[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 1 (Spring and Summer 2022) ::
FOP 2022, 7(1): 153-162 Back to browse issues page
Use of multioxidant solution for optimizing the disinfection of ornamental explants in the plant tissue culture laboratory of Mazare Novin Iranian Company
Mohammad Amin Ghanbari Jahromi * , Shahram Jafarniya , Mahnaz Salatin
Abstract:   (1407 Views)
Contaminating microorganisms in tissue culture laboratories are from plant, human or environmental sources. The occurrence of this contamination of environmental origin occurs globally. The multioxidant solution for water disinfection, compared to other methods, has several advantages such as high disinfectant power, less chlorine residue in the water, improved taste and smell, biofilm removal and biosafety. The presence of above-mentioned various disinfecting factors causes the high efficiency of this solution. This solution is more effective than bleach and can be used for a variety of applications. Effect of different concentrations of multioxidant solution (0, 100, 200 and 400 ppm for 10, 20, 40 and 80 min) to control fungal and bacterial contamination of explants of three species of Gerbera, Phalanopsis orchid and Hawortia as well as the rate of fungal and bacterial contamination in the air after the use of anolyte (four concentrations of 0, 100, 200 and 400 ppm of anolyte solution using fogger for 5, 10, 15 and 20 min to Fog application) was examined at four times of the year in the commercial plant tissue culture laboratory of New Iranian Farms Company. The use of 400 ppm of anolytic multioxidant solution for 80 min of immersion in tissue culture explants can control fungal contamination in the explants. But bacterial control may not be completely eliminated depending on the plant species used. Therefore, the use of 70% ethanol solution for 30 to 60 seconds is recommended for disinfection of plant explants along with the use of anolyte. Another advantage of using this multioxidant solution is that the tissues do not burn, unlike the use of sodium hypochlorite, and this is most likely due to the neutral pH of this substance.
Keywords: Anolyte, Disinfection, Fungal and bacterial contaminations, Multioxidant solution, Plant tissue culture
Full-Text [PDF 772 kb]   (605 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/09/22 | Accepted: 2021/11/2 | Published: 2022/12/19
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113.
2. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [DOI:10.3390/ijerph14060636]
3. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary.
4. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [DOI:10.1007/978-1-61779-818-4_6]
5. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [DOI:10.20546/ijcmas.2019.801.291]
6. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [DOI:10.1007/s11627-001-0025-y]
7. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [DOI:10.1016/j.atmosenv.2015.03.026]
8. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [DOI:10.1016/j.tifs.2019.06.006]
9. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [DOI:10.3923/ppj.2007.77.81]
10. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [DOI:10.1016/j.fm.2020.103614]
11. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142.
12. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [DOI:10.1007/s12033-016-9943-0]
13. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA,
14. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons.
15. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [DOI:10.1201/9781439896143]
16. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132.
17. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [DOI:10.1128/aem.63.11.4625-4625b.1997]
18. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113.
19. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113.
20. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [DOI:10.3390/ijerph14060636]
21. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary.
22. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [DOI:10.1007/978-1-61779-818-4_6]
23. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [DOI:10.20546/ijcmas.2019.801.291]
24. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [DOI:10.1007/s11627-001-0025-y]
25. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [DOI:10.1016/j.atmosenv.2015.03.026]
26. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [DOI:10.1016/j.tifs.2019.06.006]
27. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [DOI:10.3923/ppj.2007.77.81]
28. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [DOI:10.1016/j.fm.2020.103614]
29. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142.
30. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [DOI:10.1007/s12033-016-9943-0]
31. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA,
32. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons.
33. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [DOI:10.1201/9781439896143]
34. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132.
35. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [DOI:10.1128/aem.63.11.4625-4625b.1997]
36. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113.
37. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113.
38. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [DOI:10.3390/ijerph14060636]
39. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary.
40. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [DOI:10.1007/978-1-61779-818-4_6]
41. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [DOI:10.20546/ijcmas.2019.801.291]
42. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [DOI:10.1007/s11627-001-0025-y]
43. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [DOI:10.1016/j.atmosenv.2015.03.026]
44. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [DOI:10.1016/j.tifs.2019.06.006]
45. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [DOI:10.3923/ppj.2007.77.81]
46. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [DOI:10.1016/j.fm.2020.103614]
47. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142.
48. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [DOI:10.1007/s12033-016-9943-0]
49. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA,
50. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons.
51. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [DOI:10.1201/9781439896143]
52. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132.
53. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [DOI:10.1128/aem.63.11.4625-4625b.1997]
54. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113.
55. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113.
56. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [DOI:10.3390/ijerph14060636]
57. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary.
58. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [DOI:10.1007/978-1-61779-818-4_6]
59. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [DOI:10.20546/ijcmas.2019.801.291]
60. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [DOI:10.1007/s11627-001-0025-y]
61. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [DOI:10.1016/j.atmosenv.2015.03.026]
62. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [DOI:10.1016/j.tifs.2019.06.006]
63. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [DOI:10.3923/ppj.2007.77.81]
64. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [DOI:10.1016/j.fm.2020.103614]
65. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142.
66. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [DOI:10.1007/s12033-016-9943-0]
67. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA,
68. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons.
69. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [DOI:10.1201/9781439896143]
70. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132.
71. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [DOI:10.1128/aem.63.11.4625-4625b.1997]
72. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari Jahromi M A, Jafarniya S, Salatin M. Use of multioxidant solution for optimizing the disinfection of ornamental explants in the plant tissue culture laboratory of Mazare Novin Iranian Company. FOP 2022; 7 (1) :153-162
URL: http://flowerjournal.ir/article-1-209-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (Spring and Summer 2022) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645