[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما :: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو نشریه و مقاله ها::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات وبگاه::
بایگانی مقاله های زیر چاپ::
وبگاه های نمایه کننده::
اسامی داوران::
مبانی اخلاقی نشریه::
آمار سایت::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
شماره شاپا
۲۶۷۶۵۹۹۳
..
ناشر
انجمن گل و گیاهان زینتی ایران
پژوهشکده گل و گیاهان زینتی
..
پیوندهای مفید

انجمن گل و گیاهان زینتی ایران

پژوهشکده ملی گل و گیاهان زینتی
..
آمارهای سایت
..
:: دوره 7، شماره 2 - ( پاییز و زمستان 1401 ) ::
جلد 7 شماره 2 صفحات 184-173 برگشت به فهرست نسخه ها
اثر طیف‌های مختلف نور LED بر ریشه‌زایی و رشد قلمه‌های فیکوس بنجامین
زهره اسلمی ، مسعود قاسمی قهساره* ، سعید ریزی
دانشگاه شهرکرد
چکیده:   (1808 مشاهده)
نور خورشید تنها منبع انرژی طبیعی برای رشد گیاهان سبز است. نور طبیعی به دلایل اقتصادی منبعی مقرون به صرفه برای تولید تجاری محصول‌‌های کشاورزی است. اما با توجه به شرایط محیط، می‌توان از نور مصنوعی نیز برای تولید و پرورش گیاهان استفاده کرد. یکی از فعالیت‌های مهم باغبانی، افزایش رویشی گیاهان از راه ریشه‌دار کردن قلمه است. با توجه به کوتاه بودن طول قلمه و نیز اقتصادی بودن افزایش در طول سال، می‌توان از اتاقک‌های رشد طبقه‌‌دار که در آن‌‌ها شرایط بهینه برای ریشه‌زایی فراهم شده است، استفاده کرد. یکی از گیاهان زینتی درون‌خانه‌ای پرمصرف فیکوس بنجامین است که روش تجاری افزایش آن ریشه‌دار کردن قلمه است. برای بهینه‌سازی شرایط نوری لازم برای ریشه‌دار کردن و رشد قلمه‌های فیکوس بنجامین ابلق رقم Starlight اثر طیف‌های مختلف نور LED (سرخ، آبی، سرخ + آبی و سفید) بر باززایی ریشه و ویژگی‌های مورفوفیزیولوژیک قلمه‌های این گیاه مورد بررسی قرار گرفت. سه ماه پس از کاشت، درصد ریشه‌زایی، شاخص‌ریشه‌زایی و شاخص‌های مورفولوژیک اندازه‌گیری شد. نتایج نشان داد که به جز ویژگی طول ریشه که در نور ترکیبی LED سرخ + آبی طویل‌ترین (8/16 سانتی‌‌متر) بود، بیشترین تعداد انشعاب‌‌های ریشه (12)، وزن تر ریشه (42/1 گرم)، وزن خشک ریشه (36/0 گرم) و حجم ریشه (8/2 سانتیمتر مکعب) مربوط به نور سفید بود. از نظر شاخص‌های رشد اندام هوایی، بیشترین سطح برگ (9/10 سانتی‌متر مربع) و وزن تر شاخساره (82/4 گرم) در نور سفید و بیشترین وزن خشک (4/1 گرم)، طول شاخساره (2/23 سانتی‌متر) و تعداد شاخساره جدید (6/3) در نور آبی+ سرخ دیده شد. بیشترین درصد ریشه‌زایی (100%) زیر نور سرخ و بیشترین شاخص ریشه‌زایی (5/4) در نور LED آبی دیده شد. بر اساس نتایج این آزمایش، برای باززایی ریشه قلمه فیکوس بنجامین ابلق، طیف نور سفید و برای رشد اندام هوایی قلمه، نور ترکیبی سرخ+ آبی نسبت به نورهای آبی و سرخ تک‌رنگ تاثیر بهتری داشته است. به‌طور کلی برای تولید قلمه‌های ریشه‌‌دار فیکوس بنجامین با کیفیت مطلوب، نور LED سفید توصیه می‌شود.
