[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 1 (Spring and Summer 2024) ::
FOP 2024, 9(1): 47-68 Back to browse issues page
Effect of foliar spraying of silver nanoparticles on growth and morpho-physiological traits of French Marigold (Tagetes patula L.) under salinity stress conditions
Khatoun Behzad , Abdollah Ehtesham Nia * , Mohamadreza Raji , Hasan Moumivand , Majid Alikhani
Lorestan University
Abstract:   (1802 Views)
Salinity is one of the main environmental stresses that affect the establishment of seedlings and the performance of landscape plants. The application of silver nanoparticles in abiotic stresses in several ways improves the tolerance of plants against stresses. For this purpose, to investigate the effect of silver nanoparticles on the growth, and morpho-physiological traits of French Marigold under salinity stress, a factorial experiment was conducted under a completely randomized design with 4 replications. The first factor included salinity treatment at 4 levels (0, 25, 50 and 100 mM) and the second factor was the foliar application of silver nanoparticles at four levels (0, 10, 50, and 100 mg/L). In this study, the treatment of silver nanoparticles at 50 mg/L without salinity (0 mM) resulted in the maximum height of the plant (20 cm), the diameter of the stem (3.98 mm), the diameter of the flower (65 5.5 mm), the number of flowers per plant (11), the number of side branches (8), the relative water content (86.40%) and the lowest ion leakage (30.36%). Increasing the salinity level from 0 to 100 mM led to smaller plants with less pigment content and reduced growth traits. Weekly application of nanosilver not only significantly improved all evaluated parameters but also partially reduced the destructive effects under salinity conditions (50 and 100 mM). This gradual effect of nanosilver was more prominent when it was applied at a concentration of 50 mg/L, so that the foliar application of nanosilver increased the ornamental characteristics of Marigold, including the number of lateral branches (by 25.81%), the number of flowers (by 27.27%), flower diameter (by 10.27%) and fresh and dry weight of flowers (by 10.29 and 28.68%, respectively) under salinity stress conditions. Also, the present results showed that Marigold is sensitive to high salinity (100 mM) and is not able to produce large flowers under high salinity conditions. In general, the use of silver nanoparticles was useful in improving salinity tolerance in French Marigold and its application may stimulate the defense mechanisms of plants against salt toxicity.
Keywords: Marigold plant, Relative Water Content, Silver nanoparticles, Salinity stress
Full-Text [PDF 799 kb]   (520 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/01/6 | Accepted: 2024/01/1 | Published: 2024/09/21
References
1. Bayat, H., Aminifard, M.H. (2017). Salicylic acid treatment extends the vase life of five commercial cut flowers. Electronic Journal of Biology, 13(1), 67-72‌.
2. Cabot, C., Sibole, J.V., Barceló, J., Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2-13. [DOI:10.1016/j.plantsci.2014.04.013]
3. Cai, X., Niu, G., Starman, T., Hall, C. (2014). Response of six garden roses (Rosa× hybrida L.) to salt stress. Scientia Horticulturae, 168, 27-32. [DOI:10.1016/j.scienta.2013.12.032]
4. Campos, M.L.D.O., Hsie, B.S.D., Granja, J.A.D.A., Correia, R.M., Almeida-Cortez, J.S.D., Pompelli, M.F. (2012). Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Brazilian Journal of Plant Physiology, 24, 55-67.‌ [DOI:10.1590/S1677-04202012000100008]
5. Chrysargyris, A., Tzionis, A., Xylia, P., Tzortzakis, N. (2018). Effects of Salinity on Tagetes Growth, Physiology, and Shelf Life of Edible Flowers Stored in Passive Modified Atmosphere Packaging or Treated With Ethanol. Crop and Product Physiology, a section of the journal Frontiers in Plant Science, 9,1765. doi: 10.3389/fpls.2018.01765. [DOI:10.3389/fpls.2018.01765]
6. de Oliveira, A.B., Gomes-Filho, E. (2016). How are germination performance and seedling establishment under abiotic stress improved by seed priming? A review. Australian Journal of Crop Science, 10(7), 1047-1051.‌ [DOI:10.21475/ajcs.2016.10.07.p7740]
7. de Oliveira, V.P., Marques, E.C., de Lacerda, C.F., Prisco, J.T., Gomes Filho, E. (2013). Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. African Journal of Agricultural Research, 8(8), 660-670.
