[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 2 (Fall & Winter 2024) ::
FOP 2024, 9(2): 253-262 Back to browse issues page
Effects of different levels of benzyl adenine on in vitro regeneration and growth of Venus flytrap (Dionaea muscipula Ellis.)
Manijhe Eslami , Mahnaz Karimi * , Hossein Moradi
Sari Agricultural Sciences and Natural Resources University
Abstract:   (1934 Views)
The Venus flytraps (Dionaea muscipula Ellis.) is an endangered ornamental plant, which little study has been done on its micropropagation. Cytokinins are a group of plant growth hormones that stimulate cell division, cell differentiation, stem initiation and reproductive growth in many plants. In this group, there are different types of cytokinins that can affect the physiology, growth and development of plants. Benzyl adenine is the adenine type of this group. The aim of this study was to investigate the effect of different concentrations of benzyl adenine on the regeneration and growth of Venus flytrap.
For this purpose, an experiment was conducted as a completely randomized design with 3 replications. Seedlings were grown in Murashig and Skoog culture medium with different concentrations of benzyl adenine (0.1, 0.3 and 0.5 mg/l). According to the obtained results, the effect of different concentrations of benzyl adenine on the rooting index and the number of roots was significant at the level of one percent probability and on the regeneration index, the number of leaves and the number of embryos at the level of five percent probability. The highest rooting index with 99.97% was in the concentration of 0.1 mg/l of benzyl adenine and the lowest was related to the concentration of 0.3 mg/l. The highest chlorophyll b, total chlorophyll and carotenoids were recorded in the concentration of 0.1 mg/liter of benzyl adenine. The highest ratio of chlorophyll a/b was obtained at a concentration of 0.5 mg/l of benzyl adenine. According to the results of the present study, the concentration of 0.1 mg/l of benzyl adenine has a significant effect compared to two concentrations of 0.3 and 0.5 mg/l on regeneration index, rooting index, number of roots and chlorophyll and carotenoid content. 

 
Keywords: Cytokinin, Tissue Culture, Chlorophyll, Ornamental plant
Full-Text [PDF 618 kb]   (434 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2024/05/19 | Accepted: 2024/10/18 | Published: 2025/02/26
References
1. AL-Bakkar, A. H. A.-Q. (2022). Effect of benzyl adenine on the vegetative and root growth of seedling of Myrtus communis L.:A Review. British Journal of Global Ecology and Sustainable Development, 7, 19-27.
2. Arli, N. M., & Noli, Z. A. (2024). Shoot induction of Dendrobium lasianthera JJ smith with several types of cytokinins through in vitro culture. http://dx.doi.org/10.29303/jppipa.v10i4.5324 [DOI:10.29303/jppipa.v10i4.5324]
3. Bayhan, N., & Yücesan, B. (2024). The impact of sucrose and 6-benzylaminopurine on shoot propagation and vitrification in Aronia melanocarpa (black chokeberry). Plant Cell, Tissue and Organ Culture (PCTOC), 156(2), 55. [DOI:10.1007/s11240-023-02652-x]
4. Bergman, C. M. (2017). The Vascular Flora of Lee County, Texas. Lundellia, 20(1), 60-114. [DOI:10.25224/1097-993X-20.1.60]
5. Burr, C. A., Sun, J., Yamburenko, M. V., Willoughby, A., Hodgens, C., Boeshore, S. L., Elmore, A., Atkinson, J., Nimchuk, Z. L., & Bishopp, A. (2020). The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development, 147(20), dev191734. [DOI:10.1242/dev.191734]
6. Darwin, C., & Darwin, F. (1888). Insectivorous plants. J. Murray. 378p. [DOI:10.5962/bhl.title.56070]
7. Dakah, A., Zaid, S., Suleiman, M., Abbas, S., & Wink, M. (2014). In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity. Saudi Journal of Biological Sciences, 21(4), 317-323. [DOI:10.1016/j.sjbs.2013.12.002]
8. Dewir, Y. H., Murthy, H. N., Ammar, M. H., Alghamdi, S. S., Al-Suhaibani, N. A., Alsadon, A. A., & Paek, K. Y. (2016). In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Horticulture, Environment, and Biotechnology, 57, 311-322. [DOI:10.1007/s13580-016-0060-6]
