase and peroxidase enzymes did not differ significantly between the 50% and 100% calcium silicate concentrations. Calcium silicate at a concentration of 100% resulted in a 22.5% and 28.4% increase in vase life in Samurai and Jumilia cultivars, respectively. However, there was no significant difference between the two concentrations of 50% and 100% calcium silicate. Foliar application of calcium silicate, increased the fresh weight of harvested flowers and delayed subsequent weight loss. This decrease was more severe in the control group of both Samurai and Jumilia cultivars, and ultimately, after 10 days from the time of harvesting, the fresh weight of untreated flowers decreased to less than the weight measured at the time of harvest.
 
Keywords: Antioxidant enzymes, calcium, photosynthesis, rose
Full-Text [PDF 993 kb]   (180 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/03/19 | Accepted: 2024/09/9 | Published: 2025/09/28
References
1. Abdalla, M. (2009). The response of Dendranthema grandiflora, Tzvelev, cv. Icecap plants to calcium silicate slag and DHT treatments. Journal of Plant Production, 34(6), 6781-6790. [DOI:10.21608/jpp.2009.118660]
2. Abdolmaleki, M., KHOSH, K. M., Eshghi, S., Ramezanian, A. (2015). Improvement in vase life of cut rose cv."Dolce Vita" by preharvest foliar application of calcium chloride and salicylic acid.
3. Aghdam, M., Asil, M. H., Ghasemnezhad, M., Mirkalaei, S. M. (2019). Effects of pre-harvest applications of different source of calcium on the cell wall fractions and stem bending disorder of Gerbera (Gerbera jamesonii L.) cultivar flowers. Advances in Horticultural Science, 33(1), 57-66.
4. Aghdam, M. S., Hassanpouraghdam, M. B., Paliyath, G., Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144, 102-115. [DOI:10.1016/j.scienta.2012.07.007]
5. Amor, F. D., Marcelis, L. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. The Journal of Horticultural Science and Biotechnology, 78(3), 343-349. [DOI:10.1080/14620316.2003.11511629]
6. Banijamali, S. M., Feizian, M., Bayat, H., Mirzaei, S. (2018). Effects of nitrogen forms and calcium amounts on growth and elemental concentration in Rosa hybrida cv.'Vendentta'. Journal of Plant Nutrition, 41(9), 1205-1213. [DOI:10.1080/01904167.2018.1443127]
7. Bauer, P., Elbaum, R., Weiss, I. M. (2011). Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science, 180(6), 746-756. [DOI:10.1016/j.plantsci.2011.01.019]
8. Chen, C., Lu, S., Chen, Y., Wang, Z., Niu, Y., Guo, Z. (2009). A gamma-ray-induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Journal of the American Society for Horticultural Science, 134(1), 22-30. [DOI:10.21273/JASHS.134.1.22]
9. Cho HaeRyong, C. H., Joung HyangYoung, J. H., Lim KiByung, L. K., Kim KiSun, K. K. (2013). Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. [DOI:10.1007/s13580-013-0059-1]
10. Coutinho, P. W. R., de Moraes Echer, M., Braga, G. C., Guimarães, V. F., do Carmo Lana, M., Alves, T. N., Brito, T. S. (2020). Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes. Research, Society and Development, 9(11), e74791110148-e74791110148. [DOI:10.33448/rsd-v9i11.10148]
11. Coutinho, P. W. R., de Moraes Echer, M., Guimarães, V. F., do Carmo Lana, M., Alves, T. N., Inagaki, A. M. (2020). Productivity of tomato hybrids due to the application of calcium silicate. [DOI:10.18188/sap.v19i3.24204]
12. Darras, A. (2021). Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae, 7(3), 51. [DOI:10.3390/horticulturae7030051]
13. Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19, 189-198. [DOI:10.1007/s12298-013-0165-7]
14. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91(1), 11-17. [DOI:10.1073/pnas.91.1.11]
15. Fageria, N., Filho, M. B., Moreira, A., Guimarães, C. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064. [DOI:10.1080/01904160902872826]
16. Faroutine, G., Arteaga-Ramírez, R., Pineda-Pineda, J., Vázquez-Peña, M. A. (2023). Effect of calcium silicate and moisture content of the substrate on the growth and productivity parameters of cucumber. Chilean journal of agricultural research, 83(3), 334-346. [DOI:10.4067/S0718-58392023000300334]
17. Halevy, A., Torre, S., Borochov, A., Porat, R., Friedman, H., Meir, S., Philosoph-Hadas, S. (2001). Calcium in regulation of postharvest life of flowers. Acta Horticulturae, 345-352. [DOI:10.17660/ActaHortic.2001.543.42]
18. Hepler, P. K. (2005). Calcium: a central regulator of plant growth and development. The Plant Cell, 17(8), 2142-2155. [DOI:10.1105/tpc.105.032508]
19. Kumar, S., Haripriya, K. (2010). Effect of foliar application of iron and zinc on growth flowering and yield of Nerium (Nerium odorum L.). Plant Archives, 10(2), 637-640.