8. De Pascale, S., Dalla Costa, L., Vallone, S., Barbieri, G., Maggio, A. (2011). Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. Horticultural Technology, 21(3), 301-308. [DOI:10.21273/HORTTECH.21.3.301]
9. Ekhtiari, R., Mohebi, H., Mansouri, M. (2012). Investigating the effects of nano silver particles on salinity tolerance of fennel (Foeiniculum vulgare Mill.) in primary growth in laboratory conditions.
10. Elsakhawy, T., Omara, A.E.D., Alshaal, T., El-Ramady, H. (2018). Nanomaterials and plant abiotic stress in agroecosystems. Environment, Biodiversity and Soil Security, 2, 73-94. [DOI:10.21608/jenvbs.2018.3897.1030]
11. Fahad, S., Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pakistan Journal of Botany, 44(4), 1433-1438.‌
12. Funk, V.A., Chan, R., Holland, A. (2007). Cymbonotus (Compositae: Arctotideae, Arctotidinae): an endemic Australian genus embedded in a southern African clade. Botanical Journal of the Linnean Society, 153(1), 1-8. [DOI:10.1111/j.1095-8339.2007.00596.x]
13. Ghasemi, N., Omidi, H., Bostani, A. (2021). Morphological properties of Catharanthus roseus L. seedlings affected by priming techniques under natural salinity stress. Journal of Plant Growth Regulation, 40, 550-557.‌ [DOI:10.1007/s00344-020-10118-z]
14. Ghasemi, V., Ehtsham Nia, A., Rezainejad, A., Momiwand, H. (2023). Investigating the effect of different levels of salinity stress and variety on biochemical, physiological characteristics and concentration of nutrients of carnation plant (Dianthus barbatus). Plant Production Research, 30(1), 1-19.
15. Ghavam, M. (2018). Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. Journal of Rangeland Science, 8(1), 93-100.‌
16. Gupta, B., Gupta, K., Huang, B. (2014). 19 Role of Polyamines in Plant Abiotic Stress Responses. Handbook of Plant and Crop Physiology, 369.‌
17. Hassanvand, F., Rezainejad, A. (2018). Effect of potassium silicate on growth, physiology and biochemical characteristics of Pelargonium graveolens under salinity stress conditions. Horticultural Sciences of Iran, 48(4), 743-752.
18. Heidary, Z., Asadi gharneh, H.A., Razmjoo, J. (2018). Effect of different levels of salinity on morpho-physiological characteristics of wood Sage (Salvia nemorosa L.). Environmental stresses in crop sciences[internet],13(3 ), 983-993. Available from: https://sid.ir/paper/388813/en
19. Iqbal, M., RaJa, N.I., Hussain, M., EJaz, M., Yasmeen, F. (2017). Effect of Silver Nanoparticles on Growth of Wheat Under Heat Stress. Iranian Journal of Science and Technology. Transactions Science Journal, 1, 1-9.
20. Iqbal, S., Waheed, Z., Naseem, A. (2020). Nanotechnology and abiotic stresses. In: Mammals & Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environ, pp. 655-691. [DOI:10.1007/978-3-030-41275-3_3]
21. Jaleel, C.A., Gopi, R., Kishorekumar, A., Manivannan, P., Sankar, B., Panneerselvam, R. (2008). Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiologiae Plantarum, 30, 287-292. [DOI:10.1007/s11738-007-0119-1]
22. Javadi, H., Thagha Al-Islami, M.J., Mousavi, S.G. (2014). Investigating the effect of salinity on germination and early seedling growth of four species of medicinal plants. Iranian Agricultural Research Journal, 12 (1), 53-64.
