[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 6, Issue 2 (Fall and Winter 2021) ::
FOP 2021, 6(2): 147-164 Back to browse issues page
Effect of the type of inoculation medium on chimeric chitinase gene transfer to lisianthus (Eustoma grandiflorum [Raf.] Shinn) for resistance to the fungal disease Fusarium solani
Mohammad Mehdi Fakhraei , AliReza Motallebi Azar * , Hassan Salehi , Nasser Mahna , Mostafa Motallebi
University of Tabriz
Abstract:   (2699 Views)
Lisianthus is in the top ten flowers in the world and in 2017, it was the fifth largest exporter and seller of ornamental plants in the world. Resistance to fungal diseases, especially Fusarium, is one of the most important breeding objectives for lisianthus. Little work has been done on the modification of resistance to fungal diseases in this ornamental plants. Therefore, gene transfer of chimeric chitinase to lisianthus will be an important contribution to achieve this important goal. The transfer and expression of chitinase gene in plants show a high level of resistance to fungal infections and a delay in the onset of symptoms when exposed to fungal pathogens. The researchers showed that the activity of chimeric chitinase in destroying fungal walls is significantly different from that of Chit42 chitinase. The aim of this study was to achieve resistance to Fusarium solani in lisianthus by transfer of chimeric chitinase gene using Agrobacterium tumefactions. In this study, the effect of different culture media, MS, ½MS and LB, two pH values of 5.2 and 5.8 and 30 and 15 mg L-1 sucrose and 30 mg L-1 maltose in the inoculation medium were investigated. The results showed that the B treatment with MS inoculation medium containing 30 g L-1 maltose with a pH of 5.2 gave the best response in gene transfer to lisianthus and the presence of a more stringent selection medium containing 100 mg L-1 of kanamycin was superior to the other treatments with an average regeneration of 11.13 plantlets per leaflet. The results of this study show that MS medium is more efficient than LB medium for gene transfer to lisianthus. Lowering the pH and changing the carbohydrate source from sucrose to maltose in the inoculum medium increased the transformation efficiency. In this study, 471 plantlets were generated from 45 leaf explants during gene transfer of chimeric chitinase to lisianthus in a more stringent selection medium and out of 21 randomly selected plantlets and lines, 10 lines were selected by PCR and 8 lines responded positively to bioassay test. This is the first report of chimeric chitinase gene transfer in lisianthus.
Keywords: Agrobacterium, Bioassay, Fusarium, Fungal disease resistance, Transgenic line
Full-Text [PDF 1857 kb]   (316 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/12/11 | Accepted: 2021/12/22 | Published: 2022/03/7
References
1. Adesoye, I., Togun, O., Machuka, J. (2010). Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. Journal of Applied Biosciences, 30, 1845-1860.
2. Ahmadpour, R., Zare, N., Asghari-zakaria, R., Sheikhzadeh, P. (2016). Enhancement of Agrobacterium -mediated transformation efficienc- y in immature embryo of Triticum aestivum , cv . Arya. Iranian Journal of Genetics and Plant Breeding, 4(1), 45-53.
3. Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., Oshima, Y., Mitsuda, N., Ohme-Takagi, M., Shiratake, K. (2016). A petal-specific InMYB1 promoter from Japanese morning glory: A useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14(1), 354-363. https://doi.org/10.1111/pbi.12389 [DOI:10.1111/pbi.12389.]
4. Bertoldo, C., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A. (2015). Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. European Journal of Plant Pathology, 141(1), 83-97. https://doi.org/10.1007/s10658-014-0526-2 [DOI:10.1007/s10658-014-0526-2.]
5. Bezirganoglu, I., Hwang, S. Y., Fang, T. J., Shaw, J. F. (2013). Transgenic lines of melon (Cucumis melo L. var. makuwa cv. 'Silver Light') expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture, 112(2), 227-237. https://doi.org/10.1007/s11240-012-0227-5 [DOI:10.1007/s11240-012-0227-5.]
