1. Ahrens, C.W., Supple, M.A., Aitken, N.C., Cantrill, D.J., Borevitz, J.O., James, E.A. (2017). Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain. Annals of Botany, 119(8), 1267-1277. [ DOI:10.1093/aob/mcx022] 2. Bagheri, H., Saki, S. (2017). Requirements and guidelines for the preservation of genetic resources of ornamental plants in Iran. Journal of Flower and Ornamental Plants, 1(2), 24-33 (In Persian). 3. Beissinger, T.M., Hirsch, C.N., Sekhon, R.S., Foerster, J.M., Johnson, J.M., Muttoni, G., de Leon, N. (2013). Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics, 193(4), 1073-1081. [ DOI:10.1534/genetics.112.147710] 4. Buti, M., Sargent, D.J., Mhelembe, K.G., Delfino, P., Tobutt, K.R., Velasco, R. (2016). Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC Research Notes, 9(1), 268-276. [ DOI:10.1186/s13104-016-2069-4] 5. Chen, H., Lattier, J.D., Vining, K., Contreras, R.N. (2020). Two SNP markers identified using genotyping-by-sequencing are associated with remontancy in a segregating F1 population of Syringa meyeri 'Palibin'× S. pubescens 'Penda'Bloomerang®. Journal of the American Society for Horticultural Science, 145(2), 104-109. [ DOI:10.21273/JASHS04847-20] 6. Chen, W., Hou, L., Zhang, Z., Pang, X., Li, Y. (2017). Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers. Frontiers in Plant Science, 8, 575. [ DOI:10.3389/fpls.2017.00575] 7. Davey, J.W, Hohenlohe, P.A, Etter, P.D, Boone, J.Q, Catchen, J.M. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12 (7): 499-510. [ DOI:10.1038/nrg3012] 8. Deschamps, S., Llaca, V., May, G.D. Genotyping-by-sequencing in plants. (2012). Biology. 1(3), 460-483. [ DOI:10.3390/biology1030460] 9. Elshire, R.J. Glaubits, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, S.E. (2011). A robust, simple genotyping by sequencing approach for high diversity species. PLoSONE, 6(5), e19379. [ DOI:10.1371/journal.pone.0019379] 10. Fu, Y.B., Cheng, B., Peterson, G.W. (2014). Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genetic Resources and Crop Evolution, 61(3), 579-594 [ DOI:10.1007/s10722-013-0058-1] 11. Gladfelter, H.J., Yadav, L.K., Merkle, S.A., Wilde, H.D. (2020). Genetic diversity and population structure analysis of Franklinia alatamaha, a tree species existing only in cultivation. Tree Genetics & Genomes, 16(4), 1-9. [ DOI:10.1007/s11295-020-01455-x] 12. Guo, Y., Lin, W.K., Chen, Q., Vallejo, V.A., Warner, R.M. (2017). Genetic determinants of crop timing and quality traits in two interspecific Petunia recombinant inbred line populations. Scientific Reports, 7(1), 1-12 [ DOI:10.1038/s41598-017-03528-9] 13. Hadizadeh, H., Bahri, B.A., Qi, P., Wilde, H.D., Devos, K.M. (2020). Intra-and interspecific diversity analyses in the genus Eremurus in Iran using genotyping-by-sequencing reveal geographic population structure. Horticulture Research, 7(1), 1-13. [ DOI:10.1038/s41438-020-0265-9] 14. Hasing, T., Rinaldi, E., Manrique, S., Colombo, L., Haak, D., Zaitlin, D., Bobarely, A. (2019). Extensive phenotypic diversity in the cultivated Florist's Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder population. Plants, People, Planet Journal, 1 (4), 363-374. [ DOI:10.1002/ppp3.10065] 15. He, J., Zhao, X., Laroche, A., Lu, Zh., Liu, H., Li., Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science, 5, 484 [ DOI:10.3389/fpls.2014.00484] 16. Heo, M.S., Han, K., Kwon, J.K., Kang, B.C. (2017). Development of SNP markers using genotyping-by sequencing for cultivar identification in rose (Rosa hybrida). Horticulture, Environment, and Biotechnology, 58(3), 292-302. [ DOI:10.1007/s13580-017-0268-0] 17. Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z., Costich, D.E., Buckler, E.S. (2009). Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell, 21(8), 2194-2202. [ DOI:10.1105/tpc.109.068437] 18. Novembre, J. (2014). Variations on a common STRUCTURE: new algorithms for a valuable model. Genetics, 197(3), 809-811. [ DOI:10.1534/genetics.114.166264] 19. Pais, A.L., Whetten, R.W., Xiang, Q.J. (2016). Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing. Ecology and Evolution, 7(1): 441-465. [ DOI:10.1002/ece3.2623] 20. Peterson, G.W., Dong, Y., Horbach, C., Fu, Y.B. (2014). Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity, 6(4), 665-680. [ DOI:10.3390/d6040665] 21. Poland, J.A., Rife, T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 5: 92-102. [ DOI:10.3835/plantgenome2012.05.0005] 22. Qi, P., Gimode, D., Saha, D., Schröder, S., Chakraborty, D., Wang, X., Devos, K.M. (2018). UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study. BMC Plant Biology, 18(1), 1-19. [ DOI:10.1186/s12870-018-1316-3] 23. Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O'Shaughnessy, A.L., Nascimento, L.U., McCombie, W.R., Martienssen, R.A. (2005). Differential methylation of genes and repeats in land plants. Genome Research, 15, 1431-1440. [ DOI:10.1101/gr.4100405] 24. Rafalski, J.A. (2010). Association genetics in crop improvement. Current Opinion in Plant Biology, 13(2), 174-180. [ DOI:10.1016/j.pbi.2009.12.004] 25. Ryu, J., Kim, W. J., Im, J., Kang, K.W., Kim, S.H., Jo, Y.D., Ha, B.K. (2019). Single nucleotide polymorphism (SNP) discovery through genotyping-by-sequencing (GBS) and genetic characterization of Dendrobium mutants and cultivars. Scientia Horticulturae, 244, 225-233. [ DOI:10.1016/j.scienta.2018.09.053] 26. Smulders, M.J., Arens, P. (2018). New Developments in Molecular Techniques for Breeding in Ornamentals. In Ornamental Crops. Johan Van Huylenbroeck. (pp. 213-230). Springer, Cham. [ DOI:10.1007/978-3-319-90698-0_9] 27. Tamaki, I., Yoichi, W., Matsuki, Y., Suyama, Y., Mizuno, M. (2017). Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics & Genomes, 13(1), 1-10. [ DOI:10.1007/s11295-016-1084-x] 28. Tränkner, C., Krüger, J., Wanke, S., Naumann, J., Wenke, T., Engel, F. (2019). Rapid identification of inflorescence type markers by genotyping-by-sequencing of diploid and triploid F 1 plants of Hydrangea macrophylla. BMC Genetics, 20(1), 1-12. [ DOI:10.1186/s12863-019-0764-6] 29. Wu, X., Alexander, L. (2019). Genetic diversity and population structure analysis of Bigleaf Hydrangea using genotyping by sequencing. Journal of the American Society for Horticultural Science, 144 (4), 257-263 [ DOI:10.21273/JASHS04683-19] 30. Wu, X., Alexander, L.W. (2020). Genome-wide association studies for inflorescence type and remontancy in Hydrangea macrophylla. Horticulture Research, 7(1), 1-9. [ DOI:10.1038/s41438-020-0255-y] 31. Yadav, L.K., McAssey, E.V., Wilde, H.D. (2019). Genetic diversity and population structure of Rhododendron canescens, a native Azalea for urban landscaping. HortScience, 54(4), 647-651. [ DOI:10.21273/HORTSCI13840-18] 32. Yagi, M. (2015). Recent progress in genomic analysis of ornamental plants, with a focus on carnation. The Horticulture Journal, 84(1), 3-13. [ DOI:10.2503/hortj.MI-IR01] 33. Yan, M. Byrne, David, H. Klein, P., Yang, J., Dong, Q. (2018). Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map. Horticulture Research, 5(17), 1-14. [ DOI:10.1038/s41438-018-0021-6] 34. Yoichi, W., Kawamata, I., Matsuki, Y., Suyama, Y., Uehara, K., Ito, M. (2018). Phylogeographic analysis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity, 121(6), 594-604. [ DOI:10.1038/s41437-018-0064-3] 35. Zhang, L., Guo, D., Guo, L., Guo, Q., Wang, H., Hou, X. (2019). Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii 'Fengdan Bai'and P. suffruticosa 'Xin Riyuejin'. Scientia Horticulturae, 246, 190-200. [ DOI:10.1016/j.scienta.2018.10.039] 36. • Ahrens, C. W., Supple, M. A., Aitken, N. C., Cantrill, D. J., Borevitz, J. O., & James, E. A. (2017). Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain. Annals of botany, 119(8), 1267-1277. [ DOI:10.1093/aob/mcx022] 37. • Buti, M., Sargent, D. J., Mhelembe, K. G., Delfino, P., Tobutt, K. R., & Velasco, R. (2016). Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC research notes, 9(1), 268-276. [ DOI:10.1186/s13104-016-2069-4] 38. • Chen, H., Lattier, J. D., Vining, K., & Contreras, R. N. (2020). Two SNP Markers Identified Using Genotyping-by-Sequencing Are Associated with Remontancy in a Segregating F1 Population of Syringa meyeri 'Palibin'× S. pubescens 'Penda'Bloomerang®. . Journal of the American Society for Horticultural Science, 145(2), 104-109. [ DOI:10.21273/JASHS04847-20] 39. • Davey, J.W, Hohenlohe, P.A, Etter, P.D, Boone, J.Q, Catchen, J. M. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics. 12 (7): 499-510. [ DOI:10.1038/nrg3012] 40. • Deschamps, S., Llaca, V. & May, G. D. Genotyping-by-Sequencing in Plants. (2012). Biology. 1(3), 460-483. [ DOI:10.3390/biology1030460] 41. • Elshire, R. J. Glaubits, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S. and Mitchell, S. E. (2011). A robust, simple genotyping by sequencing approach for high diversity species. PLoSONE. 6 (5), e19379. [ DOI:10.1371/journal.pone.0019379] 42. • Gladfelter, H. J., Yadav, L. K., Merkle, S. A., & Wilde, H. D. (2020). Genetic diversity and population structure analysis of Franklinia alatamaha, a tree species existing only in cultivation. Tree Genetics & Genomes, 16(4), 1-9. [ DOI:10.1007/s11295-020-01455-x] 43. • Guo, Y., Lin, W. K., Chen, Q., Vallejo, V. A., & Warner, R. M. (2017). Genetic determinants of crop timing and quality traits in two interspecific Petunia recombinant inbred line populations. Scientific reports, 7(1), 1-12 [ DOI:10.1038/s41598-017-03528-9] 44. • Hadizadeh, H., Bahri, B. A., Qi, P., Wilde, H. D., & Devos, K. M. (2020). Intra-and interspecific diversity analyses in the genus Eremurus in Iran using genotyping-by-sequencing reveal geographic population structure. Horticulture research, 7(1), 1-13. [ DOI:10.1038/s41438-020-0265-9] 45. • Hasing, T., Rinaldi, E., Manrique, S., Colombo, L., Haak, D., Zaitlin, D. and Bobarely, A. (2019). Extensive phenotypic diversity in the cultivated Florist's Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder population. Plants, People, Planet journal.1 (4), 363-374. [ DOI:10.1002/ppp3.10065] 46. • He, J., Zhao, X., Laroche, A., Lu, Zh., Liu, H., and Li., Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in plant science. 