|
1. Abdi, G., Salehi, H., Eshghi, S. (2010). Effect of natural zeolite and paclobutrazol on reducing salt Stress in Kentucky bluegrass (Poa pratensis L.). Horticulture, Environment and Biotechnology, 51, 159-166. 2. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. [ DOI:10.3390/agronomy7010018] 3. Akbari, M., Salehi, H., Khosh-Khui, M. (2011). Cool-warm season Poa-Cynodon seed mixtures and their turf growth and quality. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 61, 559-564. [ DOI:10.1080/09064710.2010.526134] 4. Alizadeh, B., Tehranifar, A., Salehi, H., Momayyezi, M. (2009, June). Investigation on five ryegrass cultivars response to increasing salt (NaCl) in irrigation water. 2nd International Conference on Landscape and Urban Horticulture. 5. Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98, 541-550. [ DOI:10.1007/s11120-008-9331-0] 6. Alshammary, S., Qian, Y., Wallner, S. (2004). Growth response of four turfgrass species to salinity. Agricultural Water Management, 66, 97-111. [ DOI:10.1016/j.agwat.2003.11.002] 7. Amombo, E., Li, X., Wang, G., An, S., Wang, W., Fu, J. (2018). Comprehensive transcriptome profiling and identification of potential genes responsible for salt tolerance in tall fescue leaves under salinity stress. Genes, 9, 466. [ DOI:10.3390/genes9100466] 8. Ashraf, M., Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [ DOI:10.1016/j.envexpbot.2005.12.006] 9. Baldwin, C.M., McCarty, L.B. (2007). Diversity of 42 bermudagrass cultivars in a reduced light environment. II International Conference on Turfgrass Science and Management for Sports Fields, 783, 147-158. [ DOI:10.17660/ActaHortic.2008.783.13] 10. Bi, A., Fan, J., Hu, Z., Wang, G., Amombo, E., Fu, J., Hu, T. (2016). Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat, and the combined stresses. Frontiers in Plant Science, 7, 453. [ DOI:10.3389/fpls.2016.00453] 11. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [ DOI:10.1007/s11738-013-1455-y] 12. Bocian, A., Kosmala, A., Rapacz, M., Jurczyk, B., Marczak, Ł., Zwierzykowski, Z. (2011). Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. Journal of Plant Physiology, 168, 1271-1279. [ DOI:10.1016/j.jplph.2011.01.029] 13. Boogar, A. R., Salehi, H., Jowkar, A. (2014). Exogenous nitric oxide alleviates oxidative damage in turfgrasses under drought stress. South African Journal of Botany, 92, 78-82. [ DOI:10.1016/j.sajb.2014.02.005] 14. Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M. (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544. [ DOI:10.3389/fpls.2020.00544] 15. Cao, Y. H., Lü, Z. L., Li, Y. H., Jiang, Y., Zhang, J. L. (2024). Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass. BMC Plant Biology, 24(1), 1225. [ DOI:10.1186/s12870-024-05961-1] 16. Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J., Salvucci, M.E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1-11. [ DOI:10.1016/j.envexpbot.2012.04.001] 17. Chakrabarti, M., Nagabhyru, P., Schardl, C.L., Dinkins, R.D. (2022). Differential gene expression in tall fescue tissues in response to water deficit. The Plant Genome, 15, e20199. [ DOI:10.1002/tpg2.20199] 18. Chapman, C., Rossi, S., Yuan, B., Huang, B. (2022). Differential regulation of amino acids and nitrogen for drought tolerance and poststress recovery in creeping bentgrass. Journal of the American Society for Horticultural Science, 147, 208-215 [ DOI:10.21273/JASHS05215-22] 19. Chandregowda, M.H., Tjoelker, M.G., Pendall, E., Zhang, H., Churchill, A.C., Power, S.A. (2022). Root trait shifts towards an avoidance strategy promote productivity and recovery in C3 and C4 pasture grasses under drought. Functional Ecology, 36, 1754-1771. [ DOI:10.1111/1365-2435.14085] 20. Chaves, M.M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, 551-560. [ DOI:10.1093/aob/mcn125] 21. Cheng, B., Zhou, Q., Li, L., Hassan, M.J., Zeng, W., Peng, Y., Li, Z. (2024). Foliar application of chitosan (CTS), γ-aminobutyric acid (GABA), or sodium chloride (NaCl) mitigates summer bentgrass decline in the subtropical zone. Plants, 13, 1773. [ DOI:10.3390/plants13131773] 22. Chang, Z., Liu, Y., Dong, H., Teng, K., Han, L., Zhang, X. (2016). Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PloSone, 11, e0154005. [ DOI:10.1371/journal.pone.0154005] 23. Chang, Z., Sun, B., Li, D. (2017). Water withholding contributes to winter hardiness in perennial ryegrass (Lolium perenne L.). European Journal of Horticultural Science, 82, 31-37. [ DOI:10.17660/eJHS.2017/82.1.4] 24. Chen, M., Gan, L., Zhang, J., Shen, Y., Qian, J., Han, M., Zhag, C., Fan, J., Sun, S., Yan, X. (2021). A regulatory network of heat shock modules-photosynthesis-redox systems in response to cold stress across a latitudinal gradient in bermudagrass. Frontiers in Plant Science, 12, 751901. [ DOI:10.3389/fpls.2021.751901] 25. Chen, X., Yang, J., She, D., Chen, W., Wu, J., Wang, Y., Chen, M., Li, Y., Qureshi, A.S., Singh, A., Souza, E.R.D. (2025). Monitoring, reclamation and management of Salt-Affected Lands. Water, 17 (6), 813. [ DOI:10.3390/books978-3-7258-4036-6] 26. Da Silva, J.M., Arrabaca, M.C. (2004). Photosynthesis in the water‐stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, 121, 409-420. [ DOI:10.1111/j.1399-3054.2004.00328.x] 27. Dąbrowski, P., Pawluśkiewicz, B., Baczewska, A.H., Oglęcki, P., Kalaji, H. (2015). Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste, 102, 305-312. [ DOI:10.13080/z-a.2015.102.039] 28. Dacosta, M., Huang, B. (2007). Drought survival and recuperative ability of bentgrass species associated with changes in abscisic acid and cytokinin production. Journal of the American Society for Horticultural Science, 132, 60-66. [ DOI:10.21273/JASHS.132.1.60] 29. DaCosta, M., Huang, B. (2013). Heat‐stress physiology and management. Turfgrass: Biology, Use, and Management, 56, 249-278. [ DOI:10.2134/agronmonogr56.c7] 30. Dai, J., Schlossberg, M.J., Huff, D.R. (2008). Salinity tolerance of 33 greens-type experimental lines. Crop Science, 48, 1187-1192. [ DOI:10.2135/cropsci2007.06.0320] 31. Davies, P.J. (2010). The plant hormones: their nature, occurrence, and functions. Plant Hormones, 1-15. [ DOI:10.1007/978-1-4020-2686-7_1] 32. Diédhiou, C.J., Popova, O.V., Golldack, D. (2009). Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization. Journal of Plant Physiology, 166, 697-711. [ DOI:10.1016/j.jplph.2008.09.015] 33. Dimascio, J., Sweeney, P., Danneberger, T., Kamalay, J. (1994). Analysis of heat shock response in perennial ryegrass using maize heat shock protein clones. Crop Science, 34, 798-804. [ DOI:10.2135/cropsci1994.0011183X003400030035x] 34. Dionne, J., Rochefort, S., Huff, D.R., Desjardins, Y., Bertrand, A., Castonguay, Y. (2010). Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass. Crop Science, 50, 321-336. [ DOI:10.2135/cropsci2008.12.0712] 35. Dong, W., Ma, X., Jiang, H., Zhao, C., Ma, H. (2020). Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology, 20, 362. [ DOI:10.1186/s12870-020-02559-1] 36. Dong, L., Xiong, L., Sun, X., Shah, S., Guo, Z., Zhao, X., Liu, L., Cheng, L., Tian, Z., Xie, F., Chen, Y. (2022). Morphophysiological responses of two cool-season turfgrasses with different shade tolerances. Agronomy, 12, 959. [ DOI:10.3390/agronomy12040959] 37. Du, H., Zhou, P., Huang, B. (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environmental and Experimental Botany, 87, 159-166. [ DOI:10.1016/j.envexpbot.2012.09.009] 38. Ebeed, H.T., Ahmed, H.S., Hassan, N.M. (2024). Silicon transporters in plants: Unravelling the molecular Nexus with sodium and potassium transporters under salinity stress. Plant Gene, 100453. [ DOI:10.1016/j.plgene.2024.100453] 39. Esmaeili, S., Salehi, H. (2016). Kentucky bluegrass (Poa pratensis L.) silicon-treated turfgrass tolerance to short- and long-term salinity condition. Advances in Horticultural Science, 30, 87-94. 40. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38, 1885-1901. [ DOI:10.1080/01904167.2015.1069332] 41. Esmaeili, S., Salehi, H., Koubouris, G. (2025). RD29A-IPT expression enhances drought tolerance in transgenic perennial ryegrass. Vegetos, 1-21. [ DOI:10.1007/s42535-025-01249-3] 42. Esmailpourmoghadam, E., Salehi, H. (2021). Tall fescue is a superturfgrass: Tolerance to shade conditions under deficit irrigation. Journal of the Saudi Society of Agricultural Sciences, 20, 290-301. [ DOI:10.1016/j.jssas.2021.03.001] 43. Esmailpourmoghadam, E., Salehi, H., Moshtaghi, N. (2023). Differential gene expression Responses to salt and drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 1-16. [ DOI:10.1007/s12033-023-00888-8] 44. Fait, A., Yellin, A., Fromm, H. (2005). GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Letters, 579, 415-420. [ DOI:10.1016/j.febslet.2004.12.004] 45. Fan, Q., Jespersen, D. (2022). Assessing heat tolerance in creeping bentgrass lines based on physiological responses. Plants, 12(1), 41. [ DOI:10.3390/plants12010041] 46. Fan, S., Amombo, E., Yin, Y., Wang, G., Avoga, S., Wu, N., Li, Y. (2023). Root system architecture and genomic plasticity to salinity provide insights into salt-tolerant traits in tall fescue. Ecotoxicology and Environmental Safety, 262, 115315. [ DOI:10.1016/j.ecoenv.2023.115315] 47. Fry, J., Huang, B. (2004). Advanced turfgrass science and physiology. John Wiley and Sons, New York, NY). 48. Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29, 1637-1647. [ DOI:10.1080/01904160600851494] 49. Golldack, D., Li, C., Mohan, H., Probst, N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science, 5, 151. [ DOI:10.3389/fpls.2014.00151] 50. Gong, J., Wang, R., Liu, B., Zhu, T., Li, H., Long, S., Liu, T., Xu, Y. (2024). Regulatory mechanism of strigolactone in tall fescue to low-light stress. Plant Physiology and Biochemistry, 215, 109054. [ DOI:10.1016/j.plaphy.2024.109054] 51. Guo, Z., Jiang, J., Dong, L., Sun, X., Chen, J., Xie, F., Chen, Y. (2022). Shade responses of prostrate and upright turf-type bermudagrasses. Grass Research, 2, 1-9. [ DOI:10.48130/GR-2022-0009] 52. Hatamzadeh, A., Molaahmad Nalousi, A., Ghasemnezhad, M., Biglouei, M.H. (2015). The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass and Forage Science, 70, 538-548. [ DOI:10.1111/gfs.12135] 53. He, Y., Huang, B. (2007). Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Science, 47, 2513-2520. [ DOI:10.2135/cropsci2006.12.0821] 54. He, Y., Liu, X., Huang, B. (2005). Protein changes in response to heat stress in acclimated and non-acclimated creeping bentgrass. Journal of the American Society for Horticultural Science, 130, 521-526. [ DOI:10.21273/JASHS.130.4.521] 55. He, Q., Li, D. (2021). Assessing shade stress in leaves of turf-type tall fescue (Festuca arundinacea Schreb.). Photosynthetica, 59 478-485. [ DOI:10.32615/ps.2021.037] 56. Hoffman, L., Dacosta, M., Bertrand, A., Castonguay, Y., Ebdon, J.S. (2014). Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environmental and Experimental Botany, 106, 197-206. [ DOI:10.1016/j.envexpbot.2013.12.018] 57. Hoffman, L., Dacosta, M., Ebdon, J.S., Watkins, E. (2010). Physiological changes during cold acclimation of perennial ryegrass accessions differing in freeze tolerance. Crop Science, 50, 1037-1047. [ DOI:10.2135/cropsci2009.06.0293] 58. Höglind, M., Hanslin, H.M., Mortensen, L.M. (2011). Photosynthesis of Lolium perenne L. at low temperatures under low irradiances. Environmental and Experimental Botany, 70, 297-304. [ DOI:10.1016/j.envexpbot.2010.10.007] 59. Hu, L., Wang, Z., Du, H., Huang, B. (2010). Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology, 167, 103-109. [ DOI:10.1016/j.jplph.2009.07.008] 60. Hu, L., Wang, Z., Huang, B. (2012). Growth and physiological recovery of Kentucky bluegrass from drought stress as affected by a synthetic cytokinin 6-benzylaminopurine. Crop Science, 52, 2332-2340. [ DOI:10.2135/cropsci2012.02.0106] 61. Hu, T., Li, H.Y., Zhang, X.Z., Luo, H.J., Fu, J.M. (2011). Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety, 74, 2050-2056. [ DOI:10.1016/j.ecoenv.2011.07.013] 62. Huang, B., DaCosta, M., Jiang, Y. (2014). Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences, 33, 141-189. [ DOI:10.1080/07352689.2014.870411] 63. Jahed, K. R., Saini, A. K., Sherif, S. M. (2023). Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Frontiers in Plant Science, 14, 1246093. [ DOI:10.3389/fpls.2023.1246093] 64. Ischebeck, T. (2017). Phosphatidic acid in plants: Functional diversity. In Encyclopedia of lipidomics (pp. 1-4). Springer, Dordrecht. [ DOI:10.1007/978-94-007-7864-1_148-1] 65. Jespersen, D., Zhang, J., Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science, 249, 1-12. [ DOI:10.1016/j.plantsci.2016.04.016] 66. Jespersen, D., Rowe, S. (2025). Chlorophyll fluorescence characteristics of turfgrasses grown under shade trees. International Turfgrass Society Research Journal, 1-12. [ DOI:10.1002/its2.70032] 67. Jiang, M., Ma, M., Luo, J.C., Wu, Q. (2019). Salt accumulation and secretion patterns of Glycyrrhiza uralensis in saline habitats. Flora, 259, 151449. [ DOI:10.1016/j.flora.2019.151449] 68. Jiang, Y., Huang, B. (2001). Drought and heat stress injury to two cool‐season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41, 436-442. [ DOI:10.2135/cropsci2001.412436x] 69. Kaur, K., Gupta, A.K., Kaur, N. (2007). Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. 70. Killi, D., Raschi, A., Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21, 4846. [ DOI:10.3390/ijms21144846] 71. Koch, M.J., Huang, B., Bonos, S.A. (2011). Salinity tolerance of Kentucky bluegrass cultivars and selections using an overhead irrigated screening technique. Crop Science, 51, 2846-2857. [ DOI:10.2135/cropsci2011.03.0174] 72. Krishnan, S., Laskowski, K., Shukla, V., Merewitz, E.B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-γ-aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science 138, 358-366. [ DOI:10.21273/JASHS.138.5.358] 73. Law, Q.D., Trappe, J.M., Braun, R.C., Patton, A.J. (2021). Greenhouse gas fluxes from turfgrass systems: Species, growth rate, clipping management, and environmental effects. 50, 547-557. [ DOI:10.1002/jeq2.20222] 74. Li, F., Zhan, D., Xu, L., Han, L., Zhang, X. (2014). Antioxidant and hormone responses to heat stress in two Kentucky bluegrass cultivars contrasting in heat tolerance. Journal of the American Society for Horticultural Science, 139, 587-596. [ DOI:10.21273/JASHS.139.5.587] 75. Li, J., Bai, X., Ran, F., Zhang, C., Yan, Y., Li, P., Chen, H. (2024). Effects of combined extreme cold and drought stress on growth, photosynthesis, and physiological characteristics of cool-season grasses. Scientific Reports, 14, 116. [ DOI:10.1038/s41598-023-49531-1] 76. Li, M., Jannasch, A.H., Jiang, Y. (2020). Growth and hormone alterations in response to heat stress in perennial ryegrass accessions differing in heat tolerance. Journal of Plant Growth Regulation, 39, 1022-1029. [ DOI:10.1007/s00344-019-10043-w] 77. Li, W., Katin-Grazzini, L., Krishnan, S., Thammina, C., El-Tanbouly, R., Yer, H., Merewitz, E., Guillard, K., Inguagiato, J.C., McAvoy, R.J., Liu, Z., Li, Y. (2016). A novel two-step method for screening shade tolerant mutant plants via dwarfism. Frontiers in Plant Science, 7, 1495. [ DOI:10.3389/fpls.2016.01495] 78. Li, Z., Zeng, W., Cheng, B., Xu, J., Han, L., Peng, Y. (2022). Turf quality and physiological responses to summer stress in four creeping bentgrass cultivars in a subtropical zone. Plants, 11, 665. [ DOI:10.3390/plants11050665] 79. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R. (2007). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 164, 1157-1164. [ DOI:10.1078/0176-1617-01065] 80. Liu, H., Lin, M., Wang, H., Li, X., Zhou, D., Bi, X., Zhang, Y. (2024). N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). Plant Science, 342, 112023. [ DOI:10.1016/j.plantsci.2024.112023] 81. Liu, M., Sun, T., Liu, C., Zhang, H., Wang, W., Wang, Y., Xiang, L., Chan, Z. (2022). Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry, 170, 275-286. [ DOI:10.1016/j.plaphy.2021.12.013] 82. Liu, T., Zhuang, L., Huang, B. (2019). Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil, 443, 219-232. [ DOI:10.1007/s11104-019-04140-8] 83. Liu, X., Huang, B. (2001). Seasonal changes and cultivar differences in turf quality, photosynthesis, and respiration of creeping bentgrass. HortScience, 36, 1131-1135. [ DOI:10.21273/HORTSCI.36.6.1131] 84. Liu, Y., Du, H., Wang, K., Huang, B., Wang, Z. (2011). Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance. HortScience, 46, 311-316. [ DOI:10.21273/HORTSCI.46.2.311] 85. Ma, X., Yu, J., Zhuang, L., Shi, Y., Meyer, W., Huang, B. (2020). Differential regulatory pathways associated with drought-inhibition and post-drought recuperation of rhizome development in perennial grass. Annals of Botany, 126, 481-497. [ DOI:10.1093/aob/mcaa099] 86. Mahdavi E., Salehi, S.M., H., Zarei, M. (2018). Can arbuscular mycorrhizal fungi ameliorate the adverse effects of deficit irrigation on tall fescue (Festuca arundinacea Schreb.)? Journal of Soil Science and Plant Nutrition, 18, 636-652. 87. Mahdavi, S. M. E., Salehi, H., Zarei, M. (2020). Morpho-physiological and biochemical attributes of tall fescue (Festuca arundinacea Schreb.) inoculated with Pseudomonas fluorescens under deficit irrigation. Journal of Soil Science and Plant Nutrition, 20, 1457-1471. [ DOI:10.1007/s42729-020-00225-x] 88. Malik, S., Ur Rehman, S., Younis, A., Qasim, M., Nadeem, M., Riaz, A. (2014). Evaluation of quality, growth, and physiological potential of various turf grass cultivars for shade garden. Journal of Horticulture, Forestry and Biotechnology, 18, 110-121. 