[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 6، شماره 2 - ( پاییز و زمستان 1400 ) ::
جلد 6 شماره 2 صفحات 164-147 برگشت به فهرست نسخه ها
اثر نوع محیط مایه‌زنی در انتقال ژن کیتیناز کایمری به لیسیانتوس (Eustoma grandiflorum [Raf.] Shinn) برای ایجاد مقاومت به بیماری قارچی Fusarium solani
محمد مهدی فخرائی ، علیرضا مطلبی آذر* ، حسن صالحی ، ناصر مهنا ، مصطفی مطلبی
دانشگاه تبریز
چکیده:   (3162 مشاهده)
لیسیانتوس در رده ده گل برتر دنیا می‌‌باشد و در سال 2017 رتبه پنجم صادرات و فروش گیاهان زینتی دنیا را به خود اختصاص داده است. ایجاد مقاومت به بیماری‌‌های قارچی به‌‌ویژه فوزاریوم از مهم­ترین هدف­های بهنژادی لیسیانتوس می‌‌باشد. کارهای کمی در مورد بهنژادی برای مقاومت به بیماری‌‌های قارچی در این گیاه زینتی صورت گرفته است؛ از این رو انتقال ژن کیتیناز کایمری به لیسیانتوس دستاورد بزرگی در رسیدن به این مهم خواهد بود. انتقال و بیان ژن کیتیناز در گیاهان سطوح بالای مقاومت به آلودگی قارچی و تاخیر در بروز نشانه­های بیماری را در زمان رویارویی با بیمارگرهای قارچی باعث می­شود. پژوهشگران ثابت کرده­اند که فعالیت کیتیناز کایمری در تخریب دیواره‌‌های قارچ‌‌ها تفاوت قابل توجهی نسبت به کیتیناز Chit42 دارد. هدف از این پژوهش انگیزش مقاومت به بیماری‌‌ قارچی Fusarium solani در لیسیانتوس از راه انتقال ژن کیتیناز کایمری با استفاده از Agrobacterium tumefaciens بود. در این پژوهش اثر انواع محیط کشت MS، MS½ و LB، دو میزان pH 2/5 و 8/5 و همچنین سوکروز با غلظت­های 30 و 15 میلی‌‌گرم بر لیتر و مالتوز 30 میلی­گرم بر لیتر، در محیط مایه زنی مورد ارزیابی قرار گرفت. نتایج نشان داد که تیمار B شامل محیط مایه زنی MS دارای 30 گرم بر لیتر مالتوز با 2/5pH= بهترین پاسخ را در انتقال این ژن به لیسیانتوس داد و در کنار محیط گزینشی سرسخت‌‌تر دارای 100 میلی‌‌گرم بر لیتر کانامایسین با میانگین باززایی 13/11 گیاهچه از هر قطعه برگ به‌‌طور معنی‌‌داری برتر از سایر تیمارها بود. نتایج این پژوهش نشان داد که محیط کشت MS نسبت به محیط کشت LB در محیط مایه زنی انتقال ژن به لیسیانتوس کارآمدتر است و کاهش pH و تغییر منبع کربوهیدارت از سوکروز به مالتوز در محیط مایه زنی کارایی تراریختی این گیاه را افزایش داد. در این پژوهش در طی انتقال ژن کیتیناز کایمری به لیسیانتوس در محیط گزینشی سرسخت‌‌تر، شمار 471 گیاهچه از 45 قطعه برگ، ایجاد شد و از شمار 21 گیاهچه و لاین به‌‌طور تصادفی گزینش شده، شمار 10 لاین به آزمون PCR و 8 لاین به آزمون زیست‌‌سنجی پاسخ مثبت نشان دادند. این نخستین گزارش انتقال ژن کیتیناز کایمری در لیسیانتوس می­باشد.  
واژه‌های کلیدی: آگروباکتریوم، زیست‌‌سنجی، فوزاریوم، لاین تراریخته، مقاومت به بیماری قارچی
متن کامل [PDF 1154 kb]   (445 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1400/9/20 | پذیرش: 1400/10/1 | انتشار: 1400/12/16
فهرست منابع
1. Adesoye, I., Togun, O., Machuka, J. (2010). Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. Journal of Applied Biosciences, 30, 1845-1860.