5: 484 [ DOI:10.3389/fpls.2014.00484] 47. • Heo, M.S., Han, K., Kwon, J.K., & Kang, B.C. (2017). Development of SNP markers using genotyping-by sequencing for cultivar identification in rose (Rosa hybrida). Horticulture, Environment, and Biotechnology, 58(3), 292-302. [ DOI:10.1007/s13580-017-0268-0] 48. • Pais, A. L., Whetten, R. W., & Xiang, Q. J. (2016). Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing. Ecology and Evolution. 7(1): 441-465. [ DOI:10.1002/ece3.2623] 49. • Poland, J. A. and Rife, T. W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant genome. 5: 92-102. [ DOI:10.3835/plantgenome2012.05.0005] 50. • Rabinowicz, P. D., Citek, R., Budiman, M. A., Nunberg, A., Bedell, J. A., Lakey, N., O'Shaughnessy, A. L., Nascimento, L. U., McCombie, W. R., Martienssen, R. A. (2005). Differential methylation of genes and repeats in land plants. Genome Research.15: 1431-1440. [ DOI:10.1101/gr.4100405] 51. • Ryu, J., Kim, W. J., Im, J., Kang, K. W., Kim, S. H., Jo, Y. D., ... & Ha, B. K. (2019). Single nucleotide polymorphism (SNP) discovery through genotyping-by-sequencing (GBS) and genetic characterization of Dendrobium mutants and cultivars. Scientia Horticulturae, 244, 225-233. [ DOI:10.1016/j.scienta.2018.09.053] 52. • Smulders, M. J., & Arens, P. (2018). New developments in molecular techniques for breeding in ornamentals. In Ornamental Crops (pp. 213-230). Springer, Cham. [ DOI:10.1007/978-3-319-90698-0_9] 53. • Tamaki, I., Yoichi, W., Matsuki, Y., Suyama, Y., & Mizuno, M. (2017). Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics & Genomes, 13(1), 1-10. [ DOI:10.1007/s11295-016-1084-x] 54. • Tränkner, C., Krüger, J., Wanke, S., Naumann, J., Wenke, T., & Engel, F. (2019). Rapid identification of inflorescence type markers by genotyping-by-sequencing of diploid and triploid F 1 plants of Hydrangea macrophylla. BMC genetics, 20(1), 1-12. [ DOI:10.1186/s12863-019-0764-6] 55. • Wu, X and Alexander, L. (2019). Genetic diversity and population structure analysis of Bigleaf Hydrangea using genotypinf by sequencing. Journal of the American society for horticultural science. 144 (4). 257-263 [ DOI:10.21273/JASHS04683-19] 56. • Wu, X., & Alexander, L. W. (2020). Genome-wide association studies for inflorescence type and remontancy in Hydrangea macrophylla. Horticulture research, 7(1), 1-9. [ DOI:10.1038/s41438-020-0255-y] 57. • Yadav, L. K., McAssey, E. V., & Wilde, H. D. (2019). Genetic Diversity and Population Structure of Rhododendron canescens, a Native Azalea for Urban Landscaping. HortScience, 54(4), 647-651. [ DOI:10.21273/HORTSCI13840-18] 58. • Yagi, M. (2015). Recent progress in genomic analysis of ornamental plants, with a focus on carnation. The Horticulture Journal, 84(1), 3-13. [ DOI:10.2503/hortj.MI-IR01] 59. • Yan, M. Byrne, David, H. Klein, P., Yang, J., Dong, Q. (2018). Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map. Horticulture Research. 5(17), 1-14. [ DOI:10.1038/s41438-018-0021-6] 60. • Yoichi, W., Kawamata, I., Matsuki, Y., Suyama, Y., Uehara, K., & Ito, M. (2018). Phylogeographic analysis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity, 121(6), 594-604. [ DOI:10.1038/s41437-018-0064-3] 61. • Zhang, L., Guo, D., Guo, L., Guo, Q., Wang, H., & Hou, X. (2019). Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii 'Fengdan Bai'and P. suffruticosa 'Xin Riyuejin'. Scientia Horticulturae, 246, 190-200. [ DOI:10.1016/j.scienta.2018.10.039]
|