[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 8، شماره 1 - ( بهار و تابستان 1402 ) ::
جلد 8 شماره 1 صفحات 46-21 برگشت به فهرست نسخه ها
اثر تعدیل‌کننده بیوچارِ پوسته برنج بر ویژگی‌های مورفو-فیزیولوژیک و بیوشیمیایی جعفری آفریقایی (Tagetes erecta L.) در شرایط تنش خشکی
مریم توکلی والا ، فرزاد نظری* ، سیروان بابایی
دانشگاه کردستان
چکیده:   (880 مشاهده)
گل‌‌های فصلی، از عناصر اصلی در احداث فضای سبز می‌‌باشند که کشت آن‌‌ها با تنش خشکی محدود می‌‌شود. به­نظر می‌رسد بهبود محیط کشت این گل‌‌ها با مواد آلی مانند بیوچار (زغال زیستی)، می‌‌تواند یک راهکار پایدار و سازگار با محیط‌زیست برای افزایش تحمل به تنش خشکی باشد. در همین راستا، پژوهشی گلخانه‌‌ای برای بررسی اثرهای خشکی بر ویژگی‌های ریخت­شناسی، فیزیولوژیک و بیوشیمیایی جعفری آفریقایی با کاربرد بیوچار پوسته برنج انجام شد. آزمایش به‌‌صورت فاکتوریل با دو عامل تیمار آبیاری در سه سطح 100، 50 و 25% ظرفیت مزرعه و کاربرد بیوچار در سه سطح صفر، 5/3 و 7% وزنی در قالب طرح به­طور­کامل تصادفی با 5 تکرار انجام گرفت. نتایج نشان داد که تنش خشکی سبب کاهش ویژگی‌های ریخت­شناسی ارتفاع گیاه، وزن خشک شاخساره، تعداد برگ، تعداد شاخه‌‌های جانبی، تعداد گل، و طول و قطر گل شد به‌‌طوری­که کمترین مقدار آن‌‌ها در 25% ظرفیت مزرعه به‌دست آمد. همچنین، کاربرد بیوچار باعث افزایش ویژگی‌های ریخت­شناسی بیان­شده در شرایط تنش خشکی شد. مقدار سبزینه a، سبزینه b، سبزینه کل، کاروتنوئید، پراکسید‌‌هیدروژن، پرولین، مالون‌‌دی‌‌آلدئید و کربوهیدرات‌‌های محلول کل و نیز فعالیت آنزیم‌‌های پراکسیداز و سوپراکسید‌‌دیسموتاز در شرایط خشکی افزایش یافتند و کاربرد بیوچار باعث کاهش مقادیر این ویژگی­ها در شرایط خشکی شد. همچنین، محتوای نسبی آب برگ، شاخص‌‌پایداری غشاء یاخته‌‌ای و پروتئین‌‌های محلول کل در شرایط خشکی روند کاهشی نشان دادند که استفاده از بیوچار باعث بهبود این ویژگی­ها در شرایط تنش خشکی شد. به‌طورکلی اثرگذاری مقدار 7% وزنی بیوچار در مقایسه با 5/3% آن در کاهش اثرهای نامناسب تنش خشکی بیشتر بود. بنابراین، به‌طورکلی می‌توان بیوچار پوسته برنج به مقدار 7% وزنی را به‌عنوان یک بهبوددهنده مناسب خاک، برای افزایش تحمل به تنش خشکی در گل‌های فصلی برای کشت در فضای سبز، توصیه کرد هرچند که نیاز به بررسی‌های بیشتر هم به‌صورت کشت مزرعه‌ای و هم در مقدار‌های دیگر کاربرد، می‌باشد.
واژه‌های کلیدی: آنتی‌‌اکسیدان، زغال زیستی، کم‌‌آبی، گل‌های فصلی
متن کامل [PDF 1205 kb]   (189 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي
دریافت: 1401/12/11 | پذیرش: 1402/1/30 | انتشار: 1402/7/16
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Abdel-Hameed, E.S.S., Bazaid, S.A., Hagag, H.A. (2016). Chemical characterization of Rosa damascena Miller var. trigintipetala Dieck essential oil and it's in vitro genotoxic and cytotoxic properties. Journal of Essential Oil Research, 28(2), 121-129. [DOI:10.1080/10412905.2015.1099120]
2. Abideen, Z., Koyro, H.W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., Gul, B.J.P.B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology, 22(2), 259-266. [DOI:10.1111/plb.13054]
3. Akhtar, S.S., Li, G., Andersen, M.N., Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44. [DOI:10.1016/j.agwat.2014.02.016]
4. Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
5. Ali, M.A., Mjeed, A.J. (2017). Biochar and nitrogen fertilizers effects on growth and flowering of garland chrysanthemum (Chrysanthemum coronarium L.) plant. Kurdistan Journal of Applied Research, 2(1), 8-14. ‌ [DOI:10.24017/science.2017.1.2]
6. Alizadeh, A., Alizade, V., Nassery, L., Eivazi, A. (2011). Effect of drought stress on apple dwarf rootstocks. Technical Journal of Engineering and Applied Science, 1(3), 86-94.