89. Manuchehri, R., Salehi, H. (2014). Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African Journal of Botany, 92, 83-88. [ DOI:10.1016/j.sajb.2014.02.006] 90. Manzur, M.E., Garello, F.A., Omacini, M., Schnyder, H., Sutka, M.R., García-Parisi, P.A., Fricke, W. (2022). Endophytic fungi and drought tolerance: ecophysiological adjustment in shoot and root of an annual mesophytic host grass. Functional Plant Biology, 49, 272-282. [ DOI:10.1071/FP21238] 91. Marcum, K.B., Pessarakli, M. (2010). Salinity tolerance of ryegrass turf cultivars. HortScience, 45, 1882-1884. [ DOI:10.21273/HORTSCI.45.12.1882] 92. Martin, R.C., Kronmiller, B.A., Dombrowski, J.E. (2021). Transcriptome analysis of Lolium temulentum exposed to a combination of drought and heat stress. Plants, 10, 2247. [ DOI:10.3390/plants10112247] 93. Merewitz, E.B., Liu, S. (2019). Improvement in heat tolerance of creeping Bentgrass with melatonin, Rutin, and silicon. Journal of the American Society for Horticultural Science, 144(2), 141-148. [ DOI:10.21273/JASHS04643-19] 94. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61, 4197-4220. [ DOI:10.1093/jxb/erq282] 95. Munns, R.,Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. [ DOI:10.1146/annurev.arplant.59.032607.092911] 96. Nelson, L., Foster, M. (2005). Breeding turf-type annual ryegrass (Lolium multiflorum L.) for salt tolerance in Texas. 97. Pease, B. W., Stier, J. C. (2018). Nitrogen rate and growth regulator effects on shaded velvet and creeping bentgrasses. Agronomy Journal, 110, 2151-2158. [ DOI:10.2134/agronj2018.01.0071] 98. Pessarakli, M., Kopec, D.M. (2009). Screening various ryegrass cultivars for salt stress tolerance. Journal of Food, Agriculture and Environment, 7, 4. 99. Pirnajmedin, F., Majidi, M.M., Saeidi, G., Gheysari, M., Volaire, F., Barre, P., Osivand, A.H., Sarfaraz, D. (2017). Persistence, recovery and root traits of tall fescue genotypes with different flowering date under prolonged water stress. Euphytica, 213, 1-15. [ DOI:10.1007/s10681-017-2060-8] 100. Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K., De Diego, N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53-65. [ DOI:10.1016/j.nbt.2018.07.003] 101. Pote, J., Wang, Z., Huang, B. (2006). Timing and temperature of physiological decline for creeping bentgrass. Journal of the American Society for Horticultural Science, 13, 608-615. [ DOI:10.21273/JASHS.131.5.608] 102. Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50, 2-18. [ DOI:10.1111/j.1744-7909.2007.00599.x] 103. Rachmilevitch, S., Huang, B., Lambers, H. (2006). Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytologist, 170, 479-490. [ DOI:10.1111/j.1469-8137.2006.01684.x] 104. Rahman, M.A., Dervishi, V., Moser-Reischl, A., Ludwig, F., Pretzsch, H., Rötzer, T., Pauleit, S. (2021). Comparative analysis of shade and underlying surfaces on cooling effect. Urban Forestry and Urban Greening, 63, 127223. [ DOI:10.1016/j.ufug.2021.127223] 105. Rahnama, A., James, R.A., Poustini, K., Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37, 255-263 [ DOI:10.1071/FP09148] 106. Rahnama, A., Munns, R., Poustini, K., Watt, M. (2011). A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany, 62, 69-77. [ DOI:10.1093/jxb/erq359] 107. Rahnama, A., Fakhri, S., Meskarbashee, M. (2019). Root growth and architecture responses of bread wheat cultivars to salinity stress. Agronomy Journal, 111, 2991-2998. [ DOI:10.2134/agronj2018.12.0795] 108. Rahnama, A., Hosseinalipour, B., Farrokhian Firouzi, A., Harrison, M.T., Ghorbanpour, M. (2024a). Root architecture traits and genotypic responses of wheat at seedling stage to water-deficit stress. Cereal Research Communications, 52, 1499-510. [ DOI:10.1007/s42976-023-00481-4] 109. Rahnama, A., Salehi, F., Meskarbashee, M., Mehdi Khanlou, K., Ghorbanpour, M., Harrison, M.T. (2024b). High temperature perturbs physicochemical parameters and fatty acids composition of safflower (Carthamus tinctorius L.). BMC Plant Biology, 24, 1080. [ DOI:10.1186/s12870-024-05781-3] 110. Rasaei, S. S., Sarmast, M. K., Ghaleh, Z. R., Zarei, H., Savchenko, T. (2025). 6-Benzylaminopurine-dependent starch accumulation is key to drought tolerance in tall fescue subjected to water deficiency. Physiology and Molecular Biology of Plants, 31, 329-342. [ DOI:10.1007/s12298-025-01559-5] 111. Rossi, S., Huang, B. (2025). Research advances in molecular mechanisms regulating heat tolerance in cool‐season turfgrasses. Crop Science, 65, e21339. [ DOI:10.1002/csc2.21339] 112. Rutledge, J.M., Volenec, J.J., Hurley, R.H., Reicher, Z.J. (2012). Seasonal changes in morphology and physiology of roughstalk bluegrass. Crop Science, 52, 858-868. [ DOI:10.2135/cropsci2011.04.0225] 113. Mirzaei, S., Esmaeili, S. (2025). Evaluation of seed germination, visual quality, and morpho-physiological characteristics of several turfgrasses native to Iran. Plant Productions, 48, 157-171. 114. Salehi, H., Khosh-Khui, M. (2004). Turfgrass monoculture, cool-cool, and cool-warm season seed mixture establishment and growth responses. HortScience, 39, 1732-1735. [ DOI:10.21273/HORTSCI.39.7.1732] 115. Salehi, H., Salehi, M. (2012). Investigations on resistance of tall fescue (Festuca arundinacea Scherb.) accessions to drought stress. BioTechnology: An Indian Journal, 6, 221-225. 116. Salehi, M., Salehi, H., Niazi, A., Ghobadi, C. (2014). Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 56, 248-257. [ DOI:10.1007/s12033-013-9703-3] 117. Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M. (2021). Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports, 40, 1305-1329. [ DOI:10.1007/s00299-021-02683-8] 118. Sarkar, D., Bhowmik, P.C., Shetty, K. (2009). Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. Journal of the American Society for Horticultural Science, 134, 210-220. [ DOI:10.21273/JASHS.134.2.210] 119. Sarmast, M. K., Salehi, H., & Niazi, A. (2015). Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologiae Plantarum, 37, 192. [ DOI:10.1007/s11738-015-1942-4] 120. Scafaro, A.P., Posch, B.C., Evans, J.R., Farquhar, G.D., Atkin, O.K. (2023). Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nature Communications, 14, 2820. [ DOI:10.1038/s41467-023-38496-4] 121. Sehar, Z., Masood, A., Khan, N.A. (2019). Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environmental and Experimental Botany, 161, 277-289. [ DOI:10.1016/j.envexpbot.2019.01.010] 122. Seki, M., Umezawa, T., Urano, K., Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10, 296-302. [ DOI:10.1016/j.pbi.2007.04.014] 123. Seydavi, B. Investigation of the Effect of Heat and Shade Stresses on Tall Fescue (Festuca arundinacea Scherb.) Turfgrass. M.Sc. Thesis, Shahid Chamran University of Ahvaz, Iran. 124. Shao, H., Liang, Z., Shao, M. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at tillering stage. Journal of the Science of Food and Agriculture, 86. [ DOI:10.1016/j.colsurfb.2005.01.011] 125. Sheikh-Mohamadi, M. H., Etemadi, N., & Arab, M. (2018). Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience, 53, 1062-1068. [ DOI:10.21273/HORTSCI13088-18] 126. Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu, G., Bajwa, V.S. (2012). Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. Botany, 90, 651-668. [ DOI:10.1139/b2012-030] 127. Shu, C. (2012). Differential quadrature and its application in engineering. Springer Science and Business Media. 128. Siddiqui, Z.S., Shahid, H., Cho, J.I., Park, S.H., Ryu, T.H., Park, S.C. (2016). Physiological responses of two halophytic grass species under drought stress environment. Acta Botanica Croatica, 75, 31-38. [ DOI:10.1515/botcro-2016-0018] 129. Soliman, W.S., Sugiyama, S., Abbas, A.M. (2018). Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Horticulture, Environment, and Biotechnology, 59, 29−36. [ DOI:10.1007/s13580-018-0004-4] 130. Su, K., Bremer, D.J., Keeley, S.J., Fry, J.D. (2007). Effects of high temperature and drought on a hybrid bluegrass compared with Kentucky bluegrass and tall fescue. Crop Science, 47, 2152-2161. [ DOI:10.2135/cropsci2006.12.0781] 131. Sun, T., Wang, W., Chan, Z. (2024). How do cool-season turfgrasses respond to high temperature: progress and challenges. Grass Research 4, e010. doi: 10.48130/grares-0024-0008 [ DOI:10.48130/grares-0024-0008] 132. Sun, X., Zhu, J., Li, X., Li, Z., Han, L., Luo, H. (2020). AsHSP26. 8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biology, 20, 1-19. [ DOI:10.1186/s12870-020-02369-5] 133. Sun, S., An, M., Han, L., & Yin, S. (2015). Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience, 50, 1518-1523. [ DOI:10.21273/HORTSCI.50.10.1518] 134. Tada, Y., Kochiya, R., Toyoizumi, M., Takano, Y. (2023). Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress. Plant Biotechnology, 40, 301-309. [ DOI:10.5511/plantbiotechnology.23.0721a] 135. Tada, Y., Komatsubara, S., Kurusu, T. (2014). Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. AoB PLANTS, 6, plu041. doi: 10.1093/aobpla/plu041 [ DOI:10.1093/aobpla/plu041] 136. Tamang, B.G., López, J.R., McCoy, E., Haaning, A., Sallam, A., Steffenson, B.J., Muehlbauer, G.J., Smith, K.P., & Sadok, W. (2022). Association between xylem vasculature size and freezing survival in winter barley. Journal of Agronomy and Crop Science, 208, 362-371. [ DOI:10.1111/jac.12537] 137. Tang, M., Li, Z., Luo, L., Cheng, B., Zhang, Y., Zeng, W., Peng, Y. (2020). Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. International Journal of Molecular Sciences, 21, 7460. [ DOI:10.3390/ijms21207460] 138. Trinh, M.D.L., Masuda, S. (2022). Chloroplast pH homeostasis for the regulation of photosynthesis. Frontiers in Plant Science, 13, 919896. [ DOI:10.3389/fpls.2022.919896] 139. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Hossain, M.A., Othman, R., Abdul Rahim, A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1, 905468. [ DOI:10.1100/2012/905468] 140. Van Huylenbroeck, J.M., Van Bockstaele, E. (2001). Effects of shading on photosynthetic capacity and growth of turfgrass species. International Turfgrass Society Research Journal, 9, 353-359. 141. Veerasamy, M., He, Y., Huang, B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science, 132, 467-472. [ DOI:10.21273/JASHS.132.4.467] 142. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61, 199-223. [ DOI:10.1016/j.envexpbot.2007.05.011] 143. Wang, K., Zhang, X., Ervin, E. (2013). Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. Journal of Plant Nutrition, 36, 1549-1564. [ DOI:10.1080/01904167.2013.799184] 144. Wang, S., Zhang, Q., Watkins, E. (2011). Evaluation of salinity tolerance of prairie junegrass, a potential low-maintenance turfgrass species. HortScience, 46, 1038-1045. [ DOI:10.21273/HORTSCI.46.7.1038] 145. Wang, Z., Huang, B. (2004). Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44, 1729-1736. [ DOI:10.2135/cropsci2004.1729] 146. Wang, Z., Huang, B., Xu, Q. (2003). Effects of abscisic acid on drought responses of Kentucky bluegrass. Journal of the American Society for Horticultural Science, 128, 36-41. [ DOI:10.21273/JASHS.128.1.36] 147. Wasim, M. A., Naz, N. (2020). Anatomical adaptations of tolerance to salt stress in Cenchrus ciliaris L., a saline desert grass. JAPS: Journal of Animal and Plant Sciences, 30. [ DOI:10.36899/JAPS.2020.6.0176] 148. Watson‐Lazowski, A., Papanicolaou, A., Koller, F., Ghannoum, O. (2020). The transcriptomic responses of C4 grasses to subambient CO2 and low light are largely species-specific and only refined by photosynthetic subtype. The Plant Journal, 101, 1170-1184. [ DOI:10.1111/tpj.14583] 149. Wen, S., Liu, B., Long, S., Gao, S., Liu, Q., Liu, T., Xu, Y. (2022). Low nitrogen level improves low-light tolerance in tall fescue by regulating carbon and nitrogen metabolism. Environmental and Experimental Botany, 194, 104749. [ DOI:10.1016/j.envexpbot.2021.104749] 150. Wherley, B.G., Gardner, D.S., Metzger, J.D. (2005). Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. Crop Science, 45, 562-568. [ DOI:10.2135/cropsci2005.0562] 151. Xiang, M., Yu, S., Gopinath, L., Salehi, H., Moss, J.Q., Wu, Y. (2023). Raising mowing height improves freeze tolerance of putting green-type bermudagrass. Hortscience, 58, 1277-1281. [ DOI:10.21273/HORTSCI17351-23] 152. XXie, F., Shi, Z., Zhang, G., Zhang, C., Sun, X., Yan, Y., Zhao, W., Guo, Z., Zhang, L., Fahad, S., Saud, S., Chen, Y. (2020). Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 274, 109674. [ DOI:10.1016/j.scienta.2020.109674] 153. Xu, C., Huang, B. (2012). Comparative analysis of proteomic responses to single and simultaneous drought and heat stress for two Kentucky bluegrass cultivars. Crop Science, 52, 1246-1260. [ DOI:10.2135/cropsci2011.10.0551] 154. Xu, R., Fujiyama, H. (2013). Comparison of ionic concentration, organic solute accumulation and osmotic adaptation in Kentucky bluegrass and tall fescue under NaCl stress. Soil Science and Plant Nutrition, 59, 168-179. [ DOI:10.1080/00380768.2012.763215] 155. Xu, L., Han, L., Huang, B. (2011). Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 136, 247-255. [ DOI:10.21273/JASHS.136.4.247] 156. Xu, L., Yu, J., Han, L., Huang, B. (2013). Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environmental and Experimental Botany, 89, 28-35. [ DOI:10.1016/j.envexpbot.2012.12.001] 157. Xu, L.X., Li, X.S., Han, L.B., Li, D.Y., Song, G.L. (2017). Epichloë endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science, 82, 90-97. [ DOI:10.17660/eJHS.2017/82.2.4] 158. Xu, Q., Huang, B. (2001). Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science, 41, 127-133. [ DOI:10.2135/cropsci2001.411127x] 159. Xu, Q., Huang, B. (2006). Seasonal changes in root metabolic activity and nitrogen uptake for two cultivars of creeping bentgrass. HortScience, 41, 822-826. [ DOI:10.21273/HORTSCI.41.3.822] 160. Xu, S., Li, J., Zhang, X., Wei, H., Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274-285. [ DOI:10.1016/j.envexpbot.2005.03.002] 161. Xu, Y., Huang, B. (2007). Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science, 132, 185-192. [ DOI:10.21273/JASHS.132.2.185] 162. Xu, Y., Wang, J., Bonos, S.A., Meyer, W.A., Huang, B. (2018). Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences, 19, 116. [ DOI:10.3390/ijms19010116] 163. Xu, Y., Zhan, C., Huang, B. (2011). Heat shock proteins in association with heat tolerance in grasses. International Journal of Proteomics, 2011, 529648. [ DOI:10.1155/2011/529648] 164. Yamamoto, N., Takano, T., Tanaka, K., Ishige, T., Terashima, S., Endo, C., Kurusu, T., Yajima, S., Yano, K., Tada, Y. (2015). Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Frontiers in Plant Science, 6, 241. [ DOI:10.3389/fpls.2015.00241] 165. Xuan, J., Song, Y., Zhang, H., Liu, J., Guo, Z., Hua, Y. (2013). Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia matrella. PloS one, 8, e75705. [ DOI:10.1371/journal.pone.0075705] 166. Yang, W.Z., Fu, J.J., Yang, L.Y., Zhang, X., Zheng, Y.L., Feng, F., Xu, Y.F. (2014). Protective effects of complementary Ca 2+ on low-light-induced oxidative damage in tall fescue. Russian Journal of Plant Physiology, 61, 818-827. [ DOI:10.1134/S1021443714060211] 167. Yang, Y., Wassie, M., Liu, N.F., Deng, H., Zeng, Y.B., Xu, Q., Hu, L.X. (2022). Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass (Cynodon dactylon). Frontiers in Plant Science, 13, 956410. [ DOI:10.3389/fpls.2022.956410] 168. Yang, Z., Miao, Y., Yu, J., Liu, J., Huang, B. (2014). Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae, 170, 75-81. [ DOI:10.1016/j.scienta.2014.02.005] 169. Yang, Z., Xu, L., Yu, J., Dacosta, M., Huang, B. (2013). Changes in carbohydrate metabolism in two Kentucky bluegrass cultivars during drought stress and recovery. Journal of the American Society for Horticultural Science, 138, 24-30. [ DOI:10.21273/JASHS.138.1.24] 170. Yu, H., Zheng, H., Liu, Y., Yang, Q., Li, W., Zhang, Y., Fu, F. (2021). Antifreeze protein from Ammopiptanthus nanus functions in temperature-stress through domain A. Scientific Reports, 11(1), 8458. [ DOI:10.1038/s41598-021-88021-0] 171. Zhang, X., Zhuang, L., Liu, Y., Yang, Z., Huang, B. (2020). Protein phosphorylation associated with drought priming-enhanced heat tolerance in a temperate grass species. Horticulture Research, 7. [ DOI:10.1038/s41438-020-00440-8] 172. Zhang, Y., Du, H. (2016). Differential accumulation of proteins in leaves and roots associated with heat tolerance in two Kentucky bluegrass genotypes differing in heat tolerance. Acta Physiologiae Plantarum, 38, 1-15. [ DOI:10.1007/s11738-016-2232-5] 173. Zhang, X., Gao, Y., Zhuang, L., Huang, B. (2023). Phosphatidic acid priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) involves lipidomic reprogramming of lipids for membrane stability and stress signaling. Plant Growth Regulation, 99, 527-538. [ DOI:10.1007/s10725-022-00924-8] 174. Zhang, X., Goatley, M., Wang, K., Goddard, B., Harvey, R., Brown, I., Kosiarski, K. (2024). Silicon improves heat and drought stress tolerance associated with antioxidant enzyme activity and root viability in creeping bentgrass (Agrostis stolonifera L.). Agronomy, 14(6), 1176. [ DOI:10.3390/agronomy14061176] 175. Zhong, S., Xu, Y., Meng, B., Loik, ME, Ma, JY, Sun, W. (2019). Nitrogen addition increases the sensitivity of photosynthesis to drought and re-watering differentially in C3 versus C4 grass species. Frontiers in Plant Science, 10, 815. [ DOI:10.3389/fpls.2019.00815] 176. Abdi, G., Salehi, H., Eshghi, S. (2010). Effect of natural zeolite and paclobutrazol on reducing salt Stress in Kentucky bluegrass (Poa pratensis L.). Horticulture, Environment and Biotechnology, 51, 159-166. 177. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. [ DOI:10.3390/agronomy7010018] 178. Akbari, M., Salehi, H., Khosh-Khui, M. (2011). Cool-warm season Poa-Cynodon seed mixtures and their turf growth and quality. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 61, 559-564. [ DOI:10.1080/09064710.2010.526134] 179. Alizadeh, B., Tehranifar, A., Salehi, H., Momayyezi, M. (2009, June). Investigation on five ryegrass cultivars response to increasing salt (NaCl) in irrigation water. 2nd International Conference on Landscape and Urban Horticulture. 180. Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98, 541-550. [ DOI:10.1007/s11120-008-9331-0] 181. Alshammary, S., Qian, Y., Wallner, S. (2004). Growth response of four turfgrass species to salinity. Agricultural Water Management, 66, 97-111. [ DOI:10.1016/j.agwat.2003.11.002] 182. Amombo, E., Li, X., Wang, G., An, S., Wang, W., Fu, J. (2018). Comprehensive transcriptome profiling and identification of potential genes responsible for salt tolerance in tall fescue leaves under salinity stress. Genes, 9, 466. [ DOI:10.3390/genes9100466] 183. Ashraf, M., Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. [ DOI:10.1016/j.envexpbot.2005.12.006] 184. Baldwin, C.M., McCarty, L.B. (2007). Diversity of 42 bermudagrass cultivars in a reduced light environment. II International Conference on Turfgrass Science and Management for Sports Fields, 783, 147-158. [ DOI:10.17660/ActaHortic.2008.783.13] 185. Bi, A., Fan, J., Hu, Z., Wang, G., Amombo, E., Fu, J., Hu, T. (2016). Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat, and the combined stresses. Frontiers in Plant Science, 7, 453. [ DOI:10.3389/fpls.2016.00453] 186. Bizhani, S., Salehi, H. (2014). Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiologiae Plantarum, 36, 777-786. [ DOI:10.1007/s11738-013-1455-y] 187. Bocian, A., Kosmala, A., Rapacz, M., Jurczyk, B., Marczak, Ł., Zwierzykowski, Z. (2011). Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. Journal of Plant Physiology, 168, 1271-1279. [ DOI:10.1016/j.jplph.2011.01.029] 188. Boogar, A. R., Salehi, H., Jowkar, A. (2014). Exogenous nitric oxide alleviates oxidative damage in turfgrasses under drought stress. South African Journal of Botany, 92, 78-82. [ DOI:10.1016/j.sajb.2014.02.005] 189. Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M. (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544. [ DOI:10.3389/fpls.2020.00544] 190. Cao, Y. H., Lü, Z. L., Li, Y. H., Jiang, Y., Zhang, J. L. (2024). Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass. BMC Plant Biology, 24(1), 1225. [ DOI:10.1186/s12870-024-05961-1] 191. Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J., Salvucci, M.E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1-11. [ DOI:10.1016/j.envexpbot.2012.04.001] 192. Chakrabarti, M., Nagabhyru, P., Schardl, C.L., Dinkins, R.D. (2022). Differential gene expression in tall fescue tissues in response to water deficit. The Plant Genome, 15, e20199. [ DOI:10.1002/tpg2.20199] 193. Chapman, C., Rossi, S., Yuan, B., Huang, B. (2022). Differential regulation of amino acids and nitrogen for drought tolerance and poststress recovery in creeping bentgrass. Journal of the American Society for Horticultural Science, 147, 208-215 [ DOI:10.21273/JASHS05215-22] 194. Chandregowda, M.H., Tjoelker, M.G., Pendall, E., Zhang, H., Churchill, A.C., Power, S.A. (2022). Root trait shifts towards an avoidance strategy promote productivity and recovery in C3 and C4 pasture grasses under drought. Functional Ecology, 36, 1754-1771. [ DOI:10.1111/1365-2435.14085] 195. Chaves, M.M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, 551-560. [ DOI:10.1093/aob/mcn125] 196. Cheng, B., Zhou, Q., Li, L., Hassan, M.J., Zeng, W., Peng, Y., Li, Z. (2024). Foliar application of chitosan (CTS), γ-aminobutyric acid (GABA), or sodium chloride (NaCl) mitigates summer bentgrass decline in the subtropical zone. Plants, 13, 1773. [ DOI:10.3390/plants13131773] 197. Chang, Z., Liu, Y., Dong, H., Teng, K., Han, L., Zhang, X. (2016). Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PloSone, 11, e0154005. [ DOI:10.1371/journal.pone.0154005] 198. Chang, Z., Sun, B., Li, D. (2017). Water withholding contributes to winter hardiness in perennial ryegrass (Lolium perenne L.). European Journal of Horticultural Science, 82, 31-37. [ DOI:10.17660/eJHS.2017/82.1.4] 199. Chen, M., Gan, L., Zhang, J., Shen, Y., Qian, J., Han, M., Zhag, C., Fan, J., Sun, S., Yan, X. (2021). A regulatory network of heat shock modules-photosynthesis-redox systems in response to cold stress across a latitudinal gradient in bermudagrass. Frontiers in Plant Science, 12, 751901. [ DOI:10.3389/fpls.2021.751901] 200. Chen, X., Yang, J., She, D., Chen, W., Wu, J., Wang, Y., Chen, M., Li, Y., Qureshi, A.S., Singh, A., Souza, E.R.D. (2025). Monitoring, reclamation and management of Salt-Affected Lands. Water, 17 (6), 813. [ DOI:10.3390/books978-3-7258-4036-6] 201. Da Silva, J.M., Arrabaca, M.C. (2004). Photosynthesis in the water‐stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, 121, 409-420. [ DOI:10.1111/j.1399-3054.2004.00328.x] 202. Dąbrowski, P., Pawluśkiewicz, B., Baczewska, A.H., Oglęcki, P., Kalaji, H. (2015). Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste, 102, 305-312. [ DOI:10.13080/z-a.2015.102.039] 203. Dacosta, M., Huang, B. (2007). Drought survival and recuperative ability of bentgrass species associated with changes in abscisic acid and cytokinin production. Journal of the American Society for Horticultural Science, 132, 60-66. [ DOI:10.21273/JASHS.132.1.60] 204. DaCosta, M., Huang, B. (2013). Heat‐stress physiology and management. Turfgrass: Biology, Use, and Management, 56, 249-278. [ DOI:10.2134/agronmonogr56.c7] 205. Dai, J., Schlossberg, M.J., Huff, D.R. (2008). Salinity tolerance of 33 greens-type experimental lines. Crop Science, 48, 1187-1192. [ DOI:10.2135/cropsci2007.06.0320] 206. Davies, P.J. (2010). The plant hormones: their nature, occurrence, and functions. Plant Hormones, 1-15. [ DOI:10.1007/978-1-4020-2686-7_1] 207. Diédhiou, C.J., Popova, O.V., Golldack, D. (2009). Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization. Journal of Plant Physiology, 166, 697-711. [ DOI:10.1016/j.jplph.2008.09.015] 208. Dimascio, J., Sweeney, P., Danneberger, T., Kamalay, J. (1994). Analysis of heat shock response in perennial ryegrass using maize heat shock protein clones. Crop Science, 34, 798-804. [ DOI:10.2135/cropsci1994.0011183X003400030035x] 209. Dionne, J., Rochefort, S., Huff, D.R., Desjardins, Y., Bertrand, A., Castonguay, Y. (2010). Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass. Crop Science, 50, 321-336. [ DOI:10.2135/cropsci2008.12.0712] 210. Dong, W., Ma, X., Jiang, H., Zhao, C., Ma, H. (2020). Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology, 20, 362. [ DOI:10.1186/s12870-020-02559-1] 211. Dong, L., Xiong, L., Sun, X., Shah, S., Guo, Z., Zhao, X., Liu, L., Cheng, L., Tian, Z., Xie, F., Chen, Y. (2022). Morphophysiological responses of two cool-season turfgrasses with different shade tolerances. Agronomy, 12, 959. [ DOI:10.3390/agronomy12040959] 212. Du, H., Zhou, P., Huang, B. (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environmental and Experimental Botany, 87, 159-166. [ DOI:10.1016/j.envexpbot.2012.09.009] 213. Ebeed, H.T., Ahmed, H.S., Hassan, N.M. (2024). Silicon transporters in plants: Unravelling the molecular Nexus with sodium and potassium transporters under salinity stress. Plant Gene, 100453. [ DOI:10.1016/j.plgene.2024.100453] 214. Esmaeili, S., Salehi, H. (2016). Kentucky bluegrass (Poa pratensis L.) silicon-treated turfgrass tolerance to short- and long-term salinity condition. Advances in Horticultural Science, 30, 87-94. 215. Esmaeili, S., Salehi, H., Eshghi, S. (2015). Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. Journal of Plant Nutrition, 38, 1885-1901. [ DOI:10.1080/01904167.2015.1069332] 216. Esmaeili, S., Salehi, H., Koubouris, G. (2025). RD29A-IPT expression enhances drought tolerance in transgenic perennial ryegrass. Vegetos, 1-21. [ DOI:10.1007/s42535-025-01249-3] 217. Esmailpourmoghadam, E., Salehi, H. (2021). Tall fescue is a superturfgrass: Tolerance to shade conditions under deficit irrigation. Journal of the Saudi Society of Agricultural Sciences, 20, 290-301. [ DOI:10.1016/j.jssas.2021.03.001] 218. Esmailpourmoghadam, E., Salehi, H., Moshtaghi, N. (2023). Differential gene expression Responses to salt and drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 1-16. [ DOI:10.1007/s12033-023-00888-8] 219. Fait, A., Yellin, A., Fromm, H. (2005). GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Letters, 579, 415-420. [ DOI:10.1016/j.febslet.2004.12.004] 220. Fan, Q., Jespersen, D. (2022). Assessing heat tolerance in creeping bentgrass lines based on physiological responses. Plants, 12(1), 41. [ DOI:10.3390/plants12010041] 221. Fan, S., Amombo, E., Yin, Y., Wang, G., Avoga, S., Wu, N., Li, Y. (2023). Root system architecture and genomic plasticity to salinity provide insights into salt-tolerant traits in tall fescue. Ecotoxicology and Environmental Safety, 262, 115315. [ DOI:10.1016/j.ecoenv.2023.115315] 222. Fry, J., Huang, B. (2004). Advanced turfgrass science and physiology. John Wiley and Sons, New York, NY). 223. Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29, 1637-1647. [ DOI:10.1080/01904160600851494] 224. Golldack, D., Li, C., Mohan, H., Probst, N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science, 5, 151. [ DOI:10.3389/fpls.2014.00151] 225. Gong, J., Wang, R., Liu, B., Zhu, T., Li, H., Long, S., Liu, T., Xu, Y. (2024). Regulatory mechanism of strigolactone in tall fescue to low-light stress. Plant Physiology and Biochemistry, 215, 109054. [ DOI:10.1016/j.plaphy.2024.109054] 226. Guo, Z., Jiang, J., Dong, L., Sun, X., Chen, J., Xie, F., Chen, Y. (2022). Shade responses of prostrate and upright turf-type bermudagrasses. Grass Research, 2, 1-9. [ DOI:10.48130/GR-2022-0009] 227. Hatamzadeh, A., Molaahmad Nalousi, A., Ghasemnezhad, M., Biglouei, M.H. (2015). The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass and Forage Science, 70, 538-548. [ DOI:10.1111/gfs.12135] 228. He, Y., Huang, B. (2007). Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Science, 47, 2513-2520. [ DOI:10.2135/cropsci2006.12.0821] 229. He, Y., Liu, X., Huang, B. (2005). Protein changes in response to heat stress in acclimated and non-acclimated creeping bentgrass. Journal of the American Society for Horticultural Science, 130, 521-526. [ DOI:10.21273/JASHS.130.4.521] 230. He, Q., Li, D. (2021). Assessing shade stress in leaves of turf-type tall fescue (Festuca arundinacea Schreb.). Photosynthetica, 59 478-485. [ DOI:10.32615/ps.2021.037] 231. Hoffman, L., Dacosta, M., Bertrand, A., Castonguay, Y., Ebdon, J.S. (2014). Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environmental and Experimental Botany, 106, 197-206. [ DOI:10.1016/j.envexpbot.2013.12.018] 232. Hoffman, L., Dacosta, M., Ebdon, J.S., Watkins, E. (2010). Physiological changes during cold acclimation of perennial ryegrass accessions differing in freeze tolerance. Crop Science, 50, 1037-1047. [ DOI:10.2135/cropsci2009.06.0293] 233. Höglind, M., Hanslin, H.M., Mortensen, L.M. (2011). Photosynthesis of Lolium perenne L. at low temperatures under low irradiances. Environmental and Experimental Botany, 70, 297-304. [ DOI:10.1016/j.envexpbot.2010.10.007] 234. Hu, L., Wang, Z., Du, H., Huang, B. (2010). Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology, 167, 103-109. [ DOI:10.1016/j.jplph.2009.07.008] 235. Hu, L., Wang, Z., Huang, B. (2012). Growth and physiological recovery of Kentucky bluegrass from drought stress as affected by a synthetic cytokinin 6-benzylaminopurine. Crop Science, 52, 2332-2340. [ DOI:10.2135/cropsci2012.02.0106] 236. Hu, T., Li, H.Y., Zhang, X.Z., Luo, H.J., Fu, J.M. (2011). Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety, 74, 2050-2056. [ DOI:10.1016/j.ecoenv.2011.07.013] 237. Huang, B., DaCosta, M., Jiang, Y. (2014). Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences, 33, 141-189. [ DOI:10.1080/07352689.2014.870411] 238. Jahed, K. R., Saini, A. K., Sherif, S. M. (2023). Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Frontiers in Plant Science, 14, 1246093. [ DOI:10.3389/fpls.2023.1246093] 239. Ischebeck, T. (2017). Phosphatidic acid in plants: Functional diversity. In Encyclopedia of lipidomics (pp. 1-4). Springer, Dordrecht. [ DOI:10.1007/978-94-007-7864-1_148-1] 240. Jespersen, D., Zhang, J., Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science, 249, 1-12. [ DOI:10.1016/j.plantsci.2016.04.016] 241. Jespersen, D., Rowe, S. (2025). Chlorophyll fluorescence characteristics of turfgrasses grown under shade trees. International Turfgrass Society Research Journal, 1-12. [ DOI:10.1002/its2.70032] 242. Jiang, M., Ma, M., Luo, J.C., Wu, Q. (2019). Salt accumulation and secretion patterns of Glycyrrhiza uralensis in saline habitats. Flora, 259, 151449. [ DOI:10.1016/j.flora.2019.151449] 243. Jiang, Y., Huang, B. (2001). Drought and heat stress injury to two cool‐season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41, 436-442. [ DOI:10.2135/cropsci2001.412436x] 244. Kaur, K., Gupta, A.K., Kaur, N. (2007). Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. 245. Killi, D., Raschi, A., Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21, 4846. [ DOI:10.3390/ijms21144846] 246. Koch, M.J., Huang, B., Bonos, S.A. (2011). Salinity tolerance of Kentucky bluegrass cultivars and selections using an overhead irrigated screening technique. Crop Science, 51, 2846-2857. [ DOI:10.2135/cropsci2011.03.0174] 247. Krishnan, S., Laskowski, K., Shukla, V., Merewitz, E.B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-γ-aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science 138, 358-366. [ DOI:10.21273/JASHS.138.5.358] 248. Law, Q.D., Trappe, J.M., Braun, R.C., Patton, A.J. (2021). Greenhouse gas fluxes from turfgrass systems: Species, growth rate, clipping management, and environmental effects. 50, 547-557. [ DOI:10.1002/jeq2.20222] 249. Li, F., Zhan, D., Xu, L., Han, L., Zhang, X. (2014). Antioxidant and hormone responses to heat stress in two Kentucky bluegrass cultivars contrasting in heat tolerance. Journal of the American Society for Horticultural Science, 139, 587-596. [ DOI:10.21273/JASHS.139.5.587] 250. Li, J., Bai, X., Ran, F., Zhang, C., Yan, Y., Li, P., Chen, H. (2024). Effects of combined extreme cold and drought stress on growth, photosynthesis, and physiological characteristics of cool-season grasses. Scientific Reports, 14, 116. [ DOI:10.1038/s41598-023-49531-1] 251. Li, M., Jannasch, A.H., Jiang, Y. (2020). Growth and hormone alterations in response to heat stress in perennial ryegrass accessions differing in heat tolerance. Journal of Plant Growth Regulation, 39, 1022-1029. [ DOI:10.1007/s00344-019-10043-w] 252. Li, W., Katin-Grazzini, L., Krishnan, S., Thammina, C., El-Tanbouly, R., Yer, H., Merewitz, E., Guillard, K., Inguagiato, J.C., McAvoy, R.J., Liu, Z., Li, Y. (2016). A novel two-step method for screening shade tolerant mutant plants via dwarfism. Frontiers in Plant Science, 7, 1495. [ DOI:10.3389/fpls.2016.01495] 253. Li, Z., Zeng, W., Cheng, B., Xu, J., Han, L., Peng, Y. (2022). Turf quality and physiological responses to summer stress in four creeping bentgrass cultivars in a subtropical zone. Plants, 11, 665. [ DOI:10.3390/plants11050665] 254. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R. (2007). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 164, 1157-1164. [ DOI:10.1078/0176-1617-01065] 255. Liu, H., Lin, M., Wang, H., Li, X., Zhou, D., Bi, X., Zhang, Y. (2024). N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). Plant Science, 342, 112023. [ DOI:10.1016/j.plantsci.2024.112023] 256. Liu, M., Sun, T., Liu, C., Zhang, H., Wang, W., Wang, Y., Xiang, L., Chan, Z. (2022). Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry, 170, 275-286. [ DOI:10.1016/j.plaphy.2021.12.013] 257. Liu, T., Zhuang, L., Huang, B. (2019). Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil, 443, 219-232. [ DOI:10.1007/s11104-019-04140-8] 258. Liu, X., Huang, B. (2001). Seasonal changes and cultivar differences in turf quality, photosynthesis, and respiration of creeping bentgrass. HortScience, 36, 1131-1135. [ DOI:10.21273/HORTSCI.36.6.1131] 259. Liu, Y., Du, H., Wang, K., Huang, B., Wang, Z. (2011). Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance. HortScience, 46, 311-316. [ DOI:10.21273/HORTSCI.46.2.311] 260. Ma, X., Yu, J., Zhuang, L., Shi, Y., Meyer, W., Huang, B. (2020). Differential regulatory pathways associated with drought-inhibition and post-drought recuperation of rhizome development in perennial grass. Annals of Botany, 126, 481-497. [ DOI:10.1093/aob/mcaa099] 261. Mahdavi E., Salehi, S.M., H., Zarei, M. (2018). Can arbuscular mycorrhizal fungi ameliorate the adverse effects of deficit irrigation on tall fescue (Festuca arundinacea Schreb.)? Journal of Soil Science and Plant Nutrition, 18, 636-652. 262. Mahdavi, S. M. E., Salehi, H., Zarei, M. (2020). Morpho-physiological and biochemical attributes of tall fescue (Festuca arundinacea Schreb.) inoculated with Pseudomonas fluorescens under deficit irrigation. Journal of Soil Science and Plant Nutrition, 20, 1457-1471. [ DOI:10.1007/s42729-020-00225-x] 263. Malik, S., Ur Rehman, S., Younis, A., Qasim, M., Nadeem, M., Riaz, A. (2014). Evaluation of quality, growth, and physiological potential of various turf grass cultivars for shade garden. Journal of Horticulture, Forestry and Biotechnology, 18, 110-121. 