20. Liu, Y.-F., Zhang, G.-X., Qi, M.-F., Li, T.-L. (2015). Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 34, 263-273. [DOI:10.1007/s00344-014-9462-9]
21. Mahajan, M., Pal, P. K. (2020). Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca (NO3) 2 and seasonal variation. Acta Physiologiae Plantarum, 42(2), 23. [DOI:10.1007/s11738-019-2996-5]
22. Naeem, M., Naeem, M. S., Ahmad, R., Ihsan, M. Z., Ashraf, M. Y., Hussain, Y., Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science, 64(1), 116-131. [DOI:10.1080/03650340.2017.1327713]
23. Palta, J. P. (1996). Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. [DOI:10.21273/HORTSCI.31.1.51]
24. Pospíšil, P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 218-231. [DOI:10.1016/j.bbabio.2011.05.017]
25. Sairam, R. K., Vasanthan, B., Arora, A. (2011). Calcium regulates Gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiologiae Plantarum, 33, 1897-1904. [DOI:10.1007/s11738-011-0734-8]
26. Seydmohammadi, Z., Roein, Z., Rezvanipour, S. (2020). Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO 3. Plant Physiology Reports, 25, 140-148. [DOI:10.1007/s40502-019-00473-9]
27. Shams, M., Etemadi, N., Baninasab, B., Ramin, A. A., Khoshgoftarmanesh, A. H. (2012). Effect of boron and calcium on growth and quality of 'easy lover'cut rose. Journal of Plant Nutrition, 35(9), 1303-1313. [DOI:10.1080/01904167.2012.684123]
28. Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant growth regulation, 48, 127-135. [DOI:10.1007/s10725-005-5482-6]
29. Tofighi Alikhani, T., Tabatabaei, S. J., Mohammadi Torkashvand, A., Khalighi, A., Talei, D. (2021). Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition, 44(7), 1039-1053. [DOI:10.1080/01904167.2020.1867578]
30. Torre, S., Borochov, A., Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum, 107(2), 214-219. [DOI:10.1034/j.1399-3054.1999.100209.x]
31. Tripathi, S. K., Tuteja, N. (2007). Integrated signaling in flower senescence: an overview. Plant signaling & behavior, 2(6), 437-445. [DOI:10.4161/psb.2.6.4991]
32. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. (2010). Lignin biosynthesis and structure. Plant physiology, 153(3), 895-905. [DOI:10.1104/pp.110.155119]
33. Verdonk, J. C., van Ieperen, W., Carvalho, D. R., van Geest, G., Schouten, R. E. (2023). Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, 14, 1281456. [DOI:10.3389/fpls.2023.1281456]
34. Volpin, H., Elad, Y. (1991). Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology, 81(11), 1390-1394. [DOI:10.1094/Phyto-81-1390]
35. Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., Guo, S. (2017). Role of silicon on plant-pathogen interactions. Frontiers in Plant Science, 8, 255703. [DOI:10.3389/fpls.2017.00701]
36. Wang, Q., Yang, S., Wan, S., Li, X. (2019). The significance of calcium in photosynthesis. International journal of molecular sciences, 20(6), 1353. [DOI:10.3390/ijms20061353]
37. Wei, L., Wang, C., Liao, W. (2021). Hydrogen sulfide improves the vase life and quality of cut roses and chrysanthemums. Journal of Plant Growth Regulation, 1-16. [DOI:10.1007/s00344-021-10312-7]
38. Youssef, S., Abd Elhady, S. A. E., Abu El-Azm, N. A. I., El-Shinawy, M. Z. (2017). Foliar application of salicylic acid and calcium chloride enhances growth and productivity of lettuce (Lactuca sativa). Egyptian Journal of Horticulture, 44(1), 1-16. [DOI:10.21608/ejoh.2017.892.1000]
39. Zhang, J., Liao, W. (2018). Involvement of calcium and calmodulin in nitric oxide-regulated senescence of cut lily flowers. Frontiers in Plant Science, 9, 398079. [DOI:10.3389/fpls.2018.01284]
40. Abdalla, M. (2009). The response of Dendranthema grandiflora, Tzvelev, cv. Icecap plants to calcium silicate slag and DHT treatments. Journal of Plant Production, 34(6), 6781-6790. [DOI:10.21608/jpp.2009.118660]
41. Abdolmaleki, M., KHOSH, K. M., Eshghi, S., Ramezanian, A. (2015). Improvement in vase life of cut rose cv."Dolce Vita" by preharvest foliar application of calcium chloride and salicylic acid.