7. Amiri, S. R., Parsa, M., Ganjeali., A. (2010). The Effects of Drought Stress at Different Phenological Stages on Morphological Traits and Yield Components of a Chickpea (Cicer arietinum L.) under Greenhouse Conditions. Field Crops Research, 15(1), 157-166. (In Persian).
8. Asghari, M.R. (2013). New Hormones and Plant Growth Regulators (Non-classical), the Key to Managing Plant Growth and Sustainable Production of Healthy Crops in Agriculture. Urmia Press. 325 pp.
9. Babaei, K., Moghaddam, M., Farhadi, N., Pirbalouti, A.G. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284, 110-116. [DOI:10.1016/j.scienta.2021.110116]
10. Basso, A.S., Miguez, F.E., Laird, D.A., Horton, R., Westgate, M. (2013). Assessing potential of biochar for increasing water holding capacity of sandy soils. GCB Bioenergy, 5(2), 132-143. [DOI:10.1111/gcbb.12026]
11. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
12. Beyer, W.F. Jr., Fridovich, I. (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566. [DOI:10.1016/0003-2697(87)90489-1]
13. Bradford, M.M. (1979). Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein dye binding. Annul Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
14. Changxun, G., Zhiyong, P., Shuang, P. (2016). Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil. Soil Science and Plant Nutrition, 62(2), 194-200. [DOI:10.1080/00380768.2016.1150789]
15. Chaves, M.M., Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. [DOI:10.1093/jxb/erh269]
16. Conversa, G., Bonasia, A., Lazzizera, C., Elia, A. (2015). Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants Frontiers in Plant Science, 6, 429. [DOI:10.3389/fpls.2015.00429]
17. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B. (2016). Biochar to improve soil fertility, A review. Agronomy for Sustainable Development, 36(2), 1-18. [DOI:10.1007/s13593-016-0372-z]
18. Durukan, H., Demirbas, A., Turkekul, I. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communications in Soil Science and Plant Analysis, 51(21), 2735-2745. [DOI:10.1080/00103624.2020.1849257]
19. Erdogan, U., Cakmakci, R., Varmazyarı, A., Turan, M., Erdogan, Y., Kıtır, N. (2016). Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture, 103(1), 67-76. [DOI:10.13080/z-a.2016.103.009]
20. Farooq, M., Romdhane, L., Rehman, A., Al-Alawi, A.K., Al-Busaidi, W.M., Asad, S.A., Lee, D.J. (2021). Integration of seed priming and biochar application improves drought tolerance in cowpea. Journal of Plant Growth Regulation, 40, 1972-1980. [DOI:10.1007/s00344-020-10245-7]
21. Fattahi, M., Bonfill, M., Fattahi, B., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Palazon, J. (2016). Secondary metabolites profiling of Dracocephalum kotschyi Boiss. at three phenological stages using uni-and multivariate methods. Journal of Applied Research on Medicinal and Aromatic Plants, 3(4), 177-185. [DOI:10.1016/j.jarmap.2016.04.002]
22. Galmes, J., Flexas, J., Save, R., Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Journal of Plant and Soil, 290, 139-155. [DOI:10.1007/s11104-006-9148-6]
23. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
24. Guseynova, I., Suleymanov, S., Aliyev, J. (2006). Protein composition and native state of pigments of thylakoid membrane of wheat genotypes differently tolerant to water stress. Biochemistry, 71(2), 173-177. [DOI:10.1134/S000629790602009X]
25. Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) Merr. under drought stress. Pakistan Journal of Botany, 49, 7-13.
26. Haider, G., Koyro, H.W., Azam, F., Steffens, D., Müller, C., Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395(1-2), 141-157. [DOI:10.1007/s11104-014-2294-3]
27. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463-499. [DOI:10.1146/annurev.arplant.51.1.463]
28. Hemeda, H.M., Kelin, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetables extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
29. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Journal of Plant Physiology, 84, 55-60. [DOI:10.1111/j.1399-3054.1992.tb08764.x]
30. Jafari, S., Garmdareh, S. E. H., Azadegan, B. (2019). Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.). Scientia Horticulturae, 253, 128-133. [DOI:10.1016/j.scienta.2019.04.033]
31. Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis, 51(12), 1658-1669. [DOI:10.1080/00103624.2020.1791157]
32. Karthikeyan, B., Joe, M., Cheruth, A. (2009). Response of some medicinal plants to vesicular arbuscular mycorrhizal inoculations. Journal of Scientific Research, 1(2), 381-386. [DOI:10.3329/jsr.v1i2.1675]
33. Khan, Z., Khan, M. N., Zhang, K., Luo, T., Zhu, K., Hu, L. (2021). The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Industrial Crops and Products, 171, 113878. [DOI:10.1016/j.indcrop.2021.113878]
34. Khattab, M.M., Shaban, A.E., El-Shrief, A.H., El-Deen Mohamed, A. (2011). Growth and productivity of pomegranate trees under different irrigation levels. I: Vegetative growth and fruiting. Journal of Horticultural Science and Ornamental Plants, 3(2), 194-198.
