[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
:: دوره 6، شماره 1 - ( بهار و تابستان 1400 ) ::
جلد 6 شماره 1 صفحات 48-37 برگشت به فهرست نسخه ها
CRISPR/Cas ، ابزار قدرتمند دستورزی ژنوم در گیاهان زینتی
مصطفی خوشحال سرمست
دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (319 مشاهده)
زیست‌‌فناوری ابزاری مناسب برای بهنژادی ویژگی‌هایی مانند اندازه، رنگ و عطر گل همچنین مقاومت به بیماری و بهبود عمر گلجایی گیاهان زینتی است. با تکمیل توالی‌‌یابی ژنوم بسیاری از گیاهان زینتی و پیشرفت‌‌های چشمگیر به‌دست آمده در ویرایش جایگاه اختصاصی در ژنوم، روند ایجاد گوناگونی لازم برای بهنژادی بسیاری از گیاهان زینتی تسریع خواهد شد. امروزه فناوری کریسپر Cas به دلیل آسانی چشمگیر در انجام، هزینه پایین و دسترسی آسان، گوی سبقت را از دیگر فناوری‌‌های ویرایش ژنوم از جمله نوکلئاز انگشت روی، عملگرهای شبه فعال کننده رونویسی، مگانوکلئازها و غیره ربوده است. کریسپر Cas در واقع نوعی سیستم ایمنی اکتسابی در آرکیا و برخی باکتری‌‌ها است که در پاسخ به ورود ماده ژنتیکی موجود مهاجم به درون یاخته‌، با ساخت رونوشت‌‌های کوچک مکمل، توالی موجود مهاجم را رهگیری و به کمک پروتئین نوکلئازی Cas، DNA هدف را غیر‌‌فعال می‌‌کند. مهمترین دستاورد این فناوری در گیاهان زینتی تاکنون در رابطه با غیر فعال نمودن ژن‌‌های کارا در فرایندهای نموی و همچنین تغییر میزان آنتوسیانین گلبرگ اطلسی، تورنیا، گل کوشاد، ارکید و نیلوفر بوده است. با پیشرفت و بهینه‌‌سازی بیشتر این روش به زودی شاهد دگرگونی­های زیادی در بهنژادی ویژگی‌های مقاومت به تنش‌‌های زیوا (زیستی) نیز خواهیم بود.
واژه‌های کلیدی: آنتوسیانین، آنزیم Cas9، موتیف مجاور فاصله‌‌انداز اولیه، RNA راهنما
متن کامل [PDF 1278 kb]   (116 دریافت)    
نوع مطالعه: گزارش مورد | موضوع مقاله: تخصصي
دریافت: 1399/9/17 | پذیرش: 1400/5/3 | انتشار: 1400/11/5
فهرست منابع
1. Ahn, C.H., Ramya, M., An, H.R., Park, P.M., Kim, Y-J., Lee, S.Y., Jang, S. (2020). Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, doi:10.3390/plants9060687. [DOI:10.3390/plants9060687]
2. Barrangou, R., van der Oost, J. (2013). CRISPR-Cas Systems RNA-Mediated Adaptive Immunity in Bacteria and Archaea. Springer Heidelberg New York Dordrecht London. 229 p. [DOI:10.1007/978-3-642-34657-6]
3. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [DOI:10.1099/mic.0.28048-0]
4. Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P. (2008). Phage response to CRISPR-encoded resistance in Streptococcus hermophiles. Journal of Bacteriology, 190, 1390-1400. [DOI:10.1128/JB.01412-07]
5. Doudna, J.A., Charpentier, E. (2014). Genome editing, The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. [DOI:10.1126/science.1258096]
6. Ebina, H., Misawa, N., Kanemura, Y., Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Report, 3, 2510. [DOI:10.1038/srep02510]
7. Gelvin S.B. (2003). Improving plant genetic engineering by manipulation the host. Nature, 21, 95-98. [DOI:10.1016/S0167-7799(03)00005-2]
8. Giovannini, A., Laura, M., Nesi, B., Savona, M., Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40, 461-478. [DOI:10.1007/s00299-020-02632-x]
9. Hahne, G., Tomlinson, L., Nogué, F. (2019). Precision genetic engineering tools for next-generation plant breeding. Plant Cell Reports, 38, 435-436. [DOI:10.1007/s00299-019-02400-6]
10. Hischler, J., Bürstmayr, H., Stoger, E. (2016). Targeted modification of plant genomes for precision crop breeding. Ciotechnology Journal, 11, 1-14. [DOI:10.1002/biot.201600173]
11. Kishi-Kaboshi, M., Aida, R., Sasaki, K. (2017). Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58, 216-226. [DOI:10.1093/pcp/pcw222]
12. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J. (2017). Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium ocinale. Frontiers in Plant Science, 7, 2036. [DOI:10.3389/fpls.2016.02036]
13. Ma, X., Zhu, Q., Chen, Y., Liu, Y.G. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 9, 961-974. [DOI:10.1016/j.molp.2016.04.009]
14. Mali, P., Aach, J.P., Stranges, B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, l., Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838. [DOI:10.1038/nbt.2675]
15. Mendenhall, E.M., Williamson, K.E., Reyon, D. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31, 1133-1136. [DOI:10.1038/nbt.2701]
16. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182. [DOI:10.1007/s00239-004-0046-3]
17. Montague, T., Cruz, G.J.M., Gagnon, J.A., Church, G.M., Valen, E. (2014). CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42, 401-407. [DOI:10.1093/nar/gku410]
18. Nishihara, M., Higuchi, A., Watanabe, A., Tasaki, K. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 331. [DOI:10.1186/s12870-018-1539-3]
19. Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology, 151, 653-663 [DOI:10.1099/mic.0.27437-0]
20. Sarmast, M.K. Janati, M. (2019). Advances in New Technology for Targeted Modification of Plant Genomes. Gorgan Universitu of Agricultural Sciences and Natural Resources Publication. 216p. (In Persian).
21. Sarmast, M.K. (2019). Transient expression-based CRISPR/Cas9 system for manipulation of tall fescue SGR gene. Journal of Plant Production Research, 56, 35-43 (In Persian).
22. Sarmast, M.K. (2020). Principles and Application of CRISPR/Cas Technology in Genetic Modification of Plants. Gorgan University of Agricultural Sciences and Natural Resources Publication. 124p. (In Persian).
23. Shen, B., Zhang, W.S., Zhang, J., Zhou, J.K., Wang, J.Y., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X.X., Skarens, W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 11, 399-402. [DOI:10.1038/nmeth.2857]
24. Shibuya, K., Watanabeb, K., Ono, M. (2018). CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that 1 regulates petal 2 senescence in Japanese morning glory. Plant Physiology and Biochemistry, 131, 53-57. [DOI:10.1016/j.plaphy.2018.04.036]
25. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., Lee, G.J. (2016). Site-directed mutagenesis in Petunia hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 35, 1535-1544. [DOI:10.1007/s00299-016-1937-7]
26. Sun, L., Kao, T.H. (2018). CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction, 31, 129-143. [DOI:10.1007/s00497-017-0314-1]
27. Tasaki, K., Higuchi, A., Watanabe, A., Sasaki, N., Nishihara, M. (2019). Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports, 9, 15831. [DOI:10.1038/s41598-019-51808-3]
28. Tasaki, T., Yoshida, M., Nakajim, M., Higuchi, A., Watanabe, A., Nishihara, M. (2020). Molecular characterization of an anthocyanin-related glutathione Stransferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology, 20, 370. [DOI:10.1186/s12870-020-02565-3]
29. Tong, C.G., Wu, F.H., Yuan, Y.H., Chen, Y.R., Lin, C.S. (2020). High efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal, 18, 889-891. [DOI:10.1111/pbi.13264]
30. Vainstein, A. (2002). Breeding for Ornamentals: Classical and Molecular Approaches. Springer. 392p. [DOI:10.1007/978-94-017-0956-9]
31. Watanabe, K., Kobayashi, A., Endo, M., Sage-Ono, K., Toki, S., Ono, M. (2017). CRISPR/Cas9-mediated mutagenesis of the dihydrofavonol4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Report, 7, 10028. [DOI:10.1038/s41598-017-10715-1]
32. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., Ono, M. (2018). Alteration of flower color in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25-38. [DOI:10.1007/s11248-017-0051-0]
33. Wei, Q., Guo, Y., Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Report, 30, 1201-1207. [DOI:10.1007/s00299-011-1028-8]
34. Xu, J., Hua, K., Lang, Z. (2019). Genome editing for horticultural crop improvement. Horticulture Research, 6, 113. [DOI:10.1038/s41438-019-0196-5]
35. Xu, J., Kang, B.C., Naing, A.H., Bae, S.J., Kim, J.S., Kim, H., Kim, C.K. (2020). CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal, 18, 287-297. [DOI:10.1111/pbi.13197]
36. Yan, R., Wang, Z., Ren, Y., Li, H., Liu, N., Sun, H. (2019). Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Science, 20, 2920. [DOI:10.3390/ijms20122920]
37. Yu, J., Tu, L., Subburaj, S., Bae, S., Lee, G-J. (2020). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR‑Cas9 ribonucleoproteins. Plant Cell Reports, https://doi.org/10.1007/s00299-020-02593-1 [DOI:10.1007/s00299-020-02593-1.]
38. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J.L., Oost, J.V.D., Regev, A., Koonin, E.V., Zhang, F. (2015). Cpf1 is a single RNA-guide endonuclease of a class 2 CRISPRran-Cas system. Cell, 163, 1-13. [DOI:10.1016/j.cell.2015.09.038]
39. Zhang, B., Yang, X., Yang, C., Li, M., Guo, Y. (2016). Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Scientific Reports, 6, 20315. [DOI:10.1038/srep20315]
40. Zhang, F., Puchta, H., Thomson, J.G. (2015). Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York. 166p. [DOI:10.1007/978-1-4939-2556-8]
41. Ahn, C.H., Ramya, M., An, H.R., Park, P.M., Kim, Y-J., Lee, S.Y., Jang, S. (2020). Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, doi:10.3390/plants9060687. [DOI:10.3390/plants9060687]
42. Barrangou, R., van der Oost, J. (2013). CRISPR-Cas Systems RNA-Mediated Adaptive Immunity in Bacteria and Archaea. Springer Heidelberg New York Dordrecht London. 229 p. [DOI:10.1007/978-3-642-34657-6]
43. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561. [DOI:10.1099/mic.0.28048-0]
44. Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P. (2008). Phage response to CRISPR-encoded resistance in Streptococcus hermophiles. Journal of Bacteriology, 190, 1390-1400. [DOI:10.1128/JB.01412-07]
45. Doudna, J.A., Charpentier, E. (2014). Genome editing, The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096. [DOI:10.1126/science.1258096]
46. Ebina, H., Misawa, N., Kanemura, Y., Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Report, 3, 2510. [DOI:10.1038/srep02510]
47. Gelvin S.B. (2003). Improving plant genetic engineering by manipulation the host. Nature, 21, 95-98. [DOI:10.1016/S0167-7799(03)00005-2]
48. Giovannini, A., Laura, M., Nesi, B., Savona, M., Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40, 461-478. [DOI:10.1007/s00299-020-02632-x]
49. Hahne, G., Tomlinson, L., Nogué, F. (2019). Precision genetic engineering tools for next-generation plant breeding. Plant Cell Reports, 38, 435-436. [DOI:10.1007/s00299-019-02400-6]
50. Hischler, J., Bürstmayr, H., Stoger, E. (2016). Targeted modification of plant genomes for precision crop breeding. Ciotechnology Journal, 11, 1-14. [DOI:10.1002/biot.201600173]
51. Kishi-Kaboshi, M., Aida, R., Sasaki, K. (2017). Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58, 216-226. [DOI:10.1093/pcp/pcw222]
52. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J. (2017). Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium ocinale. Frontiers in Plant Science, 7, 2036. [DOI:10.3389/fpls.2016.02036]
53. Ma, X., Zhu, Q., Chen, Y., Liu, Y.G. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 9, 961-974. [DOI:10.1016/j.molp.2016.04.009]
54. Mali, P., Aach, J.P., Stranges, B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, l., Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838. [DOI:10.1038/nbt.2675]
55. Mendenhall, E.M., Williamson, K.E., Reyon, D. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31, 1133-1136. [DOI:10.1038/nbt.2701]
56. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182. [DOI:10.1007/s00239-004-0046-3]
57. Montague, T., Cruz, G.J.M., Gagnon, J.A., Church, G.M., Valen, E. (2014). CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42, 401-407. [DOI:10.1093/nar/gku410]
58. Nishihara, M., Higuchi, A., Watanabe, A., Tasaki, K. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 331. [DOI:10.1186/s12870-018-1539-3]
59. Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology, 151, 653-663 [DOI:10.1099/mic.0.27437-0]
60. Sarmast, M.K. Janati, M. (2019). Advances in New Technology for Targeted Modification of Plant Genomes. Gorgan Universitu of Agricultural Sciences and Natural Resources Publication. 216p. (In Persian).
61. Sarmast, M.K. (2019). Transient expression-based CRISPR/Cas9 system for manipulation of tall fescue SGR gene. Journal of Plant Production Research, 56, 35-43 (In Persian).