2. Ahmadpour, R., Zare, N., Asghari-zakaria, R., Sheikhzadeh, P. (2016). Enhancement of Agrobacterium -mediated transformation efficienc- y in immature embryo of Triticum aestivum , cv . Arya. Iranian Journal of Genetics and Plant Breeding, 4(1), 45-53.
3. Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., Oshima, Y., Mitsuda, N., Ohme-Takagi, M., Shiratake, K. (2016). A petal-specific InMYB1 promoter from Japanese morning glory: A useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14(1), 354-363. https://doi.org/10.1111/pbi.12389 [DOI:10.1111/pbi.12389.]
4. Bertoldo, C., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A. (2015). Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. European Journal of Plant Pathology, 141(1), 83-97. https://doi.org/10.1007/s10658-014-0526-2 [DOI:10.1007/s10658-014-0526-2.]
5. Bezirganoglu, I., Hwang, S. Y., Fang, T. J., Shaw, J. F. (2013). Transgenic lines of melon (Cucumis melo L. var. makuwa cv. 'Silver Light') expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture, 112(2), 227-237. https://doi.org/10.1007/s11240-012-0227-5 [DOI:10.1007/s11240-012-0227-5.]
6. Bhupendra, K., Sugandha, S., Amla, D.V., Indraneel, S. (2014). Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.). International Journal of Biosciences (IJB), 4(10), 51-69. https://doi.org/10.12692/ijb/4.10.51-69 [DOI:10.12692/ijb/4.10.51-69.]
7. Bradley, J.M., Deroles, S.C., Boase, M.R., Bloor, S., Swinny, E., Davies, K.M. (1999). Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Science, 140(1), 31-39. https://doi.org/10.1016/S0168-9452(98)00200-3 [DOI:10.1016/S0168-9452(98)00200-3.]
8. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J., Broglie, R. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254(5035), 1194-1197. https://doi.org/10.1126/science.254.5035.1194 [DOI:10.1126/science.254.5035.1194.]
9. Chen, Y.T., Fang, Q.S., Chiang, C.H., Yeh, S.D., Wu, H.W., Yu, T.A. (2010). Transgenic Eustoma grandiflorum expressing the bar gene are resistant to the herbicide Basta®. Plant Cell, Tissue and Organ Culture, 102(3), 347-356. https://doi.org/10.1007/s11240-010-9739-z [DOI:10.1007/s11240-010-9739-z.]
10. Clough, S.J., Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x [DOI:10.1046/j.1365-313X.1998.00343.x.]
11. Curtis, I.S., Nam, H.G. (2001). Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - Plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10(4), 363-371. https://doi.org/10.1023/A:1016600517293 [DOI:10.1023/A:1016600517293.]
12. Fakhraei, M.M., Arab, M., Shariat Panahi, M.E. (2014a). Effect of cold, heat and chemical stresses on the induction of androgenesis in lisianthus (Eustoma grandiflorum). Journal of Applied Crop Breeding, 2(1), 1-12 (In Persian).
13. Fakhraei, M.M., Arab, M., Shariat Panahi, M.E. (2014b). Effect of cultivar, growth regulators and light during incubation on induction of haploid in lisianthus (Eustoma grandiflorum) through microspore culture. Journal of Crop Production and Processing, 4(12), 171-178 (In Persian).
14. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., Li, D., Jin, K., Bidochka, M. J., Pei, Y. (2007). Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology, 73(1), 295-302. [DOI:10.1128/AEM.01974-06]
15. Gao, N., Shen, W., Cao, Y., Su, Y., Shi, W. (2009). Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 98(3), 321-330. https://doi.org/10.1007/s11240-009-9566-2 [DOI:10.1007/s11240-009-9566-2.]
16. Gilardi, G., Gullino, M. (2006). Ornamentali - Prime osservazioni sulla suscettibilita a Fusarium oxysporum f. sp. eustomae di diverse cultivar di lisianthus (Eustoma grandiflorum). Informatore Fitopatologico, 56, 30-33.
17. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.J., Toppan, A. (1996). Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology, 14(5), 643-646. https://doi.org/10.1038/nbt0596-643 [DOI:10.1038/nbt0596-643.]
18. Guan, C., Liu, X., Song, X., Wang, G., Ji, J., Jin, C. (2014). Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Molecular Breeding, 33(3), 657-667. https://doi.org/10.1007/s11032-013-9982-1 [DOI:10.1007/s11032-013-9982-1.]
