[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 8، شماره 2 - ( پاییز و زمستان 1402 ) ::
جلد 8 شماره 2 صفحات 310-297 برگشت به فهرست نسخه ها
تغییرهای بیوشیمیایی در برگ‌های گل‌محمدی (Rosa × damascena) در پاسخ به شکل‌‌های مختلف سیلیکون در شرایط تنش شوری
مصطفی خوشحال* ، مینا خرمی مقدم ، سارا خراسانی نژاد ، عظیم قاسم نژاد
دانشگاه علوم کشاورزی گرگان
چکیده:   (1233 مشاهده)
ارایه راهکارهای موثر در کنترل تنش شوری در گیاهان زینتی با توجه به افزایش تغییرهای غیر قابل پیش‌بینی آب و هوا در نقاط مختلف زمین و افزایش شوری خاک‌‌ها بسیار مهم می‌‌باشد. در همین راستا، در این پژوهش اثر شوری (ترکیب کلرید سدیم و کلرید کلسیم در غلظت‌‌های 100، 200 و 500 میلی‌مولار) به ترتیب 1/9، 2/18 و 5/45 دسی زیمنس با نسبت یک به یک و سیلیکون (250 میلی‌گرم در لیتر) و نانوسیلیکون (حاوی 250 میلی‌گرم در لیتر سیلیکات پتاسیم) با اندازه متوسط ذره‌‌های اولیه 12 نانومتر و مساحت سطح متناظر 200 متر مربع بر گرم و برهمکنش آن‌ها بر گل‌محمدی (Rosa × damascena) در شرایط کنترل شده گلخانه شیشه‌‌ای در قالب طرح کاملا تصادفی انجام شد. برخی از پاسخ‌های فیزیولوژیک برگ مانند میزان نشت یونی، محتوای نسبی آب برگ، میزان پرولین و فعالیت آنزیم‌های آنتی اکسیدانی مانند کاتالاز (CAT)، پراکسیداز (POX) و آسکوربات پراکسیداز (APX) پس از کاربرد تنش مورد بررسی قرار گرفتند. نتایج بررسی‌های انجام شده نشان داد که نانوسیلیکون و سیلیکات پتاسیم از نشت یونی ایجاد شده توسط شوری در مقایسه با شاهد پیش‌‌گیری کردند. از سویی، محتوای نسبی آب برگ در پاسخ به سیلیکون و نانوسیلیکون تا حد زیادی حفظ شد و در تنش شوری 100 میلی‌مولار محلول‌پاشی با سیلیکون 43% و نانو سیلیکون منجر به افزایش پرولین در برگ گردید ولی این اثر افزایشی در شرایط تنش شوری 500 میلی‌‌مولار بسیار ملموس‌تر بود و نسبت به شاهد 3 برابر افزایش یافت که خود بیانگر ارتباط نزدیک میان تنش شوری و سیلیکون است. در مجموع به نظر می‌رسد که در گل محمدی مقاومت به تنش شوری توسط سازوکارهای غیر آنزیمی کنترل می‌شود. زیرا کاربرد سیلیکون و نانوسیلیکون تحت شرایط شوری، اثر هم‌‌افزایی در بالا بردن میزان فعالیت آنزیم‌های آنتی‌اکسیدانی کاتالاز، پراکسیداز و آسکوربات پراکسیداز داشت.
 
واژه‌های کلیدی: آنزیم‌های آنتی‌‌اکسیدانی، سیلیکون، شوری، نانو سیلیکون
متن کامل [PDF 800 kb]   (276 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/4/4 | پذیرش: 1402/6/7 | انتشار: 1403/1/18
فهرست منابع
1. Khoshpeyk, S., Sadrabadi Haghighi, R., Ahmadian, A. (2023). The effect of irrigation water quality and application of silicon, nano silicon, and super absorbent polymer on some physiological responses of leaves and saffron yield. Silicon, 15(6), 2953-2961. [DOI:10.1007/s12633-022-02204-6]
2. Al-Aghabary, K., Zhu, Z., Shi, Q.H. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-15. [DOI:10.1081/PLN-200034641]
3. Almutairi, Z.M. (2016). Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Osmotic Journal, 9, 106-14.
4. Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Khan, L. U., Ahmad, P. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11(2), 309. [DOI:10.3390/antiox11020309]
5. Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality-A literature review in Europe. Plants, 7(3), 54. [DOI:10.3390/plants7030054]
6. Asgari, F., Diyanat, M. (2020). Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. Journal of Plant Nutrition, DOI: 10.1080/01904167. 2020.1845367. [DOI:10.1080/01904167.2020.1845367]
7. Assaha, D.V., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. [DOI:10.3389/fphys.2017.00509]
8. Barakatain, L., Nikbakht, A., Etemadi, N., Khajeh Ali, J. (2013). Effect of source and method of silica application on some of the quantitative and physiological characteristics of Gerbera jamesonii L. Journal of Soil and Plant Interactions-Isfahan University of Technology. 4(1).