35. Khosravi, N., Dehestani Ardakani, M., Shirmardi, M., Gholamnezhad, J., Naserinasab, F. (2021). Effect of biochar and some biologic fertilizers on flowering and morphophysiological characteristics of Narcissus tazetta L. var. Shahla. Iranian Journal of Horticultural Science and Technology, 22(2), 199-202.
36. Lehmann, J., da Silva, J.P., Rondon, M., da Silva, C.M., Greenwood, J., Nehls, T., Steiner, C., Glaser, B. (2002). Slash-and-char: a feasible alternative for soil fertility management in the Central Amazon? 17th World Congress of Soil Science, Thailand, 14-21.
37. Lee, H.S. (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing, 195-197.
38. Li, J.H., Lv, G.H., Bai, W.B., Liu, Q., Zhang, Y.C., Song, J.Q. (2016). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment, 57(10), 4681-4693.
39. Litchenthaler, H.K., Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1-6. [DOI:10.1002/0471142913.faf0402s01]
40. Liu, B., Cheng, L., Ma, F., Zou, Y., Liang, D. (2012). Growth, biomass allocation, and water use efficiency of 31 apple cultivars grown under two water regimes. Agroforestry Systems, 84(2), 117-129. [DOI:10.1007/s10457-011-9427-y]
41. Lobato, A.K.S., Oliveira Neto, C.F., Santos Filho, B.G., Costa, R.C.L., Cruz, F.J.R., Neves, H.K.B., Lopes, M.J.S. (2008). Physiological and biochemical behavior in soybean (Glycine max cv. Sambaiba) plants under water deficit. Journal of Crop Science, 2, 25-32.
42. Lyu, S., Du, G., Liu, Z., Zhao, L., Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38(9), 1-10. [DOI:10.1007/s11738-016-2236-1]
43. Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. [DOI:10.1016/j.abb.2005.10.018]
44. Major, J., Lehmann, J., Rondon, M., Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366-1379. [DOI:10.1111/j.1365-2486.2009.02044.x]
45. Masojídek, J., Trivedi, S., Halshaw, L., Alexiou, A., Hall, D.O. (1991). The synergistic effect of drought and light stresses in sorghum and pearl millet. Plant Physiology, 96(1), 198-207. [DOI:10.1104/pp.96.1.198]
46. Mehari, Z.H., Elad, Y., Rav-David, D., Graber, E.R., Harel, Y.M. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1-2), 31-44. [DOI:10.1007/s11104-015-2445-1]
47. Metwally, S.A., Khalid, K.A., Abou-leila, B.H. (2013). Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis. Nusantara Bioscience, 5(2), 65-69. [DOI:10.13057/nusbiosci/n050203]
48. Molnár, I. (2002). The effects of drought stress on the photosynthetic processes of wheat and of Aegilops biuncialis genotypes originating from various habitats. Acta Biologica Szegediensis, 46(4), 115-116.
49. Naderi Arefi, A. (2020). Effects of drought stress on non-enzymatic antioxidants and photosynthetic pigments of cotton plant species (Gossypium spp.). Iranian Journal of Cotton Research, 8(1), 137-154. (In Persian).
50. Naseri Moghadam, A., Bayat, H., Aminifard, M.H., Moradinezhad, F. (2020). Effects of drought and salinity stresses on some morphological and physiological ‎characteristics of Narcissus tazetta L. flower. Iranian Journal of Horticultural Science, 51(1), 79-90. (In Persian).
51. Nazari, F., Khosh-Khui, M., Salehi, H., Eshghi, S. (2007). Effect of natural zeolite on vegetative and physiological characteristics of African marigold (Tagetes erecta L. 'Queen'). Horticulture, Environment, and Biotechnology, 48, 241-245.
52. Nikolaeva, M., Maevskaya, S., Shugaev, A., Bukhov, N. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57(1), 87-95. [DOI:10.1134/S1021443710010127]
53. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3(2), 195-206.
54. Parida, A.K., Dagaonkar, V.S., Phalak, M.S., Aurangabadkar, L.P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum, 30(5), 619-627. [DOI:10.1007/s11738-008-0157-3]
55. Patel, P.K., Hemantaranjan, A. (2012). Antioxidant defence system in chickpea (Cicer arietinum L.): influence by drought stress implemented at pre-and post-anthesis stage. American Journal of Plant Physiology, 10, 3932. [DOI:10.3923/ajpp.2012.164.173]
56. Prapagdee, S., Tawinteung, N. (2017). Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L. Environmental Science and Pollution Research, 24(10), 9460-9467. [DOI:10.1007/s11356-017-8633-1]
57. Rahdari, P., Hosseini, S.M., Tavakoli, S. (2012). The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Medicinal Plants Research, 6, 1539-1547. [DOI:10.5897/JMPR11.698]
58. Rahimiyan, H., Banayan, M. (1996). Physiological Bases of Plant Breeding. Jahad Daneshgahi Publications. Ferdowsi University of Mashhad. 344 pp.