23. Karimi, M., Ahmadi, A., Hashemi, J., Abbasi, A., Angelini, L. G. (2014). Effect of two plant growth retardants on steviol glycosides content and antioxidant capacity in Stevia (Stevia rebaudiana Bertoni). Acta Physiologiae Plantarum, 36, 1211-1219. [DOI:10.1007/s11738-014-1498-8]
24. ‎Karimi.jafari, A., Hossein zadeh namil, M. (2016). The effect of salinity and nano silver on growth and biochemistry of saffron corms in soaking conditions. Applied Biology, 29(1), 159-174. doi: 10.22051/jab.2016.2474
25. Khalofah, A., Kilany, M., Migdadi, H. (2021). Phytostimulatory influence of comamonas testosteroni and silver nanoparticles on Linum usitatissimum L. under salinity stress. Plants, 10(4), 790. [DOI:10.3390/plants10040790]
26. Langroudi, M.E., Hashemabadi, D., KalateJari, S., Asadpour, L. (2020). Effects of silver nanoparticles, chemical treatments and herbal essential oils on the vase life of cut alstroemeria (Alstroemeria 'Summer Sky') flowers. The Journal of Horticultural Science and Biotechnology, 95(2), 175-182. [DOI:10.1080/14620316.2019.1657786]
27. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology, Academic Press, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
28. Lutts, S., Kinet, J.M., Bouharmont, J. (1996). NaCl-induced senescence inleaves of rice (Oryza sativa L.) cultivars differing in salinitary resistance. Annals of Botany, 78 (3), 389-398. [DOI:10.1006/anbo.1996.0134]
29. Mahalingam, R. (2015). Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. Combined stresses in plants: Physiological, molecular, and biochemical aspects, 1-25.‌ [DOI:10.1007/978-3-319-07899-1_1]
30. Meng, H.E., Yuanwen, Z.O.U., Jinchuan, L.I., Xuejin, H.U.A.N. G., Gang, H.E. (2015). Design and Implementation of Electrical Stimulator for Cells. Experiment Science and Technology, 13(3), 214-216.‌
31. Munns, R., Tester, M. (2008), Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911. [DOI:10.1146/annurev.arplant.59.032607.092911]
32. Nair, R., Mohamed, M.S., Gao, W., Melawi, T., Yoshida, Y., Ajayan, P.M., Kumar, D.S. (2012). Effect of carbon nanomaterials on the germination and growth of rice plants. Journal of Nanoscience and Nanotechnology, 12(3), 2212-2220. [DOI:10.1166/jnn.2012.5775]
33. Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981. [DOI:10.1016/j.heliyon.2021.e05981]
34. Ngo, Q. B., Dao, T. H., Nguyen, H. C., Tran, X. T., Van Nguyen, T., Khuu, T. D., & Huynh, T. H. (2014). Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(1), 015016. [DOI:10.1088/2043-6262/5/1/015016]
35. Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Ahmed, A.H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A Review. Microbiological Research, 209, 21-32. [DOI:10.1016/j.micres.2018.02.003]
36. Oldenburg, S.J. (2016) Silver nanoparticles: properties and applications. http://www.sigmaaldrich.com/technical-documents/articles/mate rials-science/nanomaterials/silver-nanoparticles.html
37. Parvaneh, R., Shahrokh, T., Meysam, H.S. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology & Biochemistry, 8(1), 182-193.
38. Rahdari, P., Hoseini, S.M. (2013). Roll of polyamines (spermidine and putrescine) on protein, chlorophyll and phenolic compounds in wheat (Triticum aestivum L.) under salinity stress. Journal of Science Research Report, 1, 19-24.‌
39. Ritchie, S.W., Nguyen, H.T., Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. [DOI:10.2135/cropsci1990.0011183X003000010025x]
40. Romagnoli, C., Mares, D., Fasulo, M.P., Bruni, A. (1994). Antifungal effects of α‐terthienyl from Tagetes patula on five dermatophytes. Phytotherapy Research, 8(6), 332-336. [DOI:10.1002/ptr.2650080604]
41. Roozbahani, F., Mousavi-Fard, S., Nejad, A.R. (2020). Effect of proline on some physiological and biochemical characteristics of two cultivars of Impatiens walleriana under salt stress. Iranian Journal of Horticultural Science, 51(3).‌
42. Sabertanha, B., Fakheri, B., Mahdinezhad, N., Alizade, Z. (2017). Effects of silver nanoparticles elicitor and drought stress on the expression of beta-carotene hydroxylase (bch) gene on the yield of saffron carotenoid (Crocus sativus L.). Crop Biotechnology, 17, 1-13.
43. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
44. Salehi, M., Arzani, A. (2013). Grain quality traits in triticale influenced by field salinity stress. Australian Journal of Crop Science, 7(5), 580-587.‌
45. Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., Zhang, W. (2015). The potassium transporter O s HAK 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, cell & environment, 38(12), 2766-2779.‌ [DOI:10.1111/pce.12586]
46. Shin, Y.K., Bhandari, S.R., Cho, M.C., Lee, J.G. (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 61, 433-443. [DOI:10.1007/s13580-020-00231-z]
47. Siahmansour, S., Ehtesham-Nia, A., Rezaeinejad, A. (2020). Effect of salicylic acid foliar application on Morpho-physiological and biochemical traits of Goldenberry (Physalis peruviana L.) under salinity stress condition. Journal of Plant Production Research, 27(1), 165-178. (In Persian)
48. Zahedi, S.M., Abdelrahman, M., Hosseini, M.S., Hoveizeh, N.F., Tran, L.S.P. (2019). Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253, 246-258.‌ [DOI:10.1016/j.envpol.2019.04.078]
49. Zawadzińska, A., Salachna, P., Byczyńska, A., Piechocki, R., Pietrak, A. (2021). Pre-planting application of colloidal silver nanoparticles enhances bulb yield of Lilium grown under NaCl stress. In Presented at the 1st International Electronic Conference on Agronomy, (Vol. 3, p. 17). [DOI:10.3390/IECAG2021-09722]
50. Bayat, H., Aminifard, M.H. (2017). Salicylic acid treatment extends the vase life of five commercial cut flowers. Electronic Journal of Biology, 13(1), 67-72‌.
51. Cabot, C., Sibole, J.V., Barceló, J., Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2-13. [DOI:10.1016/j.plantsci.2014.04.013]
52. Cai, X., Niu, G., Starman, T., Hall, C. (2014). Response of six garden roses (Rosa× hybrida L.) to salt stress. Scientia Horticulturae, 168, 27-32. [DOI:10.1016/j.scienta.2013.12.032]
53. Campos, M.L.D.O., Hsie, B.S.D., Granja, J.A.D.A., Correia, R.M., Almeida-Cortez, J.S.D., Pompelli, M.F. (2012). Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Brazilian Journal of Plant Physiology, 24, 55-67.‌ [DOI:10.1590/S1677-04202012000100008]
54. Chrysargyris, A., Tzionis, A., Xylia, P., Tzortzakis, N. (2018). Effects of Salinity on Tagetes Growth, Physiology, and Shelf Life of Edible Flowers Stored in Passive Modified Atmosphere Packaging or Treated With Ethanol. Crop and Product Physiology, a section of the journal Frontiers in Plant Science, 9,1765. doi: 10.3389/fpls.2018.01765. [DOI:10.3389/fpls.2018.01765]
55. de Oliveira, A.B., Gomes-Filho, E. (2016). How are germination performance and seedling establishment under abiotic stress improved by seed priming? A review. Australian Journal of Crop Science, 10(7), 1047-1051.‌ [DOI:10.21475/ajcs.2016.10.07.p7740]
56. de Oliveira, V.P., Marques, E.C., de Lacerda, C.F., Prisco, J.T., Gomes Filho, E. (2013). Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. African Journal of Agricultural Research, 8(8), 660-670.
57. De Pascale, S., Dalla Costa, L., Vallone, S., Barbieri, G., Maggio, A. (2011). Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. Horticultural Technology, 21(3), 301-308. [DOI:10.21273/HORTTECH.21.3.301]
58. Ekhtiari, R., Mohebi, H., Mansouri, M. (2012). Investigating the effects of nano silver particles on salinity tolerance of fennel (Foeiniculum vulgare Mill.) in primary growth in laboratory conditions.
59. Elsakhawy, T., Omara, A.E.D., Alshaal, T., El-Ramady, H. (2018). Nanomaterials and plant abiotic stress in agroecosystems. Environment, Biodiversity and Soil Security, 2, 73-94. [DOI:10.21608/jenvbs.2018.3897.1030]
60. Fahad, S., Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pakistan Journal of Botany, 44(4), 1433-1438.‌
61. Funk, V.A., Chan, R., Holland, A. (2007). Cymbonotus (Compositae: Arctotideae, Arctotidinae): an endemic Australian genus embedded in a southern African clade. Botanical Journal of the Linnean Society, 153(1), 1-8. [DOI:10.1111/j.1095-8339.2007.00596.x]
62. Ghasemi, N., Omidi, H., Bostani, A. (2021). Morphological properties of Catharanthus roseus L. seedlings affected by priming techniques under natural salinity stress. Journal of Plant Growth Regulation, 40, 550-557.‌ [DOI:10.1007/s00344-020-10118-z]
63. Ghasemi, V., Ehtsham Nia, A., Rezainejad, A., Momiwand, H. (2023). Investigating the effect of different levels of salinity stress and variety on biochemical, physiological characteristics and concentration of nutrients of carnation plant (Dianthus barbatus). Plant Production Research, 30(1), 1-19.