19. Hahm, Y.I. (1998). Occurrence of Fusarium wilt on lisianthus (Eustoma grandiflorum) caused by Fusarium oxysporum f. sp. eustomae. Korean Journal of Plant Pathology, 14(2), 188-190.
20. Halevy, K.A. (1984). Evaluation of lisianthus as a new flower crop. HortScience, 19(6), 845-847.
21. Harbaugh, B.K. (2006). Lisianthus: Eustoma grandiflorum. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century (pp. 644-663). https://doi.org/10.1007/978-1-4020-4428-1_24 [DOI:10.1007/978-1-4020-4428-1-24.]
22. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. The Plant Journal, 8(1), 97-109. https://doi.org/10.1046/j.1365-313X.1995.08010097.x [DOI:10.1046/j.1365-313X.1995.08010097.x.]
23. Jones, J.D G., Dean, C., Gidoni, D., Gilbert, D., Bond-Nutter, D., Lee, R., Bedbrook, J., Dunsmuir, P. (1988). Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Molecular & General Genetics, 212(3), 536-542. https://doi.org/10.1007/BF00330861 [DOI:10.1007/BF00330861.]
24. Kowsari, M., Motallebi, M., Zamani, M. (2014). Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Current Microbiology, 68(4), 495-502. https://doi.org/10.1007/s00284-013-0494-3 [DOI:10.1007/s00284-013-0494-3.]
25. Kowsari M., Zamani, M.R. and Motallebi, M. (2016). Overexpression of chimeric chitinase42 enhances the antifungal activity of Trichoderma harzianum against Fusarium graminearum. Mycologia Iranica, 3(1), 15 - 23.
26. Kuronuma, T., Ando, M., Watanabe, H. (2020). Tipburn incidence and ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different ca concentrations in nutrient solution. Agronomy, https://doi.org/10.3390/agronomy10020216 [DOI:10.3390/agronomy10020216.]
27. Kuronuma, T., Kinoshita, N., Ando, M., Watanabe, H. (2020). Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Scientia Horticulturae, https://doi.org/10.1016/j.scienta.2019.108911 [DOI:10.1016/j.scienta.2019.108911.]
28. Limón, M.C., Chacón, M.R., Mejías, R., Delgado-Jarana, J., Rincón, A.M., Codón, A.C., Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, https://doi.org/10.1007/s00253-003-1538-6 [DOI:10.1007/s00253-003-1538-6.]
29. Liu, X., Yu, Y., Liu, Q., Deng, S., Jin, X., Yin, Y., Guo, J., Li, N., Liu, Y., Han, S., Wang, C., Hao, D. (2020). A Na2CO3-responsive chitinase gene from leymus chinensis improve pathogen resistance and saline-alkali stress tolerance in transgenic tobacco and maize. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.00504 [DOI:10.3389/fpls.2020.00504.]
30. Mantis, N.J., Winans, S.C. (1992). The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. Journal of Bacteriology, 174(4), 1189-1196. https://doi.org/10.1128/jb.174.4.1189-1196.1992 [DOI:10.1128/jb.174.4.1189-1196.1992.]
31. Matroodi, S., Zamani, M., Haghbeen, K., Motallebi, M., Aminzadeh, S. (2013). Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Acta Biochimica et Biophysica Sinica, 45(10), 845-856. https://doi.org/10.1093/abbs/gmt089 [DOI:10.1093/abbs/gmt089.]
32. McGovern, R.J. (2018). Diseases of Lisianthus. In R.J. McGovern, W.H. Elmer (Eds.), Handbook of Florists' Crops Diseases (pp. 583-632). Springer. https://doi.org/10.1007/978-3-319-39670-5_20 [DOI:10.1007/978-3-319-39670-5_20.]
33. Mercuri, A., Sacchetti, A., De Benedetti, L.D., Schiva, T., Alberti, S. (2001). Green fluorescent flowers. Plant Science, 161(5), 961-968. https://doi.org/10.1016/S0168-9452(01)00497-6 [DOI:10.1016/S0168-9452(01)00497-6.]
34. Miller, J. (1972). Experiments in molecular genetics. Astrophysics and Space Science, 203-209.
35. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x [DOI:10.1111/j.1399-3054.1962.tb08052.x.]