59. Rao, D.E., Chaitanya, K.V. (2016). Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biologia Plantarum, 60(2), 201-218. [DOI:10.1007/s10535-016-0584-8]
60. Safahani, A.R., Noora, R. (2018). Effect of different levels of biochar on physiological traits of pumpkin under water shortage stress. Journal of Iranian Plant Ecophysiological Research, 13(49), 13-32.
61. Safari, S., Nazari, F., Vafaee, Y., Teixeira da Silva, J.A. (2023). Impact of rice husk biochar on drought stress tolerance in perennial ryegrass (Lolium perenne L.). Journal of Plant Growth Regulation, 42(2), 810-826. [DOI:10.1007/s00344-022-10588-3]
62. Sairam, R.K., Siiukla. D.S., Saxsena, D.C. (1997). Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheet genotypes. Biologia Plantarum, 40, 357-364. [DOI:10.1023/A:1001009812864]
63. Salehi, H., Bahadoran, M. (2015). Growth and flowering of two tuberoses (Polianthes tuberosa L.) cultivars under deficit irrigation by saline water. Journal of Agricultural Science and Technology, 17(2), 415-426. ‌
64. Samarah, N., Mullen, R., Cianzio, S., (2004). Size distribution and mineral nutrients of soybean seeds in response to drought stress. Journal of Plant Nutrition, 27(5), 815-835. [DOI:10.1081/PLN-120030673]
65. Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K. 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52, 131-138. [DOI:10.1016/j.envexpbot.2004.01.011]
66. Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces, 60(2), 229-235. [DOI:10.1016/j.colsurfb.2007.06.016]
67. Scarfone, S.C. (2007). Professional Planting Design an Architectural and Horticultural Approach for Creating Mixed Bed Plantings. Hoboken: Wiley, 272 p.
68. Semida, W.M., Beheiry, H.R., Sétamou, M., Simpson, C.R., Abd El-Mageed, T.A., Rady, M.M., Nelson, S.D., (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333-347. [DOI:10.1016/j.sajb.2019.11.015]
69. Sepaskhah, A.R., Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2), 216-222.‌ [DOI:10.1080/14620316.2009.11512507]
70. Setayesh-Mehr, Z., Ganjeali, A. (2013). Effects of drought stress on growth and physiological characteristics of dill (Anethum graveolens L.). Journal of Horticultural Science, 27(1), 27-35. (In Persian).
71. Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M., Ebrahimie, E. (2014). Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture. PLoS One, 9(5), e97288. [DOI:10.1371/journal.pone.0097288]
72. Šircelj, H., Tausz, M., Grill, D., Batič, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162(12), 1308-1318. [DOI:10.1016/j.jplph.2005.01.018]
73. Soroori, S., Danaee, E., Hemmati, K., Ladan Moghadam, A. (2021). Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. Journal of Ornamental Plants, 11(1), 13-30.
74. Tardieu, F., Parent, B., Caldeira, C.F., Welcker, C. (2014). Genetic and physiological controls of growth under water deficit. Plant Physiology, 164(4), 1628-1635.‌ [DOI:10.1104/pp.113.233353]
75. Toscano, S., Romano, D., Tribulato, A., Patanè, C. (2017). Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologiae Plantarum, 39(8), 1-12. [DOI:10.1007/s11738-017-2484-8]
76. Upadhyaya, H., Panda, S. (2004). Responses of Camellia sinensis to drought and rehydration. Biologia Plantarum, 48(4), 597-600. [DOI:10.1023/B:BIOP.0000047158.53482.37]
77. Wang, Q., Zhao, R., Chen, Q., Teixeira da Silva, J.A., Chen, L., Yu, X. (2019). Physiological and biochemical responses of two herbaceous peony cultivars to drought stress. HortScience, 54(3), 492-498. [DOI:10.21273/HORTSCI13704-18]
78. Wang, Y., Pan, F., Wang, G., Zhang, G., Wang, Y., Chen, X., Mao, Z. (2014). Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Scientia Horticulturae, 175, 9-15. [DOI:10.1016/j.scienta.2014.05.029]
79. Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C. (2007). Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300(1), 9-20. [DOI:10.1007/s11104-007-9391-5]
80. Waseem, M., Ali, A., Tahir, M., Nadeem, M., Ayub, M., Tanveer, A., Hussain, M. (2011). Mechanism of drought tolerance in plant and its management through different methods. Continental Journal of Agriculture Science, 5, 10-25. [DOI:10.5455/ijavms.20110421051913]