6. Bhupendra, K., Sugandha, S., Amla, D.V., Indraneel, S. (2014). Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.). International Journal of Biosciences (IJB), 4(10), 51-69. https://doi.org/10.12692/ijb/4.10.51-69 [DOI:10.12692/ijb/4.10.51-69.]
7. Bradley, J.M., Deroles, S.C., Boase, M.R., Bloor, S., Swinny, E., Davies, K.M. (1999). Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Science, 140(1), 31-39. https://doi.org/10.1016/S0168-9452(98)00200-3 [DOI:10.1016/S0168-9452(98)00200-3.]
8. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J., Broglie, R. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254(5035), 1194-1197. https://doi.org/10.1126/science.254.5035.1194 [DOI:10.1126/science.254.5035.1194.]
9. Chen, Y.T., Fang, Q.S., Chiang, C.H., Yeh, S.D., Wu, H.W., Yu, T.A. (2010). Transgenic Eustoma grandiflorum expressing the bar gene are resistant to the herbicide Basta®. Plant Cell, Tissue and Organ Culture, 102(3), 347-356. https://doi.org/10.1007/s11240-010-9739-z [DOI:10.1007/s11240-010-9739-z.]
10. Clough, S.J., Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x [DOI:10.1046/j.1365-313X.1998.00343.x.]
11. Curtis, I.S., Nam, H.G. (2001). Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - Plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10(4), 363-371. https://doi.org/10.1023/A:1016600517293 [DOI:10.1023/A:1016600517293.]
12. Fakhraei, M.M., Arab, M., Shariat Panahi, M.E. (2014a). Effect of cold, heat and chemical stresses on the induction of androgenesis in lisianthus (Eustoma grandiflorum). Journal of Applied Crop Breeding, 2(1), 1-12 (In Persian).
13. Fakhraei, M.M., Arab, M., Shariat Panahi, M.E. (2014b). Effect of cultivar, growth regulators and light during incubation on induction of haploid in lisianthus (Eustoma grandiflorum) through microspore culture. Journal of Crop Production and Processing, 4(12), 171-178 (In Persian).
14. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., Li, D., Jin, K., Bidochka, M. J., Pei, Y. (2007). Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology, 73(1), 295-302. [DOI:10.1128/AEM.01974-06]
15. Gao, N., Shen, W., Cao, Y., Su, Y., Shi, W. (2009). Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 98(3), 321-330. https://doi.org/10.1007/s11240-009-9566-2 [DOI:10.1007/s11240-009-9566-2.]
16. Gilardi, G., Gullino, M. (2006). Ornamentali - Prime osservazioni sulla suscettibilita a Fusarium oxysporum f. sp. eustomae di diverse cultivar di lisianthus (Eustoma grandiflorum). Informatore Fitopatologico, 56, 30-33.
17. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.J., Toppan, A. (1996). Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology, 14(5), 643-646. https://doi.org/10.1038/nbt0596-643 [DOI:10.1038/nbt0596-643.]
18. Guan, C., Liu, X., Song, X., Wang, G., Ji, J., Jin, C. (2014). Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Molecular Breeding, 33(3), 657-667. https://doi.org/10.1007/s11032-013-9982-1 [DOI:10.1007/s11032-013-9982-1.]
19. Hahm, Y.I. (1998). Occurrence of Fusarium wilt on lisianthus (Eustoma grandiflorum) caused by Fusarium oxysporum f. sp. eustomae. Korean Journal of Plant Pathology, 14(2), 188-190.
20. Halevy, K.A. (1984). Evaluation of lisianthus as a new flower crop. HortScience, 19(6), 845-847.
21. Harbaugh, B.K. (2006). Lisianthus: Eustoma grandiflorum. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century (pp. 644-663). https://doi.org/10.1007/978-1-4020-4428-1_24 [DOI:10.1007/978-1-4020-4428-1-24.]
22. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. The Plant Journal, 8(1), 97-109. https://doi.org/10.1046/j.1365-313X.1995.08010097.x [DOI:10.1046/j.1365-313X.1995.08010097.x.]