واژه‌های کلیدی: نور مصنوعی، شاخص ریشه‌زایی، باززایی ریشه، اتاقک رشد
متن کامل [PDF 445 kb]   (269 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/5/28 | پذیرش: 1401/6/12 | انتشار: 1401/12/9
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------------Bantis, F., Ouzounis, T. and. Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277-283. [DOI:10.1016/j.scienta.2015.11.014]
2. Bello-Bello, J.J., Martinez-Estrada, E., Caamal-Velazquez, J.H. and Morales- Ramos, V. (2016). Effect of LED light quality on In vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15, 272-277. [DOI:10.5897/AJB2015.14662]
3. Briggs, W.R. and. Olney, M.A. )2001(. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiolog, 125, 85-88. [DOI:10.1104/pp.125.1.85]
4. Chen, X., Guo, W., Xu, X., Wang, L. and Qiao, X. (2014). Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 172, 168-175. [DOI:10.1016/j.scienta.2014.04.009]
5. Chung, J.P., Huang, C.Y. and Dai, T.E. (2010). Spectral effects on embryogenesis and plantlet growth of Oncidium 'Gower Ramsey'. Scientia Horticulturae, 124, 511-516. [DOI:10.1016/j.scienta.2010.01.028]
6. Clouse, S.D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Science, 6, 443-445. [DOI:10.1016/S1360-1385(01)02102-1]
7. Criley R.A. (2011). Rooting cuttings of tropical plants. In: Beyl C.A., and R.N. Trigiano (eds.) Plant propagation, concepts and laboratory exercises. CRC Press, Taylor and Francis Group, New York, London, pp. 213-224.
8. Currey, C.J., Hutchinson, V.A. and Lopez, R.G. (2012). Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience, 47(1), 25-30. [DOI:10.21273/HORTSCI.47.1.25]
9. Darko, E., Heydarizadeh, P., Schoefs, B. and Sabzalian, M.R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transaction of the Royal Society B: Biological Sciences, 369 (1640), 20130243. [DOI:10.1098/rstb.2013.0243]
10. Denbaars, S.P., Feezell, D., Kelchner, K., Pimputkar, S., Pan, C.C., Yen, C.C., et al. (2013). Development of gallium-nitride-based lightemitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 61(3), 945-951. [DOI:10.1016/j.actamat.2012.10.042]
11. Gabryszewska, E. and Rudnicki, R. (1995). The influence of light quality on the shoot proliferation and rooting of Gerbera Jamesonii in vitro. Acta Agrobotanica, 48(2), 105-111. [DOI:10.5586/aa.1995.021]
12. Gabryszewska, E. and Rudeniki, R. (1997(. The effects of light quality on the growth and development of shoots and roots of Ficus benjamina in vitro. Acta Horticulturae, 418, 163-168. [DOI:10.17660/ActaHortic.1997.418.22]
13. Ghasemi Ghehsare, M. and Kafi, M. (2015). Scientific and Practical Floriculture (Volume II). Author Publisher: 313p. (In Persian).
14. Ghasemi Ghehsareh, M., and Khosh-Khui, M. (2019). The effect of cutting type, leaf area, leaf number, putrescine and indole-3-Butyric acid on the rooting of Ficus cuttings (Ficus elastica Roxb. ex Hornem.). Advances in Horticultural Science, 33(1), 3-11.
15. Hung, C.D., Hong, C.H., Kim, S.K., Lee, K.H., Park, J.Y., Dung, C.D., Nam, M.W., Choi, D.H. and Lee, H.I. (2016). In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Scientia Horticulturae, 211, 248-254. [DOI:10.1016/j.scienta.2016.09.003]
16. Kevin, W. (2000). 'Photo-manipulation-boxes': An instrument for the study of plant photobiology. Plant Photobiology. 26(3), 15.