81. Yazdanpanah, S., Baghizadeh, A., Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research, 6(4), 798-807.
82. Yin, C., Peng, Y., Zang, R., Zhu, Y., Li, C. (2005). Adaptive responses of Populus kangdingensis to drought stress. Physiologia Plantarum, 123(4), 445-451. [DOI:10.1111/j.1399-3054.2005.00477.x]
83. Yuan, J.H., Xu, R.K., Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. [DOI:10.1016/j.biortech.2010.11.018]
84. Zadeh Bagheri, M., Al-Boali, F., Sadeghi, H., Javanmard, Sh. (2014). The effect of distant irrigation on ionic changes, relative water content, prolin level, and some general characteristics of petunia. Journal of Horticultural Science, 28 (3), 347-359. (In Persian).
85. Zahedifar, M., Najafian, S. (2017). Ocimum basilicum L. growth and nutrient status as influenced by biochar and potassium-nano chelate fertilizers. Archives of Agronomy and Soil Science, 63(5), 638-650. [DOI:10.1080/03650340.2016.1233323]
86. Zollinger, N., Kjelgren, R., Cerny-Koenig, T., Kopp, K., Koenig, R. (2006). Drought ‎responses of six ornamental herbaceous perennials. Scientia Horticulturae, 109 (3), 267-274.‎ [DOI:10.1016/j.scienta.2006.05.006]
87. Abdel-Hameed, E.S.S., Bazaid, S.A., Hagag, H.A. (2016). Chemical characterization of Rosa damascena Miller var. trigintipetala Dieck essential oil and it's in vitro genotoxic and cytotoxic properties. Journal of Essential Oil Research, 28(2), 121-129. [DOI:10.1080/10412905.2015.1099120]
88. Abideen, Z., Koyro, H.W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., Gul, B.J.P.B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology, 22(2), 259-266. [DOI:10.1111/plb.13054]
89. Akhtar, S.S., Li, G., Andersen, M.N., Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44. [DOI:10.1016/j.agwat.2014.02.016]
90. Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337-1344. [DOI:10.1046/j.1365-3040.2001.00778.x]
91. Ali, M.A., Mjeed, A.J. (2017). Biochar and nitrogen fertilizers effects on growth and flowering of garland chrysanthemum (Chrysanthemum coronarium L.) plant. Kurdistan Journal of Applied Research, 2(1), 8-14. ‌ [DOI:10.24017/science.2017.1.2]
92. Alizadeh, A., Alizade, V., Nassery, L., Eivazi, A. (2011). Effect of drought stress on apple dwarf rootstocks. Technical Journal of Engineering and Applied Science, 1(3), 86-94.
93. Amiri, S. R., Parsa, M., Ganjeali., A. (2010). The Effects of Drought Stress at Different Phenological Stages on Morphological Traits and Yield Components of a Chickpea (Cicer arietinum L.) under Greenhouse Conditions. Field Crops Research, 15(1), 157-166. (In Persian).
94. Asghari, M.R. (2013). New Hormones and Plant Growth Regulators (Non-classical), the Key to Managing Plant Growth and Sustainable Production of Healthy Crops in Agriculture. Urmia Press. 325 pp.
95. Babaei, K., Moghaddam, M., Farhadi, N., Pirbalouti, A.G. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284, 110-116. [DOI:10.1016/j.scienta.2021.110116]
96. Basso, A.S., Miguez, F.E., Laird, D.A., Horton, R., Westgate, M. (2013). Assessing potential of biochar for increasing water holding capacity of sandy soils. GCB Bioenergy, 5(2), 132-143. [DOI:10.1111/gcbb.12026]
97. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. [DOI:10.1007/BF00018060]
98. Beyer, W.F. Jr., Fridovich, I. (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566. [DOI:10.1016/0003-2697(87)90489-1]
99. Bradford, M.M. (1979). Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein dye binding. Annul Biochemistry, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
100. Changxun, G., Zhiyong, P., Shuang, P. (2016). Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil. Soil Science and Plant Nutrition, 62(2), 194-200. [DOI:10.1080/00380768.2016.1150789]
101. Chaves, M.M., Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. [DOI:10.1093/jxb/erh269]
102. Conversa, G., Bonasia, A., Lazzizera, C., Elia, A. (2015). Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants Frontiers in Plant Science, 6, 429. [DOI:10.3389/fpls.2015.00429]
103. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B. (2016). Biochar to improve soil fertility, A review. Agronomy for Sustainable Development, 36(2), 1-18. [DOI:10.1007/s13593-016-0372-z]
104. Durukan, H., Demirbas, A., Turkekul, I. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communications in Soil Science and Plant Analysis, 51(21), 2735-2745. [DOI:10.1080/00103624.2020.1849257]
105. Erdogan, U., Cakmakci, R., Varmazyarı, A., Turan, M., Erdogan, Y., Kıtır, N. (2016). Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture, 103(1), 67-76. [DOI:10.13080/z-a.2016.103.009]
106. Farooq, M., Romdhane, L., Rehman, A., Al-Alawi, A.K., Al-Busaidi, W.M., Asad, S.A., Lee, D.J. (2021). Integration of seed priming and biochar application improves drought tolerance in cowpea. Journal of Plant Growth Regulation, 40, 1972-1980. [DOI:10.1007/s00344-020-10245-7]
107. Fattahi, M., Bonfill, M., Fattahi, B., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Palazon, J. (2016). Secondary metabolites profiling of Dracocephalum kotschyi Boiss. at three phenological stages using uni-and multivariate methods. Journal of Applied Research on Medicinal and Aromatic Plants, 3(4), 177-185. [DOI:10.1016/j.jarmap.2016.04.002]
108. Galmes, J., Flexas, J., Save, R., Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Journal of Plant and Soil, 290, 139-155. [DOI:10.1007/s11104-006-9148-6]
109. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
110. Guseynova, I., Suleymanov, S., Aliyev, J. (2006). Protein composition and native state of pigments of thylakoid membrane of wheat genotypes differently tolerant to water stress. Biochemistry, 71(2), 173-177. [DOI:10.1134/S000629790602009X]
111. Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) Merr. under drought stress. Pakistan Journal of Botany, 49, 7-13.