23. Jones, J.D G., Dean, C., Gidoni, D., Gilbert, D., Bond-Nutter, D., Lee, R., Bedbrook, J., Dunsmuir, P. (1988). Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Molecular & General Genetics, 212(3), 536-542. https://doi.org/10.1007/BF00330861 [DOI:10.1007/BF00330861.]
24. Kowsari, M., Motallebi, M., Zamani, M. (2014). Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Current Microbiology, 68(4), 495-502. https://doi.org/10.1007/s00284-013-0494-3 [DOI:10.1007/s00284-013-0494-3.]
25. Kowsari M., Zamani, M.R. and Motallebi, M. (2016). Overexpression of chimeric chitinase42 enhances the antifungal activity of Trichoderma harzianum against Fusarium graminearum. Mycologia Iranica, 3(1), 15 - 23.
26. Kuronuma, T., Ando, M., Watanabe, H. (2020). Tipburn incidence and ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different ca concentrations in nutrient solution. Agronomy, https://doi.org/10.3390/agronomy10020216 [DOI:10.3390/agronomy10020216.]
27. Kuronuma, T., Kinoshita, N., Ando, M., Watanabe, H. (2020). Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Scientia Horticulturae, https://doi.org/10.1016/j.scienta.2019.108911 [DOI:10.1016/j.scienta.2019.108911.]
28. Limón, M.C., Chacón, M.R., Mejías, R., Delgado-Jarana, J., Rincón, A.M., Codón, A.C., Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, https://doi.org/10.1007/s00253-003-1538-6 [DOI:10.1007/s00253-003-1538-6.]
29. Liu, X., Yu, Y., Liu, Q., Deng, S., Jin, X., Yin, Y., Guo, J., Li, N., Liu, Y., Han, S., Wang, C., Hao, D. (2020). A Na2CO3-responsive chitinase gene from leymus chinensis improve pathogen resistance and saline-alkali stress tolerance in transgenic tobacco and maize. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.00504 [DOI:10.3389/fpls.2020.00504.]
30. Mantis, N.J., Winans, S.C. (1992). The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. Journal of Bacteriology, 174(4), 1189-1196. https://doi.org/10.1128/jb.174.4.1189-1196.1992 [DOI:10.1128/jb.174.4.1189-1196.1992.]
31. Matroodi, S., Zamani, M., Haghbeen, K., Motallebi, M., Aminzadeh, S. (2013). Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Acta Biochimica et Biophysica Sinica, 45(10), 845-856. https://doi.org/10.1093/abbs/gmt089 [DOI:10.1093/abbs/gmt089.]
32. McGovern, R.J. (2018). Diseases of Lisianthus. In R.J. McGovern, W.H. Elmer (Eds.), Handbook of Florists' Crops Diseases (pp. 583-632). Springer. https://doi.org/10.1007/978-3-319-39670-5_20 [DOI:10.1007/978-3-319-39670-5_20.]
33. Mercuri, A., Sacchetti, A., De Benedetti, L.D., Schiva, T., Alberti, S. (2001). Green fluorescent flowers. Plant Science, 161(5), 961-968. https://doi.org/10.1016/S0168-9452(01)00497-6 [DOI:10.1016/S0168-9452(01)00497-6.]
34. Miller, J. (1972). Experiments in molecular genetics. Astrophysics and Space Science, 203-209.
35. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x [DOI:10.1111/j.1399-3054.1962.tb08052.x.]
36. Nakano, Y. (2017). Effect of acetosyringone on Agrobacterium-mediated transformation of Eustoma grandiflorum leaf disks. Japan Agricultural Research Quarterly, 51(4), 351-355. https://doi.org/10.6090/jarq.51.351 [DOI:10.6090/jarq.51.351.]
37. Onozaki, T., Satou, M., Azuma, M., Kawabe, M., Kawakatsu, K., Fukuta, N. (2020). Evaluation of 29 lisianthus cultivars (Eustoma grandiflorum) and one inbred line of e. exaltatum for resistance to two isolates of Fusarium solani by using hydroponic equipment. Horticulture Journal, 89(4), 473-480. https://doi.org/10.2503/hortj.UTD-151 [DOI:10.2503/hortj.UTD-151.]