17. Kim, H.J., Lin, M.Y. and Mitchell, C.A. )2019(. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany. 157: 228-240. [DOI:10.1016/j.envexpbot.2018.10.019]
18. Kim, K.J., Kil, M.J., Song, J.S., Yoo, E.H., Son, K.C., and Kays, S.J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133(4), 521-526. [DOI:10.21273/JASHS.133.4.521]
19. Lee, N.N., Choi, Y.E. and Moon, H.K. (2014). Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. Journal of Plant Biotechnology, 41, 94-99. [DOI:10.5010/JPB.2014.41.2.94]
20. Lefsrud, M.G., Kopsell, D.A. and Sams, C.E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43, 2243-2244. [DOI:10.21273/HORTSCI.43.7.2243]
21. Li, H., Tang, C. and Xu, Z. (2013). The effect of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticalturae, 150, 117-124. [DOI:10.1016/j.scienta.2012.10.009]
22. Li, Q. and Kubota, C. (2009). Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. [DOI:10.1016/j.envexpbot.2009.06.011]
23. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods in enzymology, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
24. Lim, Y.J. and Eom, S.H. (2013). Effect of different light type on root formation of Ocimum basilicum L. Cuttings. Scientia Horticulturae, 164, 552-555. [DOI:10.1016/j.scienta.2013.09.057]
25. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W. and Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. [DOI:10.1016/j.scienta.2012.10.002]
26. Liu, Y., Roof, S., Ye, Z., Barry, C., van, Tuinen, A. and. Vrebalov, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101, 9897-9902. [DOI:10.1073/pnas.0400935101]
27. Lopez, R.G and Runkle, E.S. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience, 43(7), 2052-2059. [DOI:10.21273/HORTSCI.43.7.2052]
28. Mitchell, C., Both, A J., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R. and Runkle, E. (2012). LEDs: The future of greenhouse lighting Chron. Horticulturae, 52, 1-9.
29. Moon, H.K., Park, S.U., Kim, Y.W. and Kim, C.H.S. (2006). Growth of Tsuru-rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. Journal of Plant Biology, 49(2), 174-179. [DOI:10.1007/BF03031014]
30. Mortensen, L.M. (1990(. Effects of temperature and light quality on growth and flowering of Begonia·hiemalis Fotsch and Campanula isophylla Moretti. Scientia Horticulturae, 44, 309-314. [DOI:10.1016/0304-4238(90)90131-W]
31. Munthikote, S. (2018). Review article role of light emitting diode in food industry. 1: 1-9.
32. Nelson, J.A. and Bugbee, B. (2014). Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE. 9(6), e99010. doi:10.1371/journal.pone.0099010. [DOI:10.1371/journal.pone.0099010]
33. Opdam, J.G., Schoonderbeek, G.G., Heller, E.B. and Gelder, A. (2005). Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Horticulturae, 691, 517-524. [DOI:10.17660/ActaHortic.2005.691.61]
34. Pinker, I., Zoglauer, K. and Coring, H. (1989). Influence of light on adventitious root formation in birch shoot cultures in vitro. Biology Plantarum, 31, 254-260 [DOI:10.1007/BF02907285]
35. Poudel, P.R., Kataoka, I. and Mochioka, R. (2008). Effect of red and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Orang Culture, 92, 147-153. [DOI:10.1007/s11240-007-9317-1]
36. Ramrez-Mosqueda, M.A., Iglesia-Andrea, L.G. and Luan-Sanchez, I.J. (2017). Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109, 288-293. [DOI:10.1016/j.sajb.2017.01.205]
37. Samuoliene, G., Brazaityte, A., Urbonaviciute, A., Šabajeviene, G. and Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97, 99-104.
38. Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food. Science and Technolog, 13(11), 361-371. [DOI:10.1016/S0924-2244(02)00182-6]
39. Schroeter-zakrzewska, A. and Kleiber, T. (2014). The effect of light color and type of lamps on rooting and nutrient status in cutting of Michaelmas daisy. Bulgarian Journal of Agricultural Science, 6, 1426-1434.
40. Shimazaki, K., Doi, M., Assmann, S.M. and Kinoshita, T. (2007). Light regulation of stomatal movement. Annul Review Plant Biology, 58, 219-247. [DOI:10.1146/annurev.arplant.57.032905.105434]
41. Shin, K.S., Murthy, H.N., Hue, J.W., Hahn, E.J. and Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. [DOI:10.1007/s11738-007-0128-0]
42. Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T. and Okamoto, K. (1998). In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). Journal of Horticultural Science and Biotechnology, 73, 39-44. [DOI:10.1080/14620316.1998.11510941]
43. Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2015). Plant physiology and development (Ed. 6). Sinauer Associates Incorporated. 761p.
44. Tyburski, J. and Tretyn, A. (2004(. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regulation, 42, 39-38. [DOI:10.1023/B:GROW.0000014896.18601.38]
45. Wollaeger, H. and Runkle, E. (2014). Htt //: www.Growing seeding under LEDs: part two. Greenhouse Grower.
46. Wozny, A. and Miler, N. (2016). LEDs application ex vitro rooting and acclimatization of chrysanthemum (Chrysanthemum × grandiflorum Ramat. / Kitam.). Electronic Journal of Polish Agricultural Universities, 19(4), 1-7.
