1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید
-------------Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113. 2. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [ DOI:10.3390/ijerph14060636] 3. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary. 4. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [ DOI:10.1007/978-1-61779-818-4_6] 5. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [ DOI:10.20546/ijcmas.2019.801.291] 6. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [ DOI:10.1007/s11627-001-0025-y] 7. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [ DOI:10.1016/j.atmosenv.2015.03.026] 8. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [ DOI:10.1016/j.tifs.2019.06.006] 9. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [ DOI:10.3923/ppj.2007.77.81] 10. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [ DOI:10.1016/j.fm.2020.103614] 11. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142. 12. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [ DOI:10.1007/s12033-016-9943-0] 13. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA, 14. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons. 15. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [ DOI:10.1201/9781439896143] 16. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132. 17. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [ DOI:10.1128/aem.63.11.4625-4625b.1997] 18. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113. 19. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113. 20. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [ DOI:10.3390/ijerph14060636] 21. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary. 22. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [ DOI:10.1007/978-1-61779-818-4_6] 23. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [ DOI:10.20546/ijcmas.2019.801.291] 24. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [ DOI:10.1007/s11627-001-0025-y] 25. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [ DOI:10.1016/j.atmosenv.2015.03.026] 26. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [ DOI:10.1016/j.tifs.2019.06.006] 27. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [ DOI:10.3923/ppj.2007.77.81] 28. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [ DOI:10.1016/j.fm.2020.103614] 29. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142. 30. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [ DOI:10.1007/s12033-016-9943-0] 31. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA, 32. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons. 33. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [ DOI:10.1201/9781439896143] 34. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132. 35. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [ DOI:10.1128/aem.63.11.4625-4625b.1997] 36. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113. 37. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113. 38. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [ DOI:10.3390/ijerph14060636] 39. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary. 40. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [ DOI:10.1007/978-1-61779-818-4_6] 41. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [ DOI:10.20546/ijcmas.2019.801.291] 42. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [ DOI:10.1007/s11627-001-0025-y] 43. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [ DOI:10.1016/j.atmosenv.2015.03.026] 44. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [ DOI:10.1016/j.tifs.2019.06.006] 45. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [ DOI:10.3923/ppj.2007.77.81] 46. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [ DOI:10.1016/j.fm.2020.103614] 47. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142. 48. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [ DOI:10.1007/s12033-016-9943-0] 49. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA, 50. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons. 51. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [ DOI:10.1201/9781439896143] 52. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132. 53. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [ DOI:10.1128/aem.63.11.4625-4625b.1997] 54. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113. 55. Alexandrovich, S. O., Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., Pavlovna, Y. T. (2018). Provision of microbiological safety in the food industry based on special technological supporting solutions. International Journal of Pharmaceutical Research , Allied Sciences, 7(1), 103-113. 56. Babič, M. N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... , Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636. [ DOI:10.3390/ijerph14060636] 57. Bradford (2011) The Differences between On-Site Generated Mixed-Oxidant Solution and Sodium Hypochlorite, MIOX Master Features Summary. 58. Cassells, A. C. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. In Plant cell culture protocols (pp. 57-80). Humana Press, Totowa, NJ. [ DOI:10.1007/978-1-61779-818-4_6] 59. do Nascimento, J. P. M., López, A. M. Q., , Andrade, M. (2019). Airborne fungi in indoor hospital environments. International Journal of Current Microbiology Applied Science, 8(1), 2749-2772. [ DOI:10.20546/ijcmas.2019.801.291] 60. Leifert, C., , Cassells, A. C. (2001). Microbial hazards in plant tissue and cell cultures. In Vitro Cellular, Developmental Biology-Plant, 37(2), 133-138. [ DOI:10.1007/s11627-001-0025-y] 61. Madureira, J., Paciência, I., Rufo, J. C., Pereira, C., Teixeira, J. P., , de Oliveira Fernandes, E. (2015). Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmospheric Environment, 109, 139-146. [ DOI:10.1016/j.atmosenv.2015.03.026] 62. Masotti, Fabio, et al. "Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air." Trends in Food Science , Technology 90 (2019): 147-156. [ DOI:10.1016/j.tifs.2019.06.006] 63. Odutayo, O. I., Amusa, N. A., Okutade, O. O., , Ogunsanwo, Y. R. (2007). Determination of the sources of microbial contaminants of cultured plant tissues. Plant Pathology Journal, 6(1), 77-81. [ DOI:10.3923/ppj.2007.77.81] 64. Ogunniyi, A. D., Tenzin, S., Ferro, S., Venter, H., Pi, H., Amorico, T. , Trott, D. J. (2021). A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiology, 93, 103614. [ DOI:10.1016/j.fm.2020.103614] 65. Reed, B. M., , Tanprasert, P. (1995). Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant tissue culture and Biotechnology, 1(3), 137-142. 66. Sarmast, M. K., , Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular biotechnology, 58(7), 441-449. [ DOI:10.1007/s12033-016-9943-0] 67. Solsona and Pearson (1995) "Non-Conventional Disinfection Technologies for small water systems", WRC Report No. 449/1/95, CSIR, Pretoria, SA, 68. Strange, R. N. (2003). Introduction to plant pathology. John Wiley, Sons. 69. Trigiano, R. N., , Gray, D. J. (2016). Plant tissue culture, development, and biotechnology. CRC Press. [ DOI:10.1201/9781439896143] 70. Umana, S., Edet, N., Uko, M., Agbo, B., , Bassey, M. (2018). Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124-132. 71. Venczel, M Arrowood, M Hurd and M D Sobsey (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol, 63(11), 4625. [ DOI:10.1128/aem.63.11.4625-4625b.1997] 72. Yurievna, V. S., Olegovich, P. I., Yurievna, K. N., Ilyinichna, V. L., , Pavlovna, Y. T. (2018). Provision of Microbiological Safety in The Food Industry Based on Special Technological Supporting Solutions. International Journal of Pharmaceutical Research, Allied Sciences, 7(1), 103-113.
|