38. Pérez-Piñeiro, P., Gago, J., Landín, M., Gallego, P.P. (2012). Agrobacterium-mediated Transformation of Wheat: General Overview and New Approaches to Model and Identify the Key Factors Involved. In: Y. Ozden Çiftçi (ed.). Transgenic Plants-Advances and Limitations. Rijeka, Croatia: Intech Open Access Publisher, 326. https://doi.org/10.5772/35232 [DOI:10.5772/35232.]
39. Rai, G.K., Rai, N.P., Kumar, S., Yadav, A., Rathaur, S., Singh, M. (2012). Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular and Developmental Biology- Plant, 48(5), 565-578. https://doi.org/10.1007/s11627-012-9442-3 [DOI:10.1007/s11627-012-9442-3.]
40. Selitrennikoff, C. P. (2001). Antifungal Proteins. Applied and Environmental Microbiology, 67(7), 2883-2894. https://doi.org/10.1128/AEM.67.7.2883-2894.2001 [DOI:10.1128/AEM.67.7.2883-2894.2001.]
41. Semeniuk, P., Griesbach, R.J. (1987). In vitro propagation of prairie gentian. Plant Cell, Tissue and Organ Culture, 8(3), 249-253. https://doi.org/10.1007/BF00040952 [DOI:10.1007/BF00040952.]
42. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A.M., Accotto, G.P., Allavena, A. (1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 47(1), 67-72. https://doi.org/10.1007/BF02318967 [DOI:10.1007/BF02318967.]
43. Semeria, L., Vaira, A.M., Accotto, G.P., Allavena, A. (1995). Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica, 85(1-3), 125-130. https://doi.org/10.1007/BF00023940 [DOI:10.1007/BF00023940.]
44. Thiruvengadam, M., Chung, I.M. (2015). Efficient in vitro plant regeneration and Agrobacterium-mediated genetic transformation of lisianthus [Eustoma grandiflorum (Raf.) Shinn]. Propagation of Ornamental Plants, 15(1), 21-28.
45. Thiruvengadam, M., Yang, C.H. (2009). Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Reports, 28(10), 1463-1473. https://doi.org/10.1007/s00299-009-0746-7 [DOI:10.1007/s00299-009-0746-7.]
46. Tomioka, K., Hirooka, Y., Takezaki, A., Aoki, T., Sato, T. (2011). Fusarium root rot of prairie gentian caused by a species belonging to the Fusarium solani species complex. Journal of General Plant Pathology, 77(2), 132-135. https://doi.org/10.1007/s10327-011-0295-0 [DOI:10.1007/s10327-011-0295-0.]
47. Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M. (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170(12), 5822-5829. https://doi.org/10.1128/jb.170.12.5822-5829.1988 [DOI:10.1128/jb.170.12.5822-5829.1988.]
48. Wang, L., Xue, W., Li, X., Li, J., Wu, J., Xie, L., Kawabata, S., Li, Y., Zhang, Y. (2020). EgMIXTA1, a MYB-type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Frontiers in Plant Science, 11, 1-9. https://doi.org/10.3389/fpls.2020.524947 [DOI:10.3389/fpls.2020.524947.]
49. Zhao Qing, Ji, J., Wang, G., Wang, J., Ma, Y., Jin, C., Wu, W., Guan, C. (2012). Testing an induciable expression system in transgenic lisianthus (Eustoma grandiflorum cv. LisaBlue). African Journal of Biotechnology, 11(21), 4767-4772. https://doi.org/10.5897/AJB11.3306 [DOI:10.5897/ajb11.3306.]
50. Ziaei, M., Motallebi, M., Zamani, M.R., Panjeh, N.Z. (2016). Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnology Letters, 38(6), 1021-1032. https://doi.org/10.1007/s10529-016-2058-7 [DOI:10.1007/s10529-016-2058-7.]