42. Aghdam, M., Asil, M. H., Ghasemnezhad, M., Mirkalaei, S. M. (2019). Effects of pre-harvest applications of different source of calcium on the cell wall fractions and stem bending disorder of Gerbera (Gerbera jamesonii L.) cultivar flowers. Advances in Horticultural Science, 33(1), 57-66.
43. Aghdam, M. S., Hassanpouraghdam, M. B., Paliyath, G., Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144, 102-115. [DOI:10.1016/j.scienta.2012.07.007]
44. Amor, F. D., Marcelis, L. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. The Journal of Horticultural Science and Biotechnology, 78(3), 343-349. [DOI:10.1080/14620316.2003.11511629]
45. Banijamali, S. M., Feizian, M., Bayat, H., Mirzaei, S. (2018). Effects of nitrogen forms and calcium amounts on growth and elemental concentration in Rosa hybrida cv.'Vendentta'. Journal of Plant Nutrition, 41(9), 1205-1213. [DOI:10.1080/01904167.2018.1443127]
46. Bauer, P., Elbaum, R., Weiss, I. M. (2011). Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science, 180(6), 746-756. [DOI:10.1016/j.plantsci.2011.01.019]
47. Chen, C., Lu, S., Chen, Y., Wang, Z., Niu, Y., Guo, Z. (2009). A gamma-ray-induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Journal of the American Society for Horticultural Science, 134(1), 22-30. [DOI:10.21273/JASHS.134.1.22]
48. Cho HaeRyong, C. H., Joung HyangYoung, J. H., Lim KiByung, L. K., Kim KiSun, K. K. (2013). Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. [DOI:10.1007/s13580-013-0059-1]
49. Coutinho, P. W. R., de Moraes Echer, M., Braga, G. C., Guimarães, V. F., do Carmo Lana, M., Alves, T. N., Brito, T. S. (2020). Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes. Research, Society and Development, 9(11), e74791110148-e74791110148. [DOI:10.33448/rsd-v9i11.10148]
50. Coutinho, P. W. R., de Moraes Echer, M., Guimarães, V. F., do Carmo Lana, M., Alves, T. N., Inagaki, A. M. (2020). Productivity of tomato hybrids due to the application of calcium silicate. [DOI:10.18188/sap.v19i3.24204]
51. Darras, A. (2021). Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae, 7(3), 51. [DOI:10.3390/horticulturae7030051]
52. Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19, 189-198. [DOI:10.1007/s12298-013-0165-7]
53. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91(1), 11-17. [DOI:10.1073/pnas.91.1.11]
54. Fageria, N., Filho, M. B., Moreira, A., Guimarães, C. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064. [DOI:10.1080/01904160902872826]
55. Faroutine, G., Arteaga-Ramírez, R., Pineda-Pineda, J., Vázquez-Peña, M. A. (2023). Effect of calcium silicate and moisture content of the substrate on the growth and productivity parameters of cucumber. Chilean journal of agricultural research, 83(3), 334-346. [DOI:10.4067/S0718-58392023000300334]
56. Halevy, A., Torre, S., Borochov, A., Porat, R., Friedman, H., Meir, S., Philosoph-Hadas, S. (2001). Calcium in regulation of postharvest life of flowers. Acta Horticulturae, 345-352. [DOI:10.17660/ActaHortic.2001.543.42]
57. Hepler, P. K. (2005). Calcium: a central regulator of plant growth and development. The Plant Cell, 17(8), 2142-2155. [DOI:10.1105/tpc.105.032508]
58. Kumar, S., Haripriya, K. (2010). Effect of foliar application of iron and zinc on growth flowering and yield of Nerium (Nerium odorum L.). Plant Archives, 10(2), 637-640.