9. Dobránszki, J., & Mendler-Drienyovszki, N. (2014). Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. Journal of plant physiology, 171(16), 1472-1478. [DOI:10.1016/j.jplph.2014.06.015]
11. Ellison, A. M., & Gotelli, N. J. (2009). Energetics and the evolution of carnivorous plants-Darwin's 'most wonderful plants in the world'. Journal of experimental botany, 60(1), 19-42. [DOI:10.1093/jxb/ern179]
12. García-Ramírez, Y. (2024). Morphological and physiological responses of proliferating shoots of bamboo to cytokinin. Vegetos, 37(1), 6-15. [DOI:10.1007/s42535-023-00593-6]
13. Gentile, A., Frattarelli, A., Nota, P., Condello, E., & Caboni, E. (2017). The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 693-703. [DOI:10.1007/s11240-016-1150-y]
14. Horner, J. D., Hodcroft, E. B., Hale, A. M., & Williams, D. A. (2014). Clonality, genetic variation, and the origin of isolated western populations of the carnivorous plant, Sarracenia alata1. The Journal of the Torrey Botanical Society, 141(4), 326-337. [DOI:10.3159/TORREY-D-13-00080.1]
15. Jain, S. M. (2010). Protocols for in vitro propagation of ornamental plants. Springer. 396p. [DOI:10.1007/978-1-60327-114-1]
16. kaviani, b., & ghaffari, s. (2016). The effect of different concentrations of kinetin and naphthalene acetic acid on micropropagation of Lisianthus (Eustoma grandiflorum). Journal of Plant Research (Iranian Journal of Biology), 28(5), 1088-1096. (In Persian).
17. Khajehyar, R., Tripepi, R., Love, S., & Price, W. J. (2024). Optimization of tissue culture medium for little-leaf mockorange (Philadelphus microphyllus A. Gray) by adjusting cytokinin and selected mineral components. HortScience, 59(1), 18-25. [DOI:10.21273/HORTSCI17440-23]
18. Kudo, T., Kiba, T., & Sakakibara, H. (2010). Metabolism and long‐distance translocation of cytokinins. Journal of integrative plant biology, 52(1), 53-60. [DOI:10.1111/j.1744-7909.2010.00898.x]
19. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Elsevier. [DOI:10.1016/0076-6879(87)48036-1]
20. Martins, J., Santos, E., Rodrigues, L., Gontijo, A., & Falqueto, A. (2018). Effects of 6-benzylaminopurine on photosystem II functionality and leaf anatomy of in vitro cultivated Aechmea blanchetiana. Biologia Plantarum, 62, 793-800. [DOI:10.1007/s10535-018-0822-3]
21. Mehbub, H., Akter, A., Akter, M. A., Mandal, M. S. H., Hoque, M. A., Tuleja, M., & Mehraj, H. (2022). Tissue culture in ornamentals: cultivation factors, propagation techniques, and its application. Plants, 11(23), 3208. https://www.mdpi.com/2223-7747/11/23/3208 [DOI:10.3390/plants11233208]
22. Miandoab, l. Z., Hejazi, M. A., & Nasiri, M. (2018). The effect of cytokinin on growth and physiology of Dunaliella salina. Journal of Applied Biology, 31(1), 121-132. https://www.magiran.com/paper/1912287
23. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3). [DOI:10.1111/j.1399-3054.1962.tb08052.x]
24. Norton, M. E., & Boe, A. A. (1982). In vitro propagation of ornamental rosaceous plants1. HortScience, 17(2), 190-191. [DOI:10.21273/HORTSCI.17.2.190]
26. Pari, M., Lee, W. Q., Wong, C. K. F., & Teh, C. Y. (2024). Induction of callus culture through plant growth regulators supplementation and the effect of elicitors on enhancement of betalain synthesis using Gomphrena globosa. Plant Cell, Tissue and Organ Culture (PCTOC), 156(1), 19. [DOI:10.1007/s11240-023-02628-x]
27. Rosa, W. S., Martins, J. P. R., Rodrigues, E. S., de Almeida Rodrigues, L. C., Gontijo, A. B. P. L., & Falqueto, A. R. (2018). Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell, Tissue and Organ Culture (PCTOC),133, 339-350. [DOI:10.1007/s11240-018-1385-x]
28. Sharifi, a., keykha, f., yazdi, m., & bagheri, a. (2017). Effect of cultivar and plant growth regulators on in vitro regeneration of Lilium Spp. utilizing thin cell layer Explants. Journal Of Horticultural Science, 31(3), 555-564.