9. Bates, L.S., Waldren, R.P., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. [DOI:10.1007/BF00018060]
10. Beltrano, J., Ronco, M.G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20, 29-37. [DOI:10.1590/S1677-04202008000100004]
11. Chen, Z., Wang, Z., Yang, Y., Li, M. and Xu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1-9. [DOI:10.1016/j.scienta.2017.10.004]
12. Chu, X.T., Fu, J.J., Sun, Y.F., Xu, Y.M., Miao, Y.J., Xu, Y.F. and Hu, T.M. (2016). Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. South African Journal of Botany, 104, 21-29. [DOI:10.1016/j.sajb.2015.10.001]
13. Datta, S.K. (2021). Breeding of ornamentals: success and technological status. The Nucleus, 65, 1-22. [DOI:10.1007/s13237-021-00368-x]
14. Del Río, L.A., López-Huertas, E. (2016). ROS generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology, 57(7), 1364-1376. [DOI:10.1093/pcp/pcw076]
15. El-Esawi, M.A., Alayafi, A.A. (2019). Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes, 10(2), 142. [DOI:10.3390/genes10020142]
16. Epstein, E., Bloom, A. (2005). Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates. Inc. Sunderland, Mass.
17. Ghaffari, H., Tadayon, M.R., Nadeem, M., Cheema, M., Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(2), 1-13. [DOI:10.1007/s11738-019-2815-z]
18. Gudin, S. (2000) Rose genetics and breeding. Plant Breeding Review, 17, 159-189. https://doi.org/10.1002/9780470650134.ch3 [DOI:10.1002/9780470650134.ch3.]
19. Hajihashemi, A., Kazemi, S. (2022) .The potential of foliar application of nanochitosan-encapsulated nano-silicon donor in amelioration the adverse efect of salinity in the wheat plant. BMC Plant Biology, 22, 148. [DOI:10.1186/s12870-022-03531-x]
20. Hong, L.T.M., Trinh, T.C., Bui, V.T., Tran, H.T. (2021). Roles of plant growth regulators on flowering of rose (Rosa hybrida L.'Red Rose'), IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012039. [DOI:10.1088/1755-1315/947/1/012039]
21. Isayenkov, S.V., Maathuis, F.J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science. 10, 80. [DOI:10.3389/fpls.2019.00080]
22. Jiang, Y., Duan, X., Joyce, D., Zhang, Z., Li, J. (2004). Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 88(3), 443-446. [DOI:10.1016/j.foodchem.2004.02.004]
23. Joseph, E., Mohanan, K., Radhakrishnan, V. (2015). Effect of salinity variation on the quantity of antioxidant enzymes in some rice cultivars of North Kerala, India. Universe Journal of Agricultural Research, 3, 89-105. [DOI:10.13189/ujar.2015.030304]
24. Kalteh, M., Alipour, Z.T., Ashraf, S., Aliabadi, M.M., Nosratabadi, A.F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks. 4, 49-55.
25. Kerchev, P., van der Meer, T., Sujeeth, N., Verlee, A., Stevens, C.V., Van Breusegem, F., Gechev, T. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 40, 107503. https://doi.org/10.1016/j.biotechadv.2019.107503 [DOI:https://doi.org/10.1016/j.biotechadv.2019.107503.]
26. Kiani, M., Zamani, Z., Khalighi, A., Fatahi, R., Byrne, D.H. (2010). Microsatellite analysis of Iranian Damask rose (Rosa damascena Mill.) germplasm. Plant Breeding 129(5), 551-557. x [DOI:10.1111/j.1439-0523.2009.01708.]