36. Nakano, Y. (2017). Effect of acetosyringone on Agrobacterium-mediated transformation of Eustoma grandiflorum leaf disks. Japan Agricultural Research Quarterly, 51(4), 351-355. https://doi.org/10.6090/jarq.51.351 [DOI:10.6090/jarq.51.351.]
37. Onozaki, T., Satou, M., Azuma, M., Kawabe, M., Kawakatsu, K., Fukuta, N. (2020). Evaluation of 29 lisianthus cultivars (Eustoma grandiflorum) and one inbred line of e. exaltatum for resistance to two isolates of Fusarium solani by using hydroponic equipment. Horticulture Journal, 89(4), 473-480. https://doi.org/10.2503/hortj.UTD-151 [DOI:10.2503/hortj.UTD-151.]
38. Pérez-Piñeiro, P., Gago, J., Landín, M., Gallego, P.P. (2012). Agrobacterium-mediated Transformation of Wheat: General Overview and New Approaches to Model and Identify the Key Factors Involved. In: Y. Ozden Çiftçi (ed.). Transgenic Plants-Advances and Limitations. Rijeka, Croatia: Intech Open Access Publisher, 326. https://doi.org/10.5772/35232 [DOI:10.5772/35232.]
39. Rai, G.K., Rai, N.P., Kumar, S., Yadav, A., Rathaur, S., Singh, M. (2012). Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular and Developmental Biology- Plant, 48(5), 565-578. https://doi.org/10.1007/s11627-012-9442-3 [DOI:10.1007/s11627-012-9442-3.]
40. Selitrennikoff, C. P. (2001). Antifungal Proteins. Applied and Environmental Microbiology, 67(7), 2883-2894. https://doi.org/10.1128/AEM.67.7.2883-2894.2001 [DOI:10.1128/AEM.67.7.2883-2894.2001.]
41. Semeniuk, P., Griesbach, R.J. (1987). In vitro propagation of prairie gentian. Plant Cell, Tissue and Organ Culture, 8(3), 249-253. https://doi.org/10.1007/BF00040952 [DOI:10.1007/BF00040952.]
42. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A.M., Accotto, G.P., Allavena, A. (1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 47(1), 67-72. https://doi.org/10.1007/BF02318967 [DOI:10.1007/BF02318967.]
43. Semeria, L., Vaira, A.M., Accotto, G.P., Allavena, A. (1995). Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica, 85(1-3), 125-130. https://doi.org/10.1007/BF00023940 [DOI:10.1007/BF00023940.]
44. Thiruvengadam, M., Chung, I.M. (2015). Efficient in vitro plant regeneration and Agrobacterium-mediated genetic transformation of lisianthus [Eustoma grandiflorum (Raf.) Shinn]. Propagation of Ornamental Plants, 15(1), 21-28.
45. Thiruvengadam, M., Yang, C.H. (2009). Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Reports, 28(10), 1463-1473. https://doi.org/10.1007/s00299-009-0746-7 [DOI:10.1007/s00299-009-0746-7.]
46. Tomioka, K., Hirooka, Y., Takezaki, A., Aoki, T., Sato, T. (2011). Fusarium root rot of prairie gentian caused by a species belonging to the Fusarium solani species complex. Journal of General Plant Pathology, 77(2), 132-135. https://doi.org/10.1007/s10327-011-0295-0 [DOI:10.1007/s10327-011-0295-0.]
47. Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M. (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170(12), 5822-5829. https://doi.org/10.1128/jb.170.12.5822-5829.1988 [DOI:10.1128/jb.170.12.5822-5829.1988.]
48. Wang, L., Xue, W., Li, X., Li, J., Wu, J., Xie, L., Kawabata, S., Li, Y., Zhang, Y. (2020). EgMIXTA1, a MYB-type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Frontiers in Plant Science, 11, 1-9. https://doi.org/10.3389/fpls.2020.524947 [DOI:10.3389/fpls.2020.524947.]
49. Zhao Qing, Ji, J., Wang, G., Wang, J., Ma, Y., Jin, C., Wu, W., Guan, C. (2012). Testing an induciable expression system in transgenic lisianthus (Eustoma grandiflorum cv. LisaBlue). African Journal of Biotechnology, 11(21), 4767-4772. https://doi.org/10.5897/AJB11.3306 [DOI:10.5897/ajb11.3306.]