29. Šmeringai, J., Schrumpfová, P. P., & Pernisová, M. (2023). Cytokinins-regulators of de novo shoot organogenesis. Frontiers in Plant Science, 14, 1239133. [DOI:10.3389/fpls.2023.1239133]
30. Viswanath, M., Ravindra Kumar, K., Chetanchidambar, N., & Mahesh, S. (2023). Regeneration mechanisms in plant tissue culture: A. J. Pharm. Innov, 12, 2948-2952.
31. ندارد
32. AL-Bakkar, A. H. A.-Q. (2022). Effect of benzyl adenine on the vegetative and root growth of seedling of Myrtus communis L.:A Review. British Journal of Global Ecology and Sustainable Development, 7, 19-27.
33. Arli, N. M., & Noli, Z. A. (2024). Shoot induction of Dendrobium lasianthera JJ smith with several types of cytokinins through in vitro culture. http://dx.doi.org/10.29303/jppipa.v10i4.5324 [DOI:10.29303/jppipa.v10i4.5324]
34. Bayhan, N., & Yücesan, B. (2024). The impact of sucrose and 6-benzylaminopurine on shoot propagation and vitrification in Aronia melanocarpa (black chokeberry). Plant Cell, Tissue and Organ Culture (PCTOC), 156(2), 55. [DOI:10.1007/s11240-023-02652-x]
35. Bergman, C. M. (2017). The Vascular Flora of Lee County, Texas. Lundellia, 20(1), 60-114. [DOI:10.25224/1097-993X-20.1.60]
36. Burr, C. A., Sun, J., Yamburenko, M. V., Willoughby, A., Hodgens, C., Boeshore, S. L., Elmore, A., Atkinson, J., Nimchuk, Z. L., & Bishopp, A. (2020). The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development, 147(20), dev191734. [DOI:10.1242/dev.191734]
37. Darwin, C., & Darwin, F. (1888). Insectivorous plants. J. Murray. 378p. [DOI:10.5962/bhl.title.56070]
38. Dakah, A., Zaid, S., Suleiman, M., Abbas, S., & Wink, M. (2014). In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity. Saudi Journal of Biological Sciences, 21(4), 317-323. [DOI:10.1016/j.sjbs.2013.12.002]
39. Dewir, Y. H., Murthy, H. N., Ammar, M. H., Alghamdi, S. S., Al-Suhaibani, N. A., Alsadon, A. A., & Paek, K. Y. (2016). In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Horticulture, Environment, and Biotechnology, 57, 311-322. [DOI:10.1007/s13580-016-0060-6]
40. Dobránszki, J., & Mendler-Drienyovszki, N. (2014). Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. Journal of plant physiology, 171(16), 1472-1478. [DOI:10.1016/j.jplph.2014.06.015]
42. Ellison, A. M., & Gotelli, N. J. (2009). Energetics and the evolution of carnivorous plants-Darwin's 'most wonderful plants in the world'. Journal of experimental botany, 60(1), 19-42. [DOI:10.1093/jxb/ern179]
43. García-Ramírez, Y. (2024). Morphological and physiological responses of proliferating shoots of bamboo to cytokinin. Vegetos, 37(1), 6-15. [DOI:10.1007/s42535-023-00593-6]
44. Gentile, A., Frattarelli, A., Nota, P., Condello, E., & Caboni, E. (2017). The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 693-703. [DOI:10.1007/s11240-016-1150-y]
45. Horner, J. D., Hodcroft, E. B., Hale, A. M., & Williams, D. A. (2014). Clonality, genetic variation, and the origin of isolated western populations of the carnivorous plant, Sarracenia alata1. The Journal of the Torrey Botanical Society, 141(4), 326-337. [DOI:10.3159/TORREY-D-13-00080.1]
46. Jain, S. M. (2010). Protocols for in vitro propagation of ornamental plants. Springer. 396p. [DOI:10.1007/978-1-60327-114-1]
47. kaviani, b., & ghaffari, s. (2016). The effect of different concentrations of kinetin and naphthalene acetic acid on micropropagation of Lisianthus (Eustoma grandiflorum). Journal of Plant Research (Iranian Journal of Biology), 28(5), 1088-1096. (In Persian).