51. Ziaei, M., Motallebi, M., Zamani, M.R., Zarin Panjeh, N., Moghaddassi Jahromi, Z. (2016). A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. Journal of Plant Biochemistry and Biotechnology, 25(4), 358-366. https://doi.org/10.1007/s13562-015-0347-1 [DOI:10.1007/s13562-015-0347-1.]
52. Adesoye, a I., Togun, a O., Machuka, J. (2010). Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. Journal of Applied Biosciences, 30, 1845-1860.
53. Ahmadpour, R., Zare, N., Asghari-zakaria, R., Sheikhzadeh, P. (2016). Enhancement of Agrobacterium -mediated transformation efficienc- y in immature embryo of Triticum aestivum , cv . Arya. Iranian Journal of Genetics and Plant Breeding, 4(1), 45-53.
54. Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., Oshima, Y., Mitsuda, N., Ohme-Takagi, M., Shiratake, K. (2016). A petal-specific InMYB1 promoter from Japanese morning glory: A useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14(1), 354-363. [DOI:10.1111/pbi.12389]
55. Bertoldo, C., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A. (2015). Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. European Journal of Plant Pathology, 141(1), 83-97. [DOI:10.1007/s10658-014-0526-2]
56. Bezirganoglu, I., Hwang, S. Y., Fang, T. J., Shaw, J. F. (2013). Transgenic lines of melon (Cucumis melo L. var. makuwa cv. 'Silver Light') expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture, 112(2), 227-237. [DOI:10.1007/s11240-012-0227-5]
57. Bhupendra, K., Sugandha, S., Amla, D. V., Indraneel, S. (2014). Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.). International Journal of Biosciences (IJB), 4(10), 51-69. [DOI:10.12692/ijb/4.10.51-69]
58. Bradley, J. M., Deroles, S. C., Boase, M. R., Bloor, S., Swinny, E., Davies, K. M. (1999). Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Science, 140(1), 31-39. [DOI:10.1016/S0168-9452(98)00200-3]
59. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., Broglie, R. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254(5035), 1194-1197. [DOI:10.1126/science.254.5035.1194]
60. Chen, Y. T., Fang, Q. S., Chiang, C. H., Yeh, S. D., Wu, H. W., Yu, T. A. (2010). Transgenic Eustoma grandiflorum expressing the bar gene are resistant to the herbicide Basta®. Plant Cell, Tissue and Organ Culture, 102(3), 347-356. [DOI:10.1007/s11240-010-9739-z]
61. Clough, S. J., Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x [DOI:10.1046/j.1365-313X.1998.00343.x]
62. Curtis, I. S., Nam, H. G. (2001). Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - Plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10(4), 363-371. [DOI:10.1023/A:1016600517293]
63. Fakhraei, M. M., Arab, M., Panahi, M. E. shariat. (2014a). Effect of cold, heat and chemical stresses on the induction of androgenesis in lisianthus (Eustoma grandiflorum). Journal of Applied Crop Breeding, 2(1), 1-12 (In Persian).
64. Fakhraei, M. M., Arab, M., Panahi, M. E. shariat. (2014b). Effect of cultivar, growth regulators and light during incubation on induction of haploid in lisianthus (Eustoma grandiflorum) through microspore culture. Journal of Crop Production and Processing, 4(12), 171-178 (In Persian).
65. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., Li, D., Jin, K., Bidochka, M. J., Pei, Y. (2007). Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology, 73(1), 295-302. [DOI:10.1128/AEM.01974-06]
66. Gao, N., Shen, W., Cao, Y., Su, Y., Shi, W. (2009). Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 98(3), 321-330. [DOI:10.1007/s11240-009-9566-2]
67. Gilardi, G., Gullino, M. . (2006). Ornamentali - Prime osservazioni sulla suscettibilita a Fusarium oxysporum f. sp. eustomae di diverse cultivar di lisianthus (Eustoma grandiflorum). Informatore Fitopatologico, 56, 30-33.
68. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J. J., Toppan, A. (1996). Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology, 14(5), 643-646. [DOI:10.1038/nbt0596-643]
69. Guan, C., Liu, X., Song, X., Wang, G., Ji, J., Jin, C. (2014). Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Molecular Breeding, 33(3), 657-667. [DOI:10.1007/s11032-013-9982-1]
70. Hahm, Y.-I. (1998). Occurrence of Fusarium wilt on lisianthus (Eustoma grandiflorum) caused by Fusarium oxysporum f. sp. eustomae. Korean Journal of Plant Pathology, 14(2), 188-190.
71. Halevy AH, K. A. (1984). Evaluation of lisianthus as a new flower crop. HortScience, 19(6), 845-847.
72. Harbaugh, B. K. (2006). Lisianthus: Eustoma grandiflorum. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century (pp. 644-663). https://doi.org/10.1007/978-1-4020-4428-1_24 [DOI:10.1007/978-1-4020-4428-1-24]
73. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. The Plant Journal, 8(1), 97-109. [DOI:10.1046/j.1365-313X.1995.08010097.x]
74. Jones, J. D. G., Dean, C., Gidoni, D., Gilbert, D., Bond-Nutter, D., Lee, R., Bedbrook, J., Dunsmuir, P. (1988). Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. MGG Molecular & General Genetics, 212(3), 536-542. [DOI:10.1007/BF00330861]
75. Kowsari, M., Motallebi, M., Zamani, M. (2014). Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Current Microbiology, 68(4), 495-502. [DOI:10.1007/s00284-013-0494-3]
76. Kowsari M., Z. M. R. and M. M. (2016). Overexpression of chimeric chitinase42 enhances the antifungal activity of Trichoderma harzianum against Fusarium graminearum. Mycologia Iranica, 3(1), 15 - 23.
77. Kuronuma, T., Ando, M., Watanabe, H. (2020). Tipburn incidence and ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different ca concentrations in nutrient solution. Agronomy, 10(2). [DOI:10.3390/agronomy10020216]
78. Kuronuma, T., Kinoshita, N., Ando, M., Watanabe, H. (2020). Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Scientia Horticulturae, 261(October), 108911. [DOI:10.1016/j.scienta.2019.108911]
79. Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. In Applied Microbiology and Biotechnology (Vol. 64, Issue 5). [DOI:10.1007/s00253-003-1538-6]
80. Liu, X., Yu, Y., Liu, Q., Deng, S., Jin, X., Yin, Y., Guo, J., Li, N., Liu, Y., Han, S., Wang, C., Hao, D. (2020). A Na2CO3-responsive chitinase gene from leymus chinensis improve pathogen resistance and saline-alkali stress tolerance in transgenic tobacco and maize. Frontiers in Plant Science, 11. [DOI:10.3389/fpls.2020.00504]
81. Mantis, N. J., Winans, S. C. (1992). The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. Journal of Bacteriology, 174(4), 1189-1196. [DOI:10.1128/jb.174.4.1189-1196.1992]
82. Matroodi, S., Zamani, M., Haghbeen, K., Motallebi, M., Aminzadeh, S. (2013). Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Acta Biochimica et Biophysica Sinica, 45(10), 845-856. [DOI:10.1093/abbs/gmt089]
83. McGovern, R. J. (2018). Diseases of lisianthus. In R. J. McGovern W. H. Elmer (Eds.), Handbook of Florists' Crops Diseases (pp. 583-632). Springer. [DOI:10.1007/978-3-319-39670-5_20]
84. Mercuri, A., Sacchetti, A., De Benedetti, L. D., Schiva, T., Alberti, S. (2001). Green fluorescent flowers. Plant Science, 161(5), 961-968. [DOI:10.1016/S0168-9452(01)00497-6]