112. Haider, G., Koyro, H.W., Azam, F., Steffens, D., Müller, C., Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395(1-2), 141-157. [DOI:10.1007/s11104-014-2294-3]
113. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463-499. [DOI:10.1146/annurev.arplant.51.1.463]
114. Hemeda, H.M., Kelin, B.P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetables extracts. Journal of Food Science, 55, 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
115. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Journal of Plant Physiology, 84, 55-60. [DOI:10.1111/j.1399-3054.1992.tb08764.x]
116. Jafari, S., Garmdareh, S. E. H., Azadegan, B. (2019). Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.). Scientia Horticulturae, 253, 128-133. [DOI:10.1016/j.scienta.2019.04.033]
117. Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis, 51(12), 1658-1669. [DOI:10.1080/00103624.2020.1791157]
118. Karthikeyan, B., Joe, M., Cheruth, A. (2009). Response of some medicinal plants to vesicular arbuscular mycorrhizal inoculations. Journal of Scientific Research, 1(2), 381-386. [DOI:10.3329/jsr.v1i2.1675]
119. Khan, Z., Khan, M. N., Zhang, K., Luo, T., Zhu, K., Hu, L. (2021). The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Industrial Crops and Products, 171, 113878. [DOI:10.1016/j.indcrop.2021.113878]
120. Khattab, M.M., Shaban, A.E., El-Shrief, A.H., El-Deen Mohamed, A. (2011). Growth and productivity of pomegranate trees under different irrigation levels. I: Vegetative growth and fruiting. Journal of Horticultural Science and Ornamental Plants, 3(2), 194-198.
121. Khosravi, N., Dehestani Ardakani, M., Shirmardi, M., Gholamnezhad, J., Naserinasab, F. (2021). Effect of biochar and some biologic fertilizers on flowering and morphophysiological characteristics of Narcissus tazetta L. var. Shahla. Iranian Journal of Horticultural Science and Technology, 22(2), 199-202.
122. Lehmann, J., da Silva, J.P., Rondon, M., da Silva, C.M., Greenwood, J., Nehls, T., Steiner, C., Glaser, B. (2002). Slash-and-char: a feasible alternative for soil fertility management in the Central Amazon? 17th World Congress of Soil Science, Thailand, 14-21.
123. Lee, H.S. (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing, 195-197.
124. Li, J.H., Lv, G.H., Bai, W.B., Liu, Q., Zhang, Y.C., Song, J.Q. (2016). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment, 57(10), 4681-4693.
125. Litchenthaler, H.K., Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1-6. [DOI:10.1002/0471142913.faf0402s01]
126. Liu, B., Cheng, L., Ma, F., Zou, Y., Liang, D. (2012). Growth, biomass allocation, and water use efficiency of 31 apple cultivars grown under two water regimes. Agroforestry Systems, 84(2), 117-129. [DOI:10.1007/s10457-011-9427-y]
127. Lobato, A.K.S., Oliveira Neto, C.F., Santos Filho, B.G., Costa, R.C.L., Cruz, F.J.R., Neves, H.K.B., Lopes, M.J.S. (2008). Physiological and biochemical behavior in soybean (Glycine max cv. Sambaiba) plants under water deficit. Journal of Crop Science, 2, 25-32.