50. Ziaei, M., Motallebi, M., Zamani, M.R., Panjeh, N.Z. (2016). Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnology Letters, 38(6), 1021-1032. https://doi.org/10.1007/s10529-016-2058-7 [DOI:10.1007/s10529-016-2058-7.]
51. Ziaei, M., Motallebi, M., Zamani, M.R., Zarin Panjeh, N., Moghaddassi Jahromi, Z. (2016). A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. Journal of Plant Biochemistry and Biotechnology, 25(4), 358-366. https://doi.org/10.1007/s13562-015-0347-1 [DOI:10.1007/s13562-015-0347-1.]
52. Adesoye, a I., Togun, a O., Machuka, J. (2010). Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. Journal of Applied Biosciences, 30, 1845-1860.
53. Ahmadpour, R., Zare, N., Asghari-zakaria, R., Sheikhzadeh, P. (2016). Enhancement of Agrobacterium -mediated transformation efficienc- y in immature embryo of Triticum aestivum , cv . Arya. Iranian Journal of Genetics and Plant Breeding, 4(1), 45-53.
54. Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., Oshima, Y., Mitsuda, N., Ohme-Takagi, M., Shiratake, K. (2016). A petal-specific InMYB1 promoter from Japanese morning glory: A useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14(1), 354-363. [DOI:10.1111/pbi.12389]
55. Bertoldo, C., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A. (2015). Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. European Journal of Plant Pathology, 141(1), 83-97. [DOI:10.1007/s10658-014-0526-2]
56. Bezirganoglu, I., Hwang, S. Y., Fang, T. J., Shaw, J. F. (2013). Transgenic lines of melon (Cucumis melo L. var. makuwa cv. 'Silver Light') expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture, 112(2), 227-237. [DOI:10.1007/s11240-012-0227-5]
57. Bhupendra, K., Sugandha, S., Amla, D. V., Indraneel, S. (2014). Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.). International Journal of Biosciences (IJB), 4(10), 51-69. [DOI:10.12692/ijb/4.10.51-69]
58. Bradley, J. M., Deroles, S. C., Boase, M. R., Bloor, S., Swinny, E., Davies, K. M. (1999). Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Science, 140(1), 31-39. [DOI:10.1016/S0168-9452(98)00200-3]
59. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., Broglie, R. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254(5035), 1194-1197. [DOI:10.1126/science.254.5035.1194]
60. Chen, Y. T., Fang, Q. S., Chiang, C. H., Yeh, S. D., Wu, H. W., Yu, T. A. (2010). Transgenic Eustoma grandiflorum expressing the bar gene are resistant to the herbicide Basta®. Plant Cell, Tissue and Organ Culture, 102(3), 347-356. [DOI:10.1007/s11240-010-9739-z]
61. Clough, S. J., Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x [DOI:10.1046/j.1365-313X.1998.00343.x]
62. Curtis, I. S., Nam, H. G. (2001). Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - Plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10(4), 363-371. [DOI:10.1023/A:1016600517293]
63. Fakhraei, M. M., Arab, M., Panahi, M. E. shariat. (2014a). Effect of cold, heat and chemical stresses on the induction of androgenesis in lisianthus (Eustoma grandiflorum). Journal of Applied Crop Breeding, 2(1), 1-12 (In Persian).
64. Fakhraei, M. M., Arab, M., Panahi, M. E. shariat. (2014b). Effect of cultivar, growth regulators and light during incubation on induction of haploid in lisianthus (Eustoma grandiflorum) through microspore culture. Journal of Crop Production and Processing, 4(12), 171-178 (In Persian).
65. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., Li, D., Jin, K., Bidochka, M. J., Pei, Y. (2007). Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology, 73(1), 295-302. [DOI:10.1128/AEM.01974-06]
66. Gao, N., Shen, W., Cao, Y., Su, Y., Shi, W. (2009). Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 98(3), 321-330. [DOI:10.1007/s11240-009-9566-2]
67. Gilardi, G., Gullino, M. . (2006). Ornamentali - Prime osservazioni sulla suscettibilita a Fusarium oxysporum f. sp. eustomae di diverse cultivar di lisianthus (Eustoma grandiflorum). Informatore Fitopatologico, 56, 30-33.
68. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J. J., Toppan, A. (1996). Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology, 14(5), 643-646. [DOI:10.1038/nbt0596-643]
69. Guan, C., Liu, X., Song, X., Wang, G., Ji, J., Jin, C. (2014). Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Molecular Breeding, 33(3), 657-667. [DOI:10.1007/s11032-013-9982-1]
70. Hahm, Y.-I. (1998). Occurrence of Fusarium wilt on lisianthus (Eustoma grandiflorum) caused by Fusarium oxysporum f. sp. eustomae. Korean Journal of Plant Pathology, 14(2), 188-190.
71. Halevy AH, K. A. (1984). Evaluation of lisianthus as a new flower crop. HortScience, 19(6), 845-847.
72. Harbaugh, B. K. (2006). Lisianthus: Eustoma grandiflorum. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century (pp. 644-663). https://doi.org/10.1007/978-1-4020-4428-1_24 [DOI:10.1007/978-1-4020-4428-1-24]
73. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. The Plant Journal, 8(1), 97-109. [DOI:10.1046/j.1365-313X.1995.08010097.x]
74. Jones, J. D. G., Dean, C., Gidoni, D., Gilbert, D., Bond-Nutter, D., Lee, R., Bedbrook, J., Dunsmuir, P. (1988). Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. MGG Molecular & General Genetics, 212(3), 536-542. [DOI:10.1007/BF00330861]
75. Kowsari, M., Motallebi, M., Zamani, M. (2014). Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Current Microbiology, 68(4), 495-502. [DOI:10.1007/s00284-013-0494-3]
76. Kowsari M., Z. M. R. and M. M. (2016). Overexpression of chimeric chitinase42 enhances the antifungal activity of Trichoderma harzianum against Fusarium graminearum. Mycologia Iranica, 3(1), 15 - 23.
77. Kuronuma, T., Ando, M., Watanabe, H. (2020). Tipburn incidence and ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different ca concentrations in nutrient solution. Agronomy, 10(2). [DOI:10.3390/agronomy10020216]
78. Kuronuma, T., Kinoshita, N., Ando, M., Watanabe, H. (2020). Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Scientia Horticulturae, 261(October), 108911. [DOI:10.1016/j.scienta.2019.108911]
79. Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. In Applied Microbiology and Biotechnology (Vol. 64, Issue 5). [DOI:10.1007/s00253-003-1538-6]
80. Liu, X., Yu, Y., Liu, Q., Deng, S., Jin, X., Yin, Y., Guo, J., Li, N., Liu, Y., Han, S., Wang, C., Hao, D. (2020). A Na2CO3-responsive chitinase gene from leymus chinensis improve pathogen resistance and saline-alkali stress tolerance in transgenic tobacco and maize. Frontiers in Plant Science, 11. [DOI:10.3389/fpls.2020.00504]
81. Mantis, N. J., Winans, S. C. (1992). The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. Journal of Bacteriology, 174(4), 1189-1196. [DOI:10.1128/jb.174.4.1189-1196.1992]
82. Matroodi, S., Zamani, M., Haghbeen, K., Motallebi, M., Aminzadeh, S. (2013). Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Acta Biochimica et Biophysica Sinica, 45(10), 845-856. [DOI:10.1093/abbs/gmt089]
83. McGovern, R. J. (2018). Diseases of lisianthus. In R. J. McGovern W. H. Elmer (Eds.), Handbook of Florists' Crops Diseases (pp. 583-632). Springer. [DOI:10.1007/978-3-319-39670-5_20]
84. Mercuri, A., Sacchetti, A., De Benedetti, L. D., Schiva, T., Alberti, S. (2001). Green fluorescent flowers. Plant Science, 161(5), 961-968. [DOI:10.1016/S0168-9452(01)00497-6]