48. Khajehyar, R., Tripepi, R., Love, S., & Price, W. J. (2024). Optimization of tissue culture medium for little-leaf mockorange (Philadelphus microphyllus A. Gray) by adjusting cytokinin and selected mineral components. HortScience, 59(1), 18-25. [DOI:10.21273/HORTSCI17440-23]
49. Kudo, T., Kiba, T., & Sakakibara, H. (2010). Metabolism and long‐distance translocation of cytokinins. Journal of integrative plant biology, 52(1), 53-60. [DOI:10.1111/j.1744-7909.2010.00898.x]
50. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Elsevier. [DOI:10.1016/0076-6879(87)48036-1]
51. Martins, J., Santos, E., Rodrigues, L., Gontijo, A., & Falqueto, A. (2018). Effects of 6-benzylaminopurine on photosystem II functionality and leaf anatomy of in vitro cultivated Aechmea blanchetiana. Biologia Plantarum, 62, 793-800. [DOI:10.1007/s10535-018-0822-3]
52. Mehbub, H., Akter, A., Akter, M. A., Mandal, M. S. H., Hoque, M. A., Tuleja, M., & Mehraj, H. (2022). Tissue culture in ornamentals: cultivation factors, propagation techniques, and its application. Plants, 11(23), 3208. https://www.mdpi.com/2223-7747/11/23/3208 [DOI:10.3390/plants11233208]
53. Miandoab, l. Z., Hejazi, M. A., & Nasiri, M. (2018). The effect of cytokinin on growth and physiology of Dunaliella salina. Journal of Applied Biology, 31(1), 121-132. https://www.magiran.com/paper/1912287
54. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3). [DOI:10.1111/j.1399-3054.1962.tb08052.x]
55. Norton, M. E., & Boe, A. A. (1982). In vitro propagation of ornamental rosaceous plants1. HortScience, 17(2), 190-191. [DOI:10.21273/HORTSCI.17.2.190]
57. Pari, M., Lee, W. Q., Wong, C. K. F., & Teh, C. Y. (2024). Induction of callus culture through plant growth regulators supplementation and the effect of elicitors on enhancement of betalain synthesis using Gomphrena globosa. Plant Cell, Tissue and Organ Culture (PCTOC), 156(1), 19. [DOI:10.1007/s11240-023-02628-x]
58. Rosa, W. S., Martins, J. P. R., Rodrigues, E. S., de Almeida Rodrigues, L. C., Gontijo, A. B. P. L., & Falqueto, A. R. (2018). Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell, Tissue and Organ Culture (PCTOC),133, 339-350. [DOI:10.1007/s11240-018-1385-x]
59. Sharifi, a., keykha, f., yazdi, m., & bagheri, a. (2017). Effect of cultivar and plant growth regulators on in vitro regeneration of Lilium Spp. utilizing thin cell layer Explants. Journal Of Horticultural Science, 31(3), 555-564.
60. Šmeringai, J., Schrumpfová, P. P., & Pernisová, M. (2023). Cytokinins-regulators of de novo shoot organogenesis. Frontiers in Plant Science, 14, 1239133. [DOI:10.3389/fpls.2023.1239133]
61. Viswanath, M., Ravindra Kumar, K., Chetanchidambar, N., & Mahesh, S. (2023). Regeneration mechanisms in plant tissue culture: A. J. Pharm. Innov, 12, 2948-2952.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eslami M, Karimi M, Moradi H. Effects of different levels of benzyl adenine on in vitro regeneration and growth of Venus flytrap (Dionaea muscipula Ellis.). FOP 2024; 9 (2) :253-262
URL: http://flowerjournal.ir/article-1-306-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (Fall & Winter 2024) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4735