264. Manuchehri, R., Salehi, H. (2014). Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African Journal of Botany, 92, 83-88. [ DOI:10.1016/j.sajb.2014.02.006] 265. Manzur, M.E., Garello, F.A., Omacini, M., Schnyder, H., Sutka, M.R., García-Parisi, P.A., Fricke, W. (2022). Endophytic fungi and drought tolerance: ecophysiological adjustment in shoot and root of an annual mesophytic host grass. Functional Plant Biology, 49, 272-282. [ DOI:10.1071/FP21238] 266. Marcum, K.B., Pessarakli, M. (2010). Salinity tolerance of ryegrass turf cultivars. HortScience, 45, 1882-1884. [ DOI:10.21273/HORTSCI.45.12.1882] 267. Martin, R.C., Kronmiller, B.A., Dombrowski, J.E. (2021). Transcriptome analysis of Lolium temulentum exposed to a combination of drought and heat stress. Plants, 10, 2247. [ DOI:10.3390/plants10112247] 268. Merewitz, E.B., Liu, S. (2019). Improvement in heat tolerance of creeping Bentgrass with melatonin, Rutin, and silicon. Journal of the American Society for Horticultural Science, 144(2), 141-148. [ DOI:10.21273/JASHS04643-19] 269. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61, 4197-4220. [ DOI:10.1093/jxb/erq282] 270. Munns, R.,Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. [ DOI:10.1146/annurev.arplant.59.032607.092911] 271. Nelson, L., Foster, M. (2005). Breeding turf-type annual ryegrass (Lolium multiflorum L.) for salt tolerance in Texas. 272. Pease, B. W., Stier, J. C. (2018). Nitrogen rate and growth regulator effects on shaded velvet and creeping bentgrasses. Agronomy Journal, 110, 2151-2158. [ DOI:10.2134/agronj2018.01.0071] 273. Pessarakli, M., Kopec, D.M. (2009). Screening various ryegrass cultivars for salt stress tolerance. Journal of Food, Agriculture and Environment, 7, 4. 274. Pirnajmedin, F., Majidi, M.M., Saeidi, G., Gheysari, M., Volaire, F., Barre, P., Osivand, A.H., Sarfaraz, D. (2017). Persistence, recovery and root traits of tall fescue genotypes with different flowering date under prolonged water stress. Euphytica, 213, 1-15. [ DOI:10.1007/s10681-017-2060-8] 275. Podlešáková, K., Ugena, L., Spíchal, L., Doležal, K., De Diego, N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnology, 48, 53-65. [ DOI:10.1016/j.nbt.2018.07.003] 276. Pote, J., Wang, Z., Huang, B. (2006). Timing and temperature of physiological decline for creeping bentgrass. Journal of the American Society for Horticultural Science, 13, 608-615. [ DOI:10.21273/JASHS.131.5.608] 277. Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50, 2-18. [ DOI:10.1111/j.1744-7909.2007.00599.x] 278. Rachmilevitch, S., Huang, B., Lambers, H. (2006). Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytologist, 170, 479-490. [ DOI:10.1111/j.1469-8137.2006.01684.x] 279. Rahman, M.A., Dervishi, V., Moser-Reischl, A., Ludwig, F., Pretzsch, H., Rötzer, T., Pauleit, S. (2021). Comparative analysis of shade and underlying surfaces on cooling effect. Urban Forestry and Urban Greening, 63, 127223. [ DOI:10.1016/j.ufug.2021.127223] 280. Rahnama, A., James, R.A., Poustini, K., Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37, 255-263 [ DOI:10.1071/FP09148] 281. Rahnama, A., Munns, R., Poustini, K., Watt, M. (2011). A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany, 62, 69-77. [ DOI:10.1093/jxb/erq359] 282. Rahnama, A., Fakhri, S., Meskarbashee, M. (2019). Root growth and architecture responses of bread wheat cultivars to salinity stress. Agronomy Journal, 111, 2991-2998. [ DOI:10.2134/agronj2018.12.0795] 283. Rahnama, A., Hosseinalipour, B., Farrokhian Firouzi, A., Harrison, M.T., Ghorbanpour, M. (2024a). Root architecture traits and genotypic responses of wheat at seedling stage to water-deficit stress. Cereal Research Communications, 52, 1499-510. [ DOI:10.1007/s42976-023-00481-4] 284. Rahnama, A., Salehi, F., Meskarbashee, M., Mehdi Khanlou, K., Ghorbanpour, M., Harrison, M.T. (2024b). High temperature perturbs physicochemical parameters and fatty acids composition of safflower (Carthamus tinctorius L.). BMC Plant Biology, 24, 1080. [ DOI:10.1186/s12870-024-05781-3] 285. Rasaei, S. S., Sarmast, M. K., Ghaleh, Z. R., Zarei, H., Savchenko, T. (2025). 6-Benzylaminopurine-dependent starch accumulation is key to drought tolerance in tall fescue subjected to water deficiency. Physiology and Molecular Biology of Plants, 31, 329-342. [ DOI:10.1007/s12298-025-01559-5] 286. Rossi, S., Huang, B. (2025). Research advances in molecular mechanisms regulating heat tolerance in cool‐season turfgrasses. Crop Science, 65, e21339. [ DOI:10.1002/csc2.21339] 287. Rutledge, J.M., Volenec, J.J., Hurley, R.H., Reicher, Z.J. (2012). Seasonal changes in morphology and physiology of roughstalk bluegrass. Crop Science, 52, 858-868. [ DOI:10.2135/cropsci2011.04.0225] 288. Mirzaei, S., Esmaeili, S. (2025). Evaluation of seed germination, visual quality, and morpho-physiological characteristics of several turfgrasses native to Iran. Plant Productions, 48, 157-171. 289. Salehi, H., Khosh-Khui, M. (2004). Turfgrass monoculture, cool-cool, and cool-warm season seed mixture establishment and growth responses. HortScience, 39, 1732-1735. [ DOI:10.21273/HORTSCI.39.7.1732] 290. Salehi, H., Salehi, M. (2012). Investigations on resistance of tall fescue (Festuca arundinacea Scherb.) accessions to drought stress. BioTechnology: An Indian Journal, 6, 221-225. 291. Salehi, M., Salehi, H., Niazi, A., Ghobadi, C. (2014). Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Molecular Biotechnology, 56, 248-257. [ DOI:10.1007/s12033-013-9703-3] 292. Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M. (2021). Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports, 40, 1305-1329. [ DOI:10.1007/s00299-021-02683-8] 293. Sarkar, D., Bhowmik, P.C., Shetty, K. (2009). Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. Journal of the American Society for Horticultural Science, 134, 210-220. [ DOI:10.21273/JASHS.134.2.210] 294. Sarmast, M. K., Salehi, H., & Niazi, A. (2015). Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologiae Plantarum, 37, 192. [ DOI:10.1007/s11738-015-1942-4] 295. Scafaro, A.P., Posch, B.C., Evans, J.R., Farquhar, G.D., Atkin, O.K. (2023). Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nature Communications, 14, 2820. [ DOI:10.1038/s41467-023-38496-4] 296. Sehar, Z., Masood, A., Khan, N.A. (2019). Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environmental and Experimental Botany, 161, 277-289. [ DOI:10.1016/j.envexpbot.2019.01.010] 297. Seki, M., Umezawa, T., Urano, K., Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10, 296-302. [ DOI:10.1016/j.pbi.2007.04.014] 298. Seydavi, B. Investigation of the Effect of Heat and Shade Stresses on Tall Fescue (Festuca arundinacea Scherb.) Turfgrass. M.Sc. Thesis, Shahid Chamran University of Ahvaz, Iran. 299. Shao, H., Liang, Z., Shao, M. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at tillering stage. Journal of the Science of Food and Agriculture, 86. [ DOI:10.1016/j.colsurfb.2005.01.011] 300. Sheikh-Mohamadi, M. H., Etemadi, N., & Arab, M. (2018). Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience, 53, 1062-1068. [ DOI:10.21273/HORTSCI13088-18] 301. Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu, G., Bajwa, V.S. (2012). Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. Botany, 90, 651-668. [ DOI:10.1139/b2012-030] 302. Shu, C. (2012). Differential quadrature and its application in engineering. Springer Science and Business Media. 303. Siddiqui, Z.S., Shahid, H., Cho, J.I., Park, S.H., Ryu, T.H., Park, S.C. (2016). Physiological responses of two halophytic grass species under drought stress environment. Acta Botanica Croatica, 75, 31-38. [ DOI:10.1515/botcro-2016-0018] 304. Soliman, W.S., Sugiyama, S., Abbas, A.M. (2018). Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Horticulture, Environment, and Biotechnology, 59, 29−36. [ DOI:10.1007/s13580-018-0004-4] 305. Su, K., Bremer, D.J., Keeley, S.J., Fry, J.D. (2007). Effects of high temperature and drought on a hybrid bluegrass compared with Kentucky bluegrass and tall fescue. Crop Science, 47, 2152-2161. [ DOI:10.2135/cropsci2006.12.0781] 306. Sun, T., Wang, W., Chan, Z. (2024). How do cool-season turfgrasses respond to high temperature: progress and challenges. Grass Research 4, e010. doi: 10.48130/grares-0024-0008 [ DOI:10.48130/grares-0024-0008] 307. Sun, X., Zhu, J., Li, X., Li, Z., Han, L., Luo, H. (2020). AsHSP26. 8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biology, 20, 1-19. [ DOI:10.1186/s12870-020-02369-5] 308. Sun, S., An, M., Han, L., & Yin, S. (2015). Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience, 50, 1518-1523. [ DOI:10.21273/HORTSCI.50.10.1518] 309. Tada, Y., Kochiya, R., Toyoizumi, M., Takano, Y. (2023). Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress. Plant Biotechnology, 40, 301-309. [ DOI:10.5511/plantbiotechnology.23.0721a] 310. Tada, Y., Komatsubara, S., Kurusu, T. (2014). Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. AoB PLANTS, 6, plu041. doi: 10.1093/aobpla/plu041 [ DOI:10.1093/aobpla/plu041] 311. Tamang, B.G., López, J.R., McCoy, E., Haaning, A., Sallam, A., Steffenson, B.J., Muehlbauer, G.J., Smith, K.P., & Sadok, W. (2022). Association between xylem vasculature size and freezing survival in winter barley. Journal of Agronomy and Crop Science, 208, 362-371. [ DOI:10.1111/jac.12537] 312. Tang, M., Li, Z., Luo, L., Cheng, B., Zhang, Y., Zeng, W., Peng, Y. (2020). Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. International Journal of Molecular Sciences, 21, 7460. [ DOI:10.3390/ijms21207460] 313. Trinh, M.D.L., Masuda, S. (2022). Chloroplast pH homeostasis for the regulation of photosynthesis. Frontiers in Plant Science, 13, 919896. [ DOI:10.3389/fpls.2022.919896] 314. Uddin, M.K., Juraimi, A.S., Ismail, M.R., Hossain, M.A., Othman, R., Abdul Rahim, A. (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal, 1, 905468. [ DOI:10.1100/2012/905468] 315. Van Huylenbroeck, J.M., Van Bockstaele, E. (2001). Effects of shading on photosynthetic capacity and growth of turfgrass species. International Turfgrass Society Research Journal, 9, 353-359. 316. Veerasamy, M., He, Y., Huang, B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science, 132, 467-472. [ DOI:10.21273/JASHS.132.4.467] 317. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61, 199-223. [ DOI:10.1016/j.envexpbot.2007.05.011] 318. Wang, K., Zhang, X., Ervin, E. (2013). Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. Journal of Plant Nutrition, 36, 1549-1564. [ DOI:10.1080/01904167.2013.799184] 319. Wang, S., Zhang, Q., Watkins, E. (2011). Evaluation of salinity tolerance of prairie junegrass, a potential low-maintenance turfgrass species. HortScience, 46, 1038-1045. [ DOI:10.21273/HORTSCI.46.7.1038] 320. Wang, Z., Huang, B. (2004). Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44, 1729-1736. [ DOI:10.2135/cropsci2004.1729] 321. Wang, Z., Huang, B., Xu, Q. (2003). Effects of abscisic acid on drought responses of Kentucky bluegrass. Journal of the American Society for Horticultural Science, 128, 36-41. [ DOI:10.21273/JASHS.128.1.36] 322. Wasim, M. A., Naz, N. (2020). Anatomical adaptations of tolerance to salt stress in Cenchrus ciliaris L., a saline desert grass. JAPS: Journal of Animal and Plant Sciences, 30. [ DOI:10.36899/JAPS.2020.6.0176] 323. Watson‐Lazowski, A., Papanicolaou, A., Koller, F., Ghannoum, O. (2020). The transcriptomic responses of C4 grasses to subambient CO2 and low light are largely species-specific and only refined by photosynthetic subtype. The Plant Journal, 101, 1170-1184. [ DOI:10.1111/tpj.14583] 324. Wen, S., Liu, B., Long, S., Gao, S., Liu, Q., Liu, T., Xu, Y. (2022). Low nitrogen level improves low-light tolerance in tall fescue by regulating carbon and nitrogen metabolism. Environmental and Experimental Botany, 194, 104749. [ DOI:10.1016/j.envexpbot.2021.104749] 325. Wherley, B.G., Gardner, D.S., Metzger, J.D. (2005). Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. Crop Science, 45, 562-568. [ DOI:10.2135/cropsci2005.0562] 326. Xiang, M., Yu, S., Gopinath, L., Salehi, H., Moss, J.Q., Wu, Y. (2023). Raising mowing height improves freeze tolerance of putting green-type bermudagrass. Hortscience, 58, 1277-1281. [ DOI:10.21273/HORTSCI17351-23] 327. XXie, F., Shi, Z., Zhang, G., Zhang, C., Sun, X., Yan, Y., Zhao, W., Guo, Z., Zhang, L., Fahad, S., Saud, S., Chen, Y. (2020). Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 274, 109674. [ DOI:10.1016/j.scienta.2020.109674] 328. Xu, C., Huang, B. (2012). Comparative analysis of proteomic responses to single and simultaneous drought and heat stress for two Kentucky bluegrass cultivars. Crop Science, 52, 1246-1260. [ DOI:10.2135/cropsci2011.10.0551] 329. Xu, R., Fujiyama, H. (2013). Comparison of ionic concentration, organic solute accumulation and osmotic adaptation in Kentucky bluegrass and tall fescue under NaCl stress. Soil Science and Plant Nutrition, 59, 168-179. [ DOI:10.1080/00380768.2012.763215] 330. Xu, L., Han, L., Huang, B. (2011). Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 136, 247-255. [ DOI:10.21273/JASHS.136.4.247] 331. Xu, L., Yu, J., Han, L., Huang, B. (2013). Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environmental and Experimental Botany, 89, 28-35. [ DOI:10.1016/j.envexpbot.2012.12.001] 332. Xu, L.X., Li, X.S., Han, L.B., Li, D.Y., Song, G.L. (2017). Epichloë endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science, 82, 90-97. [ DOI:10.17660/eJHS.2017/82.2.4] 333. Xu, Q., Huang, B. (2001). Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science, 41, 127-133. [ DOI:10.2135/cropsci2001.411127x] 334. Xu, Q., Huang, B. (2006). Seasonal changes in root metabolic activity and nitrogen uptake for two cultivars of creeping bentgrass. HortScience, 41, 822-826. [ DOI:10.21273/HORTSCI.41.3.822] 335. Xu, S., Li, J., Zhang, X., Wei, H., Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274-285. [ DOI:10.1016/j.envexpbot.2005.03.002] 336. Xu, Y., Huang, B. (2007). Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science, 132, 185-192. [ DOI:10.21273/JASHS.132.2.185] 337. Xu, Y., Wang, J., Bonos, S.A., Meyer, W.A., Huang, B. (2018). Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences, 19, 116. [ DOI:10.3390/ijms19010116] 338. Xu, Y., Zhan, C., Huang, B. (2011). Heat shock proteins in association with heat tolerance in grasses. International Journal of Proteomics, 2011, 529648. [ DOI:10.1155/2011/529648] 339. Yamamoto, N., Takano, T., Tanaka, K., Ishige, T., Terashima, S., Endo, C., Kurusu, T., Yajima, S., Yano, K., Tada, Y. (2015). Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Frontiers in Plant Science, 6, 241. [ DOI:10.3389/fpls.2015.00241] 340. Xuan, J., Song, Y., Zhang, H., Liu, J., Guo, Z., Hua, Y. (2013). Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia matrella. PloS one, 8, e75705. [ DOI:10.1371/journal.pone.0075705] 341. Yang, W.Z., Fu, J.J., Yang, L.Y., Zhang, X., Zheng, Y.L., Feng, F., Xu, Y.F. (2014). Protective effects of complementary Ca 2+ on low-light-induced oxidative damage in tall fescue. Russian Journal of Plant Physiology, 61, 818-827. [ DOI:10.1134/S1021443714060211] 342. Yang, Y., Wassie, M., Liu, N.F., Deng, H., Zeng, Y.B., Xu, Q., Hu, L.X. (2022). Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass (Cynodon dactylon). Frontiers in Plant Science, 13, 956410. [ DOI:10.3389/fpls.2022.956410] 343. Yang, Z., Miao, Y., Yu, J., Liu, J., Huang, B. (2014). Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae, 170, 75-81. [ DOI:10.1016/j.scienta.2014.02.005] 344. Yang, Z., Xu, L., Yu, J., Dacosta, M., Huang, B. (2013). Changes in carbohydrate metabolism in two Kentucky bluegrass cultivars during drought stress and recovery. Journal of the American Society for Horticultural Science, 138, 24-30. [ DOI:10.21273/JASHS.138.1.24] 345. Yu, H., Zheng, H., Liu, Y., Yang, Q., Li, W., Zhang, Y., Fu, F. (2021). Antifreeze protein from Ammopiptanthus nanus functions in temperature-stress through domain A. Scientific Reports, 11(1), 8458. [ DOI:10.1038/s41598-021-88021-0] 346. Zhang, X., Zhuang, L., Liu, Y., Yang, Z., Huang, B. (2020). Protein phosphorylation associated with drought priming-enhanced heat tolerance in a temperate grass species. Horticulture Research, 7. [ DOI:10.1038/s41438-020-00440-8] 347. Zhang, Y., Du, H. (2016). Differential accumulation of proteins in leaves and roots associated with heat tolerance in two Kentucky bluegrass genotypes differing in heat tolerance. Acta Physiologiae Plantarum, 38, 1-15. [ DOI:10.1007/s11738-016-2232-5] 348. Zhang, X., Gao, Y., Zhuang, L., Huang, B. (2023). Phosphatidic acid priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) involves lipidomic reprogramming of lipids for membrane stability and stress signaling. Plant Growth Regulation, 99, 527-538. [ DOI:10.1007/s10725-022-00924-8] 349. Zhang, X., Goatley, M., Wang, K., Goddard, B., Harvey, R., Brown, I., Kosiarski, K. (2024). Silicon improves heat and drought stress tolerance associated with antioxidant enzyme activity and root viability in creeping bentgrass (Agrostis stolonifera L.). Agronomy, 14(6), 1176. [ DOI:10.3390/agronomy14061176] 350. Zhong, S., Xu, Y., Meng, B., Loik, ME, Ma, JY, Sun, W. (2019). Nitrogen addition increases the sensitivity of photosynthesis to drought and re-watering differentially in C3 versus C4 grass species. Frontiers in Plant Science, 10, 815. [ DOI:10.3389/fpls.2019.00815]
|