27. Li, X., Wan, S., Kang, Y., Chen, X., & Chu, L. (2016). Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163, 180-189. [DOI:10.1016/j.agwat.2015.09.020]
28. Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147(2), 422-428. [DOI:10.1016/j.envpol.2006.06.008]
29. Liu, D., Dong, S., Miao, H., Liu, X., Li, C., Han, J., Gu, X. (2022). A Large-Scale Genomic Association Analysis Identifies the Candidate Genes Regulating Salt Tolerance in Cucumber (Cucumis sativus L.) Seedlings. International Journal of Molecular Sciences, 23(15), 8260. [DOI:10.3390/ijms23158260]
30. Lutts, S., Kinet, J. M. and Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 132(46), 1843-1852. [DOI:10.1093/jxb/46.12.1843]
31. Lv, X., Chen, S., Wang, Y., 2019. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Frontiers in Plant Science, 10, 1431 [DOI:10.3389/fpls.2019.01431]
32. Manaa, A., Mimouni, H., Terras, A., Chebil, F., Wasti, S., Gharbi, E., Ben Ahmed, H. (2014). Superoxide dismutase isozyme activity and antioxidant responses of hydroponically cultured Lepidium sativum L. to NaCl stress. Journal of Plant Interactions, 9(1), 440-449. [DOI:10.1080/17429145.2013.850596]
33. Matraszek, R., Hawrylak-Nowak, B., Chwil, M. (2015). Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobotanica, 68(3). https://doi.org/ 10.5586/aa.2015.028. https://doi.org/10.5586/aa.2015.028 [DOI:10.5586/aa.2015.028.]
34. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 23-9.250. [DOI:10.1046/j.0016-8025.2001.00808.x]
35. Nađpal, J.D., Lesjak, M.M., Šibul, F.S., Anačkov, G.T., Četojević-Simin, D.D., Mimica-Dukić, N.M., Beara, I.N., (2016). Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chemistry, 192, 907-914. [DOI:10.1016/j.foodchem.2015.07.089]
36. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
37. Oki, L.R., Lieth, J.H. (2004). Effect of changes in substrate salinity on the elongation of Rosa hybrida L.'Kardinal'stems. Scientia Horticulturae, 101(1-2), 103-119. [DOI:10.1016/j.scienta.2003.09.013]
38. Pattanagul, W. (2011). Exogenous Abscisic Acid Enhances Sugar Accumulation in Rice. Asian Journal of Plant Science, 10(3), 212-219. [DOI:10.3923/ajps.2011.212.219]
39. Press, B. (2018). Mabberley's plant-book: A portable dictionary of plants, their classification and uses. Journal of the Botanical Research Institute of Texas, 12(2), 578-578.
40. Ramajulu, S. (2001). Alliviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. Journal of Plant Biology, 28, 203-206.
41. Reis, M., Figueiredo, J.R.M., Paiva, R., da Silva, D.P., de Faria, C.V.N., Rouhana, L. (2016). Salinity in rose production. Ornamental Horticulture, 22(2), 228-234. [DOI:10.14295/oh.v22i2.904]
42. Saleem, M. H., Kamran, M., Zhou, Y., Parveen, A., Rehman, M., Ahmar, S., Liu, L. (2020). Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. Journal of Environmental Management, 257, 109994. [DOI:10.1016/j.jenvman.2019.109994]
43. Salin, F., Squier, J., Piche, M. (1991). Mode locking of Ti: Al2O3 lasers and self-focusing: a Gaussian approximation. Optics Letters, 16(21), 1674-1676.‌ [DOI:10.1364/OL.16.001674]
44. Savari, M., Shokati Amghani, M. (2021). Factors influencing farmers' adaptation strategies in confronting the drought in Iran. Environment, Development and Sustainability, 23(4), 4949-4972 [DOI:10.1007/s10668-020-00798-8]
45. Sharif, H., Namva A.,2016. Phytoprotectants and abiotic stresses. Urmia University Publication. 341p.[In Persian].
46. Zamani, Z., Amiri, H., & Ismaili, A. (2020). Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(5), 643-655. [DOI:10.1080/11263504.2019.1674398]
47. Zhou, Y. B., Liu, C., Tang, D. Y., Yan, L., Wang, D., Yang, Y. Z., Liu, X. M. (2018). The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell, 30(5), 1100-1118.‌ [DOI:10.1105/tpc.17.01000]
48. Khoshpeyk, S., Sadrabadi Haghighi, R., Ahmadian, A. (2023). The effect of irrigation water quality and application of silicon, nano silicon, and super absorbent polymer on some physiological responses of leaves and saffron yield. Silicon, 15(6), 2953-2961. [DOI:10.1007/s12633-022-02204-6]
49. Al-Aghabary, K., Zhu, Z., Shi, Q.H. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-15. [DOI:10.1081/PLN-200034641]
50. Almutairi, Z.M. (2016). Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Osmotic Journal, 9, 106-14.
51. Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Khan, L. U., Ahmad, P. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11(2), 309. [DOI:10.3390/antiox11020309]
52. Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality-A literature review in Europe. Plants, 7(3), 54. [DOI:10.3390/plants7030054]
53. Asgari, F., Diyanat, M. (2020). Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. Journal of Plant Nutrition, DOI: 10.1080/01904167. 2020.1845367. [DOI:10.1080/01904167.2020.1845367]
54. Assaha, D.V., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. [DOI:10.3389/fphys.2017.00509]
55. Barakatain, L., Nikbakht, A., Etemadi, N., Khajeh Ali, J. (2013). Effect of source and method of silica application on some of the quantitative and physiological characteristics of Gerbera jamesonii L. Journal of Soil and Plant Interactions-Isfahan University of Technology. 4(1).