47. Bantis, F., Ouzounis, T. and. Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277-283. [DOI:10.1016/j.scienta.2015.11.014]
48. Bello-Bello, J.J., Martinez-Estrada, E., Caamal-Velazquez, J.H. and Morales- Ramos, V. (2016). Effect of LED light quality on In vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15, 272-277. [DOI:10.5897/AJB2015.14662]
49. Briggs, W.R. and. Olney, M.A. )2001(. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiolog, 125, 85-88. [DOI:10.1104/pp.125.1.85]
50. Chen, X., Guo, W., Xu, X., Wang, L. and Qiao, X. (2014). Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 172, 168-175. [DOI:10.1016/j.scienta.2014.04.009]
51. Chung, J.P., Huang, C.Y. and Dai, T.E. (2010). Spectral effects on embryogenesis and plantlet growth of Oncidium 'Gower Ramsey'. Scientia Horticulturae, 124, 511-516. [DOI:10.1016/j.scienta.2010.01.028]
52. Clouse, S.D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Science, 6, 443-445. [DOI:10.1016/S1360-1385(01)02102-1]
53. Criley R.A. (2011). Rooting cuttings of tropical plants. In: Beyl C.A., and R.N. Trigiano (eds.) Plant propagation, concepts and laboratory exercises. CRC Press, Taylor and Francis Group, New York, London, pp. 213-224.
54. Currey, C.J., Hutchinson, V.A. and Lopez, R.G. (2012). Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. HortScience, 47(1), 25-30. [DOI:10.21273/HORTSCI.47.1.25]
55. Darko, E., Heydarizadeh, P., Schoefs, B. and Sabzalian, M.R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transaction of the Royal Society B: Biological Sciences, 369 (1640), 20130243. [DOI:10.1098/rstb.2013.0243]
56. Denbaars, S.P., Feezell, D., Kelchner, K., Pimputkar, S., Pan, C.C., Yen, C.C., et al. (2013). Development of gallium-nitride-based lightemitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 61(3), 945-951. [DOI:10.1016/j.actamat.2012.10.042]
57. Gabryszewska, E. and Rudnicki, R. (1995). The influence of light quality on the shoot proliferation and rooting of Gerbera Jamesonii in vitro. Acta Agrobotanica, 48(2), 105-111. [DOI:10.5586/aa.1995.021]
58. Gabryszewska, E. and Rudeniki, R. (1997(. The effects of light quality on the growth and development of shoots and roots of Ficus benjamina in vitro. Acta Horticulturae, 418, 163-168. [DOI:10.17660/ActaHortic.1997.418.22]
59. Ghasemi Ghehsare, M. and Kafi, M. (2015). Scientific and Practical Floriculture (Volume II). Author Publisher: 313p. (In Persian).
60. Ghasemi Ghehsareh, M., and Khosh-Khui, M. (2019). The effect of cutting type, leaf area, leaf number, putrescine and indole-3-Butyric acid on the rooting of Ficus cuttings (Ficus elastica Roxb. ex Hornem.). Advances in Horticultural Science, 33(1), 3-11.
61. Hung, C.D., Hong, C.H., Kim, S.K., Lee, K.H., Park, J.Y., Dung, C.D., Nam, M.W., Choi, D.H. and Lee, H.I. (2016). In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Scientia Horticulturae, 211, 248-254. [DOI:10.1016/j.scienta.2016.09.003]
62. Kevin, W. (2000). 'Photo-manipulation-boxes': An instrument for the study of plant photobiology. Plant Photobiology. 26(3), 15.