64. Ghavam, M. (2018). Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. Journal of Rangeland Science, 8(1), 93-100.‌
65. Gupta, B., Gupta, K., Huang, B. (2014). 19 Role of Polyamines in Plant Abiotic Stress Responses. Handbook of Plant and Crop Physiology, 369.‌
66. Hassanvand, F., Rezainejad, A. (2018). Effect of potassium silicate on growth, physiology and biochemical characteristics of Pelargonium graveolens under salinity stress conditions. Horticultural Sciences of Iran, 48(4), 743-752.
67. Heidary, Z., Asadi gharneh, H.A., Razmjoo, J. (2018). Effect of different levels of salinity on morpho-physiological characteristics of wood Sage (Salvia nemorosa L.). Environmental stresses in crop sciences[internet],13(3 ), 983-993. Available from: https://sid.ir/paper/388813/en
68. Iqbal, M., RaJa, N.I., Hussain, M., EJaz, M., Yasmeen, F. (2017). Effect of Silver Nanoparticles on Growth of Wheat Under Heat Stress. Iranian Journal of Science and Technology. Transactions Science Journal, 1, 1-9.
69. Iqbal, S., Waheed, Z., Naseem, A. (2020). Nanotechnology and abiotic stresses. In: Mammals & Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environ, pp. 655-691. [DOI:10.1007/978-3-030-41275-3_3]
70. Jaleel, C.A., Gopi, R., Kishorekumar, A., Manivannan, P., Sankar, B., Panneerselvam, R. (2008). Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiologiae Plantarum, 30, 287-292. [DOI:10.1007/s11738-007-0119-1]
71. Javadi, H., Thagha Al-Islami, M.J., Mousavi, S.G. (2014). Investigating the effect of salinity on germination and early seedling growth of four species of medicinal plants. Iranian Agricultural Research Journal, 12 (1), 53-64.
72. Karimi, M., Ahmadi, A., Hashemi, J., Abbasi, A., Angelini, L. G. (2014). Effect of two plant growth retardants on steviol glycosides content and antioxidant capacity in Stevia (Stevia rebaudiana Bertoni). Acta Physiologiae Plantarum, 36, 1211-1219. [DOI:10.1007/s11738-014-1498-8]
73. ‎Karimi.jafari, A., Hossein zadeh namil, M. (2016). The effect of salinity and nano silver on growth and biochemistry of saffron corms in soaking conditions. Applied Biology, 29(1), 159-174. doi: 10.22051/jab.2016.2474
74. Khalofah, A., Kilany, M., Migdadi, H. (2021). Phytostimulatory influence of comamonas testosteroni and silver nanoparticles on Linum usitatissimum L. under salinity stress. Plants, 10(4), 790. [DOI:10.3390/plants10040790]
75. Langroudi, M.E., Hashemabadi, D., KalateJari, S., Asadpour, L. (2020). Effects of silver nanoparticles, chemical treatments and herbal essential oils on the vase life of cut alstroemeria (Alstroemeria 'Summer Sky') flowers. The Journal of Horticultural Science and Biotechnology, 95(2), 175-182. [DOI:10.1080/14620316.2019.1657786]
76. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology, Academic Press, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
77. Lutts, S., Kinet, J.M., Bouharmont, J. (1996). NaCl-induced senescence inleaves of rice (Oryza sativa L.) cultivars differing in salinitary resistance. Annals of Botany, 78 (3), 389-398. [DOI:10.1006/anbo.1996.0134]
78. Mahalingam, R. (2015). Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. Combined stresses in plants: Physiological, molecular, and biochemical aspects, 1-25.‌ [DOI:10.1007/978-3-319-07899-1_1]
79. Meng, H.E., Yuanwen, Z.O.U., Jinchuan, L.I., Xuejin, H.U.A.N. G., Gang, H.E. (2015). Design and Implementation of Electrical Stimulator for Cells. Experiment Science and Technology, 13(3), 214-216.‌
80. Munns, R., Tester, M. (2008), Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911. [DOI:10.1146/annurev.arplant.59.032607.092911]
81. Nair, R., Mohamed, M.S., Gao, W., Melawi, T., Yoshida, Y., Ajayan, P.M., Kumar, D.S. (2012). Effect of carbon nanomaterials on the germination and growth of rice plants. Journal of Nanoscience and Nanotechnology, 12(3), 2212-2220. [DOI:10.1166/jnn.2012.5775]
82. Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981. [DOI:10.1016/j.heliyon.2021.e05981]
83. Ngo, Q. B., Dao, T. H., Nguyen, H. C., Tran, X. T., Van Nguyen, T., Khuu, T. D., & Huynh, T. H. (2014). Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(1), 015016. [DOI:10.1088/2043-6262/5/1/015016]
84. Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Ahmed, A.H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A Review. Microbiological Research, 209, 21-32. [DOI:10.1016/j.micres.2018.02.003]
85. Oldenburg, S.J. (2016) Silver nanoparticles: properties and applications. http://www.sigmaaldrich.com/technical-documents/articles/mate rials-science/nanomaterials/silver-nanoparticles.html
86. Parvaneh, R., Shahrokh, T., Meysam, H.S. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology & Biochemistry, 8(1), 182-193.