128. Lyu, S., Du, G., Liu, Z., Zhao, L., Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38(9), 1-10. [DOI:10.1007/s11738-016-2236-1]
129. Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. [DOI:10.1016/j.abb.2005.10.018]
130. Major, J., Lehmann, J., Rondon, M., Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366-1379. [DOI:10.1111/j.1365-2486.2009.02044.x]
131. Masojídek, J., Trivedi, S., Halshaw, L., Alexiou, A., Hall, D.O. (1991). The synergistic effect of drought and light stresses in sorghum and pearl millet. Plant Physiology, 96(1), 198-207. [DOI:10.1104/pp.96.1.198]
132. Mehari, Z.H., Elad, Y., Rav-David, D., Graber, E.R., Harel, Y.M. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1-2), 31-44. [DOI:10.1007/s11104-015-2445-1]
133. Metwally, S.A., Khalid, K.A., Abou-leila, B.H. (2013). Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis. Nusantara Bioscience, 5(2), 65-69. [DOI:10.13057/nusbiosci/n050203]
134. Molnár, I. (2002). The effects of drought stress on the photosynthetic processes of wheat and of Aegilops biuncialis genotypes originating from various habitats. Acta Biologica Szegediensis, 46(4), 115-116.
135. Naderi Arefi, A. (2020). Effects of drought stress on non-enzymatic antioxidants and photosynthetic pigments of cotton plant species (Gossypium spp.). Iranian Journal of Cotton Research, 8(1), 137-154. (In Persian).
136. Naseri Moghadam, A., Bayat, H., Aminifard, M.H., Moradinezhad, F. (2020). Effects of drought and salinity stresses on some morphological and physiological ‎characteristics of Narcissus tazetta L. flower. Iranian Journal of Horticultural Science, 51(1), 79-90. (In Persian).
137. Nazari, F., Khosh-Khui, M., Salehi, H., Eshghi, S. (2007). Effect of natural zeolite on vegetative and physiological characteristics of African marigold (Tagetes erecta L. 'Queen'). Horticulture, Environment, and Biotechnology, 48, 241-245.
138. Nikolaeva, M., Maevskaya, S., Shugaev, A., Bukhov, N. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57(1), 87-95. [DOI:10.1134/S1021443710010127]
139. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3(2), 195-206.
140. Parida, A.K., Dagaonkar, V.S., Phalak, M.S., Aurangabadkar, L.P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum, 30(5), 619-627. [DOI:10.1007/s11738-008-0157-3]
141. Patel, P.K., Hemantaranjan, A. (2012). Antioxidant defence system in chickpea (Cicer arietinum L.): influence by drought stress implemented at pre-and post-anthesis stage. American Journal of Plant Physiology, 10, 3932. [DOI:10.3923/ajpp.2012.164.173]
142. Prapagdee, S., Tawinteung, N. (2017). Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L. Environmental Science and Pollution Research, 24(10), 9460-9467. [DOI:10.1007/s11356-017-8633-1]
143. Rahdari, P., Hosseini, S.M., Tavakoli, S. (2012). The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Medicinal Plants Research, 6, 1539-1547. [DOI:10.5897/JMPR11.698]
144. Rahimiyan, H., Banayan, M. (1996). Physiological Bases of Plant Breeding. Jahad Daneshgahi Publications. Ferdowsi University of Mashhad. 344 pp.
145. Rao, D.E., Chaitanya, K.V. (2016). Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biologia Plantarum, 60(2), 201-218. [DOI:10.1007/s10535-016-0584-8]
146. Safahani, A.R., Noora, R. (2018). Effect of different levels of biochar on physiological traits of pumpkin under water shortage stress. Journal of Iranian Plant Ecophysiological Research, 13(49), 13-32.
147. Safari, S., Nazari, F., Vafaee, Y., Teixeira da Silva, J.A. (2023). Impact of rice husk biochar on drought stress tolerance in perennial ryegrass (Lolium perenne L.). Journal of Plant Growth Regulation, 42(2), 810-826. [DOI:10.1007/s00344-022-10588-3]
148. Sairam, R.K., Siiukla. D.S., Saxsena, D.C. (1997). Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheet genotypes. Biologia Plantarum, 40, 357-364. [DOI:10.1023/A:1001009812864]
149. Salehi, H., Bahadoran, M. (2015). Growth and flowering of two tuberoses (Polianthes tuberosa L.) cultivars under deficit irrigation by saline water. Journal of Agricultural Science and Technology, 17(2), 415-426. ‌
150. Samarah, N., Mullen, R., Cianzio, S., (2004). Size distribution and mineral nutrients of soybean seeds in response to drought stress. Journal of Plant Nutrition, 27(5), 815-835. [DOI:10.1081/PLN-120030673]
151. Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K. 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52, 131-138. [DOI:10.1016/j.envexpbot.2004.01.011]
152. Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces, 60(2), 229-235. [DOI:10.1016/j.colsurfb.2007.06.016]
153. Scarfone, S.C. (2007). Professional Planting Design an Architectural and Horticultural Approach for Creating Mixed Bed Plantings. Hoboken: Wiley, 272 p.