56. Bates, L.S., Waldren, R.P., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. [DOI:10.1007/BF00018060]
57. Beltrano, J., Ronco, M.G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20, 29-37. [DOI:10.1590/S1677-04202008000100004]
58. Chen, Z., Wang, Z., Yang, Y., Li, M. and Xu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1-9. [DOI:10.1016/j.scienta.2017.10.004]
59. Chu, X.T., Fu, J.J., Sun, Y.F., Xu, Y.M., Miao, Y.J., Xu, Y.F. and Hu, T.M. (2016). Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. South African Journal of Botany, 104, 21-29. [DOI:10.1016/j.sajb.2015.10.001]
60. Datta, S.K. (2021). Breeding of ornamentals: success and technological status. The Nucleus, 65, 1-22. [DOI:10.1007/s13237-021-00368-x]
61. Del Río, L.A., López-Huertas, E. (2016). ROS generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology, 57(7), 1364-1376. [DOI:10.1093/pcp/pcw076]
62. El-Esawi, M.A., Alayafi, A.A. (2019). Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes, 10(2), 142. [DOI:10.3390/genes10020142]
63. Epstein, E., Bloom, A. (2005). Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates. Inc. Sunderland, Mass.
64. Ghaffari, H., Tadayon, M.R., Nadeem, M., Cheema, M., Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(2), 1-13. [DOI:10.1007/s11738-019-2815-z]
65. Gudin, S. (2000) Rose genetics and breeding. Plant Breeding Review, 17, 159-189. https://doi.org/10.1002/9780470650134.ch3 [DOI:10.1002/9780470650134.ch3.]
66. Hajihashemi, A., Kazemi, S. (2022) .The potential of foliar application of nanochitosan-encapsulated nano-silicon donor in amelioration the adverse efect of salinity in the wheat plant. BMC Plant Biology, 22, 148. [DOI:10.1186/s12870-022-03531-x]
67. Hong, L.T.M., Trinh, T.C., Bui, V.T., Tran, H.T. (2021). Roles of plant growth regulators on flowering of rose (Rosa hybrida L.'Red Rose'), IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012039. [DOI:10.1088/1755-1315/947/1/012039]
68. Isayenkov, S.V., Maathuis, F.J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science. 10, 80. [DOI:10.3389/fpls.2019.00080]
69. Jiang, Y., Duan, X., Joyce, D., Zhang, Z., Li, J. (2004). Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 88(3), 443-446. [DOI:10.1016/j.foodchem.2004.02.004]
70. Joseph, E., Mohanan, K., Radhakrishnan, V. (2015). Effect of salinity variation on the quantity of antioxidant enzymes in some rice cultivars of North Kerala, India. Universe Journal of Agricultural Research, 3, 89-105. [DOI:10.13189/ujar.2015.030304]
71. Kalteh, M., Alipour, Z.T., Ashraf, S., Aliabadi, M.M., Nosratabadi, A.F. (2014). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks. 4, 49-55.
72. Kerchev, P., van der Meer, T., Sujeeth, N., Verlee, A., Stevens, C.V., Van Breusegem, F., Gechev, T. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 40, 107503. https://doi.org/10.1016/j.biotechadv.2019.107503 [DOI:https://doi.org/10.1016/j.biotechadv.2019.107503.]
73. Kiani, M., Zamani, Z., Khalighi, A., Fatahi, R., Byrne, D.H. (2010). Microsatellite analysis of Iranian Damask rose (Rosa damascena Mill.) germplasm. Plant Breeding 129(5), 551-557. x [DOI:10.1111/j.1439-0523.2009.01708.]