87. Rahdari, P., Hoseini, S.M. (2013). Roll of polyamines (spermidine and putrescine) on protein, chlorophyll and phenolic compounds in wheat (Triticum aestivum L.) under salinity stress. Journal of Science Research Report, 1, 19-24.‌
88. Ritchie, S.W., Nguyen, H.T., Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. [DOI:10.2135/cropsci1990.0011183X003000010025x]
89. Romagnoli, C., Mares, D., Fasulo, M.P., Bruni, A. (1994). Antifungal effects of α‐terthienyl from Tagetes patula on five dermatophytes. Phytotherapy Research, 8(6), 332-336. [DOI:10.1002/ptr.2650080604]
90. Roozbahani, F., Mousavi-Fard, S., Nejad, A.R. (2020). Effect of proline on some physiological and biochemical characteristics of two cultivars of Impatiens walleriana under salt stress. Iranian Journal of Horticultural Science, 51(3).‌
91. Sabertanha, B., Fakheri, B., Mahdinezhad, N., Alizade, Z. (2017). Effects of silver nanoparticles elicitor and drought stress on the expression of beta-carotene hydroxylase (bch) gene on the yield of saffron carotenoid (Crocus sativus L.). Crop Biotechnology, 17, 1-13.
92. Sairam, R.K., Srivastava, G.C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
93. Salehi, M., Arzani, A. (2013). Grain quality traits in triticale influenced by field salinity stress. Australian Journal of Crop Science, 7(5), 580-587.‌
94. Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., Zhang, W. (2015). The potassium transporter O s HAK 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, cell & environment, 38(12), 2766-2779.‌ [DOI:10.1111/pce.12586]
95. Shin, Y.K., Bhandari, S.R., Cho, M.C., Lee, J.G. (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 61, 433-443. [DOI:10.1007/s13580-020-00231-z]
96. Siahmansour, S., Ehtesham-Nia, A., Rezaeinejad, A. (2020). Effect of salicylic acid foliar application on Morpho-physiological and biochemical traits of Goldenberry (Physalis peruviana L.) under salinity stress condition. Journal of Plant Production Research, 27(1), 165-178. (In Persian)
97. Zahedi, S.M., Abdelrahman, M., Hosseini, M.S., Hoveizeh, N.F., Tran, L.S.P. (2019). Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253, 246-258.‌ [DOI:10.1016/j.envpol.2019.04.078]
98. Zawadzińska, A., Salachna, P., Byczyńska, A., Piechocki, R., Pietrak, A. (2021). Pre-planting application of colloidal silver nanoparticles enhances bulb yield of Lilium grown under NaCl stress. In Presented at the 1st International Electronic Conference on Agronomy, (Vol. 3, p. 17). [DOI:10.3390/IECAG2021-09722]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behzad K, Ehtesham Nia A, Raji M, Moumivand H, Alikhani M. Effect of foliar spraying of silver nanoparticles on growth and morpho-physiological traits of French Marigold (Tagetes patula L.) under salinity stress conditions. FOP 2024; 9 (1) :47-68
URL: http://flowerjournal.ir/article-1-267-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Spring and Summer 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4732