59. Liu, Y.-F., Zhang, G.-X., Qi, M.-F., Li, T.-L. (2015). Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 34, 263-273. [DOI:10.1007/s00344-014-9462-9]
60. Mahajan, M., Pal, P. K. (2020). Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca (NO3) 2 and seasonal variation. Acta Physiologiae Plantarum, 42(2), 23. [DOI:10.1007/s11738-019-2996-5]
61. Naeem, M., Naeem, M. S., Ahmad, R., Ihsan, M. Z., Ashraf, M. Y., Hussain, Y., Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science, 64(1), 116-131. [DOI:10.1080/03650340.2017.1327713]
62. Palta, J. P. (1996). Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. [DOI:10.21273/HORTSCI.31.1.51]
63. Pospíšil, P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 218-231. [DOI:10.1016/j.bbabio.2011.05.017]
64. Sairam, R. K., Vasanthan, B., Arora, A. (2011). Calcium regulates Gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiologiae Plantarum, 33, 1897-1904. [DOI:10.1007/s11738-011-0734-8]
65. Seydmohammadi, Z., Roein, Z., Rezvanipour, S. (2020). Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO 3. Plant Physiology Reports, 25, 140-148. [DOI:10.1007/s40502-019-00473-9]
66. Shams, M., Etemadi, N., Baninasab, B., Ramin, A. A., Khoshgoftarmanesh, A. H. (2012). Effect of boron and calcium on growth and quality of 'easy lover'cut rose. Journal of Plant Nutrition, 35(9), 1303-1313. [DOI:10.1080/01904167.2012.684123]
67. Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant growth regulation, 48, 127-135. [DOI:10.1007/s10725-005-5482-6]
68. Tofighi Alikhani, T., Tabatabaei, S. J., Mohammadi Torkashvand, A., Khalighi, A., Talei, D. (2021). Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition, 44(7), 1039-1053. [DOI:10.1080/01904167.2020.1867578]
69. Torre, S., Borochov, A., Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum, 107(2), 214-219. [DOI:10.1034/j.1399-3054.1999.100209.x]
70. Tripathi, S. K., Tuteja, N. (2007). Integrated signaling in flower senescence: an overview. Plant signaling & behavior, 2(6), 437-445. [DOI:10.4161/psb.2.6.4991]
71. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. (2010). Lignin biosynthesis and structure. Plant physiology, 153(3), 895-905. [DOI:10.1104/pp.110.155119]
72. Verdonk, J. C., van Ieperen, W., Carvalho, D. R., van Geest, G., Schouten, R. E. (2023). Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, 14, 1281456. [DOI:10.3389/fpls.2023.1281456]
73. Volpin, H., Elad, Y. (1991). Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology, 81(11), 1390-1394. [DOI:10.1094/Phyto-81-1390]
74. Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., Guo, S. (2017). Role of silicon on plant-pathogen interactions. Frontiers in Plant Science, 8, 255703. [DOI:10.3389/fpls.2017.00701]
75. Wang, Q., Yang, S., Wan, S., Li, X. (2019). The significance of calcium in photosynthesis. International journal of molecular sciences, 20(6), 1353. [DOI:10.3390/ijms20061353]
76. Wei, L., Wang, C., Liao, W. (2021). Hydrogen sulfide improves the vase life and quality of cut roses and chrysanthemums. Journal of Plant Growth Regulation, 1-16. [DOI:10.1007/s00344-021-10312-7]
77. Youssef, S., Abd Elhady, S. A. E., Abu El-Azm, N. A. I., El-Shinawy, M. Z. (2017). Foliar application of salicylic acid and calcium chloride enhances growth and productivity of lettuce (Lactuca sativa). Egyptian Journal of Horticulture, 44(1), 1-16. [DOI:10.21608/ejoh.2017.892.1000]
78. Zhang, J., Liao, W. (2018). Involvement of calcium and calmodulin in nitric oxide-regulated senescence of cut lily flowers. Frontiers in Plant Science, 9, 398079. [DOI:10.3389/fpls.2018.01284]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi S, Tehranifar A, Selahvarzi Y, Khoshgoftarmanesh A H, Cheheltanan L. Effect of foliar spray with different concentrations of calcium silicate on the performance and quality of two cut rose flowers. FOP 2025; 10 (1) :99-116
URL: http://flowerjournal.ir/article-1-303-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 1 (Spring & Summer 2025) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4732