154. Semida, W.M., Beheiry, H.R., Sétamou, M., Simpson, C.R., Abd El-Mageed, T.A., Rady, M.M., Nelson, S.D., (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333-347. [DOI:10.1016/j.sajb.2019.11.015]
155. Sepaskhah, A.R., Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2), 216-222.‌ [DOI:10.1080/14620316.2009.11512507]
156. Setayesh-Mehr, Z., Ganjeali, A. (2013). Effects of drought stress on growth and physiological characteristics of dill (Anethum graveolens L.). Journal of Horticultural Science, 27(1), 27-35. (In Persian).
157. Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M., Ebrahimie, E. (2014). Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture. PLoS One, 9(5), e97288. [DOI:10.1371/journal.pone.0097288]
158. Šircelj, H., Tausz, M., Grill, D., Batič, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162(12), 1308-1318. [DOI:10.1016/j.jplph.2005.01.018]
159. Soroori, S., Danaee, E., Hemmati, K., Ladan Moghadam, A. (2021). Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. Journal of Ornamental Plants, 11(1), 13-30.
160. Tardieu, F., Parent, B., Caldeira, C.F., Welcker, C. (2014). Genetic and physiological controls of growth under water deficit. Plant Physiology, 164(4), 1628-1635.‌ [DOI:10.1104/pp.113.233353]
161. Toscano, S., Romano, D., Tribulato, A., Patanè, C. (2017). Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologiae Plantarum, 39(8), 1-12. [DOI:10.1007/s11738-017-2484-8]
162. Upadhyaya, H., Panda, S. (2004). Responses of Camellia sinensis to drought and rehydration. Biologia Plantarum, 48(4), 597-600. [DOI:10.1023/B:BIOP.0000047158.53482.37]
163. Wang, Q., Zhao, R., Chen, Q., Teixeira da Silva, J.A., Chen, L., Yu, X. (2019). Physiological and biochemical responses of two herbaceous peony cultivars to drought stress. HortScience, 54(3), 492-498. [DOI:10.21273/HORTSCI13704-18]
164. Wang, Y., Pan, F., Wang, G., Zhang, G., Wang, Y., Chen, X., Mao, Z. (2014). Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Scientia Horticulturae, 175, 9-15. [DOI:10.1016/j.scienta.2014.05.029]
165. Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C. (2007). Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300(1), 9-20. [DOI:10.1007/s11104-007-9391-5]
166. Waseem, M., Ali, A., Tahir, M., Nadeem, M., Ayub, M., Tanveer, A., Hussain, M. (2011). Mechanism of drought tolerance in plant and its management through different methods. Continental Journal of Agriculture Science, 5, 10-25. [DOI:10.5455/ijavms.20110421051913]
167. Yazdanpanah, S., Baghizadeh, A., Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research, 6(4), 798-807.
168. Yin, C., Peng, Y., Zang, R., Zhu, Y., Li, C. (2005). Adaptive responses of Populus kangdingensis to drought stress. Physiologia Plantarum, 123(4), 445-451. [DOI:10.1111/j.1399-3054.2005.00477.x]
169. Yuan, J.H., Xu, R.K., Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. [DOI:10.1016/j.biortech.2010.11.018]
170. Zadeh Bagheri, M., Al-Boali, F., Sadeghi, H., Javanmard, Sh. (2014). The effect of distant irrigation on ionic changes, relative water content, prolin level, and some general characteristics of petunia. Journal of Horticultural Science, 28 (3), 347-359. (In Persian).
171. Zahedifar, M., Najafian, S. (2017). Ocimum basilicum L. growth and nutrient status as influenced by biochar and potassium-nano chelate fertilizers. Archives of Agronomy and Soil Science, 63(5), 638-650. [DOI:10.1080/03650340.2016.1233323]
172. Zollinger, N., Kjelgren, R., Cerny-Koenig, T., Kopp, K., Koenig, R. (2006). Drought ‎responses of six ornamental herbaceous perennials. Scientia Horticulturae, 109 (3), 267-274.‎ [DOI:10.1016/j.scienta.2006.05.006]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavakoli vala M, Nazari F, Babaei S. The ameliorative effect of rice husk biochar on morpho-physiological and biochemical characteristics of African marigold (Tagetes erecta L.) under drought stress. FOP 2023; 8 (1) :21-46
URL: http://flowerjournal.ir/article-1-269-fa.html

توکلی والا مریم، نظری فرزاد، بابایی سیروان. اثر تعدیل‌کننده بیوچارِ پوسته برنج بر ویژگی‌های مورفو-فیزیولوژیک و بیوشیمیایی جعفری آفریقایی (Tagetes erecta L.) در شرایط تنش خشکی. گل و گیاهان زینتی. 1402; 8 (1) :21-46

URL: http://flowerjournal.ir/article-1-269-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 1 - ( بهار و تابستان 1402 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.07 seconds with 44 queries by YEKTAWEB 4645