74. Li, X., Wan, S., Kang, Y., Chen, X., & Chu, L. (2016). Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163, 180-189. [DOI:10.1016/j.agwat.2015.09.020]
75. Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147(2), 422-428. [DOI:10.1016/j.envpol.2006.06.008]
76. Liu, D., Dong, S., Miao, H., Liu, X., Li, C., Han, J., Gu, X. (2022). A Large-Scale Genomic Association Analysis Identifies the Candidate Genes Regulating Salt Tolerance in Cucumber (Cucumis sativus L.) Seedlings. International Journal of Molecular Sciences, 23(15), 8260. [DOI:10.3390/ijms23158260]
77. Lutts, S., Kinet, J. M. and Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 132(46), 1843-1852. [DOI:10.1093/jxb/46.12.1843]
78. Lv, X., Chen, S., Wang, Y., 2019. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Frontiers in Plant Science, 10, 1431 [DOI:10.3389/fpls.2019.01431]
79. Manaa, A., Mimouni, H., Terras, A., Chebil, F., Wasti, S., Gharbi, E., Ben Ahmed, H. (2014). Superoxide dismutase isozyme activity and antioxidant responses of hydroponically cultured Lepidium sativum L. to NaCl stress. Journal of Plant Interactions, 9(1), 440-449. [DOI:10.1080/17429145.2013.850596]
80. Matraszek, R., Hawrylak-Nowak, B., Chwil, M. (2015). Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobotanica, 68(3). https://doi.org/ 10.5586/aa.2015.028. https://doi.org/10.5586/aa.2015.028 [DOI:10.5586/aa.2015.028.]
81. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 23-9.250. [DOI:10.1046/j.0016-8025.2001.00808.x]
82. Nađpal, J.D., Lesjak, M.M., Šibul, F.S., Anačkov, G.T., Četojević-Simin, D.D., Mimica-Dukić, N.M., Beara, I.N., (2016). Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chemistry, 192, 907-914. [DOI:10.1016/j.foodchem.2015.07.089]
83. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
84. Oki, L.R., Lieth, J.H. (2004). Effect of changes in substrate salinity on the elongation of Rosa hybrida L.'Kardinal'stems. Scientia Horticulturae, 101(1-2), 103-119. [DOI:10.1016/j.scienta.2003.09.013]
85. Pattanagul, W. (2011). Exogenous Abscisic Acid Enhances Sugar Accumulation in Rice. Asian Journal of Plant Science, 10(3), 212-219. [DOI:10.3923/ajps.2011.212.219]
86. Press, B. (2018). Mabberley's plant-book: A portable dictionary of plants, their classification and uses. Journal of the Botanical Research Institute of Texas, 12(2), 578-578.
87. Ramajulu, S. (2001). Alliviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. Journal of Plant Biology, 28, 203-206.
88. Reis, M., Figueiredo, J.R.M., Paiva, R., da Silva, D.P., de Faria, C.V.N., Rouhana, L. (2016). Salinity in rose production. Ornamental Horticulture, 22(2), 228-234. [DOI:10.14295/oh.v22i2.904]
89. Saleem, M. H., Kamran, M., Zhou, Y., Parveen, A., Rehman, M., Ahmar, S., Liu, L. (2020). Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. Journal of Environmental Management, 257, 109994. [DOI:10.1016/j.jenvman.2019.109994]
90. Salin, F., Squier, J., Piche, M. (1991). Mode locking of Ti: Al2O3 lasers and self-focusing: a Gaussian approximation. Optics Letters, 16(21), 1674-1676.‌ [DOI:10.1364/OL.16.001674]
91. Savari, M., Shokati Amghani, M. (2021). Factors influencing farmers' adaptation strategies in confronting the drought in Iran. Environment, Development and Sustainability, 23(4), 4949-4972 [DOI:10.1007/s10668-020-00798-8]
92. Sharif, H., Namva A.,2016. Phytoprotectants and abiotic stresses. Urmia University Publication. 341p.[In Persian].
93. Zamani, Z., Amiri, H., & Ismaili, A. (2020). Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(5), 643-655. [DOI:10.1080/11263504.2019.1674398]
94. Zhou, Y. B., Liu, C., Tang, D. Y., Yan, L., Wang, D., Yang, Y. Z., Liu, X. M. (2018). The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell, 30(5), 1100-1118.‌ [DOI:10.1105/tpc.17.01000]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoshhal M, Khorami moghadam M, Khorasani nejad S, Ghasemnejad A. Biochemical changes in the leaves of Rosa damascena in response to different forms of silicon under salinity stress conditions. FOP 2023; 8 (2) :297-310
URL: http://flowerjournal.ir/article-1-278-fa.html

خوشحال مصطفی، خرمی مقدم مینا، خراسانی نژاد سارا، قاسم نژاد عظیم. تغییرهای بیوشیمیایی در برگ‌های گل‌محمدی (Rosa × damascena) در پاسخ به شکل‌‌های مختلف سیلیکون در شرایط تنش شوری. گل و گیاهان زینتی. 1402; 8 (2) :297-310

URL: http://flowerjournal.ir/article-1-278-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 2 - ( پاییز و زمستان 1402 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4710