85. Miller, J. (1972). Experiments in molecular genetics. Astrophysics and Space Science, 203-209.
86. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
87. Nakano, Y. (2017). Effect of acetosyringone on Agrobacterium-mediated transformation of Eustoma grandiflorum leaf disks. Japan Agricultural Research Quarterly, 51(4), 351-355. [DOI:10.6090/jarq.51.351]
88. Onozaki, T., Satou, M., Azuma, M., Kawabe, M., Kawakatsu, K., Fukuta, N. (2020). Evaluation of 29 lisianthus cultivars (Eustoma grandiflorum) and one inbred line of e. exaltatum for resistance to two isolates of Fusarium solani by using hydroponic equipment. Horticulture Journal, 89(4), 473-480. [DOI:10.2503/hortj.UTD-151]
89. Pérez-Piñeiro, P., Gago, J., Landín, M., Gallego, P. P. (2012). Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved. In Transgenic Plants-Advances and Limitations. Rijeka, Croatia: Intech Open Access Publisher, 326. [DOI:10.5772/35232]
90. Rai, G. K., Rai, N. P., Kumar, S., Yadav, A., Rathaur, S., Singh, M. (2012). Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular and Developmental Biology - Plant, 48(5), 565-578. [DOI:10.1007/s11627-012-9442-3]
91. Semeniuk, P., Griesbach, R. J. (1987). In vitro propagation of prairie gentian. Plant Cell, Tissue and Organ Culture, 8(3), 249-253. [DOI:10.1007/BF00040952]
92. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A. M., Accotto, G. P., Allavena, A. (1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 47(1), 67-72. [DOI:10.1007/BF02318967]
93. Semeria, L., Vaira, A. M., Accotto, G. P., Allavena, A. (1995). Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica, 85(1-3), 125-130. [DOI:10.1007/BF00023940]
94. Thiruvengadam, M., Chung, I. M. (2015). Efficient in vitro plant regeneration and Agrobacterium-mediated genetic transformation of lisianthus [Eustoma grandiflorum (Raf.) Shinn]. Propagation of Ornamental Plants, 15(1), 21-28.
95. Thiruvengadam, M., Yang, C. H. (2009). Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Reports, 28(10), 1463-1473. [DOI:10.1007/s00299-009-0746-7]
96. Tomioka, K., Hirooka, Y., Takezaki, A., Aoki, T., Sato, T. (2011). Fusarium root rot of prairie gentian caused by a species belonging to the Fusarium solani species complex. Journal of General Plant Pathology, 77(2), 132-135. [DOI:10.1007/s10327-011-0295-0]
97. Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M. (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170(12), 5822-5829. [DOI:10.1128/jb.170.12.5822-5829.1988]
98. Wang, L., Xue, W., Li, X., Li, J., Wu, J., Xie, L., Kawabata, S., Li, Y., Zhang, Y. (2020). EgMIXTA1, a MYB-type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Frontiers in Plant Science, 11(October), 1-9. [DOI:10.3389/fpls.2020.524947]
99. Zhao Qing, Ji, J., Wang, G., Wang, J., Ma, Y., Jin, C., Wu, W., Guan, C. (2012). Testing an induciable expression system in transgenic lisianthus (Eustoma grandiflorum cv. LisaBlue). African Journal of Biotechnology, 11(21), 4767-4772. https://doi.org/10.5897/AJB11.3306 [DOI:10.5897/ajb11.3306]
100. Ziaei, M., Motallebi, M., Zamani, M. R., Panjeh, N. Z. (2016). Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnology Letters, 38(6), 1021-1032. [DOI:10.1007/s10529-016-2058-7]
101. Ziaei, M., Motallebi, M., Zamani, M. R., Zarin Panjeh, N., Moghaddassi Jahromi, Z. (2016). A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. Journal of Plant Biochemistry and Biotechnology, 25(4), 358-366. [DOI:10.1007/s13562-015-0347-1]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fakhraei M M, Motallebi Azar A, Salehi H, mahna N, Motallebi M. Effect of the type of inoculation medium on chimeric chitinase gene transfer to lisianthus (Eustoma grandiflorum [Raf.] Shinn) for resistance to the fungal disease Fusarium solani. FOP 2021; 6 (2) :147-164
URL: http://flowerjournal.ir/article-1-215-fa.html

فخرائی محمد مهدی، مطلبی آذر علیرضا، صالحی حسن، مهنا ناصر، مطلبی مصطفی. اثر نوع محیط مایه‌زنی در انتقال ژن کیتیناز کایمری به لیسیانتوس (Eustoma grandiflorum [Raf.] Shinn) برای ایجاد مقاومت به بیماری قارچی Fusarium solani. گل و گیاهان زینتی. 1400; 6 (2) :147-164

URL: http://flowerjournal.ir/article-1-215-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 6، شماره 2 - ( پاییز و زمستان 1400 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4660