85. Miller, J. (1972). Experiments in molecular genetics. Astrophysics and Space Science, 203-209.
86. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. [DOI:10.1111/j.1399-3054.1962.tb08052.x]
87. Nakano, Y. (2017). Effect of acetosyringone on Agrobacterium-mediated transformation of Eustoma grandiflorum leaf disks. Japan Agricultural Research Quarterly, 51(4), 351-355. [DOI:10.6090/jarq.51.351]
88. Onozaki, T., Satou, M., Azuma, M., Kawabe, M., Kawakatsu, K., Fukuta, N. (2020). Evaluation of 29 lisianthus cultivars (Eustoma grandiflorum) and one inbred line of e. exaltatum for resistance to two isolates of Fusarium solani by using hydroponic equipment. Horticulture Journal, 89(4), 473-480. [DOI:10.2503/hortj.UTD-151]
89. Pérez-Piñeiro, P., Gago, J., Landín, M., Gallego, P. P. (2012). Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved. In Transgenic Plants-Advances and Limitations. Rijeka, Croatia: Intech Open Access Publisher, 326. [DOI:10.5772/35232]
90. Rai, G. K., Rai, N. P., Kumar, S., Yadav, A., Rathaur, S., Singh, M. (2012). Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular and Developmental Biology - Plant, 48(5), 565-578. [DOI:10.1007/s11627-012-9442-3]
91. Semeniuk, P., Griesbach, R. J. (1987). In vitro propagation of prairie gentian. Plant Cell, Tissue and Organ Culture, 8(3), 249-253. [DOI:10.1007/BF00040952]
92. Semeria, L., Ruffoni, B., Rabaglio, M., Genga, A., Vaira, A. M., Accotto, G. P., Allavena, A. (1996). Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 47(1), 67-72. [DOI:10.1007/BF02318967]
93. Semeria, L., Vaira, A. M., Accotto, G. P., Allavena, A. (1995). Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica, 85(1-3), 125-130. [DOI:10.1007/BF00023940]
94. Thiruvengadam, M., Chung, I. M. (2015). Efficient in vitro plant regeneration and Agrobacterium-mediated genetic transformation of lisianthus [Eustoma grandiflorum (Raf.) Shinn]. Propagation of Ornamental Plants, 15(1), 21-28.
95. Thiruvengadam, M., Yang, C. H. (2009). Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Reports, 28(10), 1463-1473. [DOI:10.1007/s00299-009-0746-7]
96. Tomioka, K., Hirooka, Y., Takezaki, A., Aoki, T., Sato, T. (2011). Fusarium root rot of prairie gentian caused by a species belonging to the Fusarium solani species complex. Journal of General Plant Pathology, 77(2), 132-135. [DOI:10.1007/s10327-011-0295-0]
97. Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M. (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170(12), 5822-5829. [DOI:10.1128/jb.170.12.5822-5829.1988]
98. Wang, L., Xue, W., Li, X., Li, J., Wu, J., Xie, L., Kawabata, S., Li, Y., Zhang, Y. (2020). EgMIXTA1, a MYB-type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Frontiers in Plant Science, 11(October), 1-9. [DOI:10.3389/fpls.2020.524947]
99. Zhao Qing, Ji, J., Wang, G., Wang, J., Ma, Y., Jin, C., Wu, W., Guan, C. (2012). Testing an induciable expression system in transgenic lisianthus (Eustoma grandiflorum cv. LisaBlue). African Journal of Biotechnology, 11(21), 4767-4772. https://doi.org/10.5897/AJB11.3306 [DOI:10.5897/ajb11.3306]
100. Ziaei, M., Motallebi, M., Zamani, M. R., Panjeh, N. Z. (2016). Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnology Letters, 38(6), 1021-1032. [DOI:10.1007/s10529-016-2058-7]
101. Ziaei, M., Motallebi, M., Zamani, M. R., Zarin Panjeh, N., Moghaddassi Jahromi, Z. (2016). A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. Journal of Plant Biochemistry and Biotechnology, 25(4), 358-366. [DOI:10.1007/s13562-015-0347-1]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fakhraei M M, Motallebi Azar A, Salehi H, mahna N, Motallebi M. Effect of the type of inoculation medium on chimeric chitinase gene transfer to lisianthus (Eustoma grandiflorum [Raf.] Shinn) for resistance to the fungal disease Fusarium solani. FOP 2021; 6 (2) :147-164
URL: http://flowerjournal.ir/article-1-215-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (Fall and Winter 2021) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645