62. Sarmast, M.K. (2020). Principles and Application of CRISPR/Cas Technology in Genetic Modification of Plants. Gorgan University of Agricultural Sciences and Natural Resources Publication. 124p. (In Persian).
63. Shen, B., Zhang, W.S., Zhang, J., Zhou, J.K., Wang, J.Y., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X.X., Skarens, W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 11, 399-402. [DOI:10.1038/nmeth.2857]
64. Shibuya, K., Watanabeb, K., Ono, M. (2018). CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that 1 regulates petal 2 senescence in Japanese morning glory. Plant Physiology and Biochemistry, 131, 53-57. [DOI:10.1016/j.plaphy.2018.04.036]
65. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., Lee, G.J. (2016). Site-directed mutagenesis in Petunia hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 35, 1535-1544. [DOI:10.1007/s00299-016-1937-7]
66. Sun, L., Kao, T.H. (2018). CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction, 31, 129-143. [DOI:10.1007/s00497-017-0314-1]
67. Tasaki, K., Higuchi, A., Watanabe, A., Sasaki, N., Nishihara, M. (2019). Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports, 9, 15831. [DOI:10.1038/s41598-019-51808-3]
68. Tasaki, T., Yoshida, M., Nakajim, M., Higuchi, A., Watanabe, A., Nishihara, M. (2020). Molecular characterization of an anthocyanin-related glutathione Stransferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology, 20, 370. [DOI:10.1186/s12870-020-02565-3]
69. Tong, C.G., Wu, F.H., Yuan, Y.H., Chen, Y.R., Lin, C.S. (2020). High efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal, 18, 889-891. [DOI:10.1111/pbi.13264]
70. Vainstein, A. (2002). Breeding for Ornamentals: Classical and Molecular Approaches. Springer. 392p. [DOI:10.1007/978-94-017-0956-9]
71. Watanabe, K., Kobayashi, A., Endo, M., Sage-Ono, K., Toki, S., Ono, M. (2017). CRISPR/Cas9-mediated mutagenesis of the dihydrofavonol4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Report, 7, 10028. [DOI:10.1038/s41598-017-10715-1]
72. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., Ono, M. (2018). Alteration of flower color in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25-38. [DOI:10.1007/s11248-017-0051-0]
73. Wei, Q., Guo, Y., Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Report, 30, 1201-1207. [DOI:10.1007/s00299-011-1028-8]
74. Xu, J., Hua, K., Lang, Z. (2019). Genome editing for horticultural crop improvement. Horticulture Research, 6, 113. [DOI:10.1038/s41438-019-0196-5]
75. Xu, J., Kang, B.C., Naing, A.H., Bae, S.J., Kim, J.S., Kim, H., Kim, C.K. (2020). CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal, 18, 287-297. [DOI:10.1111/pbi.13197]
76. Yan, R., Wang, Z., Ren, Y., Li, H., Liu, N., Sun, H. (2019). Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Science, 20, 2920. [DOI:10.3390/ijms20122920]
77. Yu, J., Tu, L., Subburaj, S., Bae, S., Lee, G-J. (2020). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR‑Cas9 ribonucleoproteins. Plant Cell Reports, https://doi.org/10.1007/s00299-020-02593-1 [DOI:10.1007/s00299-020-02593-1.]
78. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J.L., Oost, J.V.D., Regev, A., Koonin, E.V., Zhang, F. (2015). Cpf1 is a single RNA-guide endonuclease of a class 2 CRISPRran-Cas system. Cell, 163, 1-13. [DOI:10.1016/j.cell.2015.09.038]
79. Zhang, B., Yang, X., Yang, C., Li, M., Guo, Y. (2016). Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Scientific Reports, 6, 20315. [DOI:10.1038/srep20315]
80. Zhang, F., Puchta, H., Thomson, J.G. (2015). Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York. 166p. [DOI:10.1007/978-1-4939-2556-8]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

K. Sarmast M. CRISPR/Cas, a powerful tool for genome editing in ornamental plants. FOP. 2021; 6 (1) :37-48
URL: http://flowerjournal.ir/article-1-182-fa.html

خوشحال سرمست مصطفی. CRISPR/Cas ، ابزار قدرتمند دستورزی ژنوم در گیاهان زینتی. گل و گیاهان زینتی. 1400; 6 (1) :48-37

URL: http://flowerjournal.ir/article-1-182-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 6، شماره 1 - ( بهار و تابستان 1400 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4410