63. Kim, H.J., Lin, M.Y. and Mitchell, C.A. )2019(. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany. 157: 228-240. [DOI:10.1016/j.envexpbot.2018.10.019]
64. Kim, K.J., Kil, M.J., Song, J.S., Yoo, E.H., Son, K.C., and Kays, S.J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133(4), 521-526. [DOI:10.21273/JASHS.133.4.521]
65. Lee, N.N., Choi, Y.E. and Moon, H.K. (2014). Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. Journal of Plant Biotechnology, 41, 94-99. [DOI:10.5010/JPB.2014.41.2.94]
66. Lefsrud, M.G., Kopsell, D.A. and Sams, C.E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43, 2243-2244. [DOI:10.21273/HORTSCI.43.7.2243]
67. Li, H., Tang, C. and Xu, Z. (2013). The effect of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticalturae, 150, 117-124. [DOI:10.1016/j.scienta.2012.10.009]
68. Li, Q. and Kubota, C. (2009). Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. [DOI:10.1016/j.envexpbot.2009.06.011]
69. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods in enzymology, 148, 350-382. [DOI:10.1016/0076-6879(87)48036-1]
70. Lim, Y.J. and Eom, S.H. (2013). Effect of different light type on root formation of Ocimum basilicum L. Cuttings. Scientia Horticulturae, 164, 552-555. [DOI:10.1016/j.scienta.2013.09.057]
71. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W. and Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. [DOI:10.1016/j.scienta.2012.10.002]
72. Liu, Y., Roof, S., Ye, Z., Barry, C., van, Tuinen, A. and. Vrebalov, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101, 9897-9902. [DOI:10.1073/pnas.0400935101]
73. Lopez, R.G and Runkle, E.S. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience, 43(7), 2052-2059. [DOI:10.21273/HORTSCI.43.7.2052]
74. Mitchell, C., Both, A J., Bourget, M., Burr, J., Kubota, C., Lopez, R., Morrow, R. and Runkle, E. (2012). LEDs: The future of greenhouse lighting Chron. Horticulturae, 52, 1-9.
75. Moon, H.K., Park, S.U., Kim, Y.W. and Kim, C.H.S. (2006). Growth of Tsuru-rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. Journal of Plant Biology, 49(2), 174-179. [DOI:10.1007/BF03031014]
76. Mortensen, L.M. (1990(. Effects of temperature and light quality on growth and flowering of Begonia·hiemalis Fotsch and Campanula isophylla Moretti. Scientia Horticulturae, 44, 309-314. [DOI:10.1016/0304-4238(90)90131-W]
77. Munthikote, S. (2018). Review article role of light emitting diode in food industry. 1: 1-9.
78. Nelson, J.A. and Bugbee, B. (2014). Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE. 9(6), e99010. doi:10.1371/journal.pone.0099010. [DOI:10.1371/journal.pone.0099010]
79. Opdam, J.G., Schoonderbeek, G.G., Heller, E.B. and Gelder, A. (2005). Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Horticulturae, 691, 517-524. [DOI:10.17660/ActaHortic.2005.691.61]
80. Pinker, I., Zoglauer, K. and Coring, H. (1989). Influence of light on adventitious root formation in birch shoot cultures in vitro. Biology Plantarum, 31, 254-260 [DOI:10.1007/BF02907285]
81. Poudel, P.R., Kataoka, I. and Mochioka, R. (2008). Effect of red and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Orang Culture, 92, 147-153. [DOI:10.1007/s11240-007-9317-1]
82. Ramrez-Mosqueda, M.A., Iglesia-Andrea, L.G. and Luan-Sanchez, I.J. (2017). Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109, 288-293. [DOI:10.1016/j.sajb.2017.01.205]
83. Samuoliene, G., Brazaityte, A., Urbonaviciute, A., Šabajeviene, G. and Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97, 99-104.
84. Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food. Science and Technolog, 13(11), 361-371. [DOI:10.1016/S0924-2244(02)00182-6]
85. Schroeter-zakrzewska, A. and Kleiber, T. (2014). The effect of light color and type of lamps on rooting and nutrient status in cutting of Michaelmas daisy. Bulgarian Journal of Agricultural Science, 6, 1426-1434.
86. Shimazaki, K., Doi, M., Assmann, S.M. and Kinoshita, T. (2007). Light regulation of stomatal movement. Annul Review Plant Biology, 58, 219-247. [DOI:10.1146/annurev.arplant.57.032905.105434]
87. Shin, K.S., Murthy, H.N., Hue, J.W., Hahn, E.J. and Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339-343. [DOI:10.1007/s11738-007-0128-0]
88. Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T. and Okamoto, K. (1998). In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). Journal of Horticultural Science and Biotechnology, 73, 39-44. [DOI:10.1080/14620316.1998.11510941]
89. Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2015). Plant physiology and development (Ed. 6). Sinauer Associates Incorporated. 761p.
90. Tyburski, J. and Tretyn, A. (2004(. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regulation, 42, 39-38. [DOI:10.1023/B:GROW.0000014896.18601.38]
91. Wollaeger, H. and Runkle, E. (2014). Htt //: www.Growing seeding under LEDs: part two. Greenhouse Grower.
92. Wozny, A. and Miler, N. (2016). LEDs application ex vitro rooting and acclimatization of chrysanthemum (Chrysanthemum × grandiflorum Ramat. / Kitam.). Electronic Journal of Polish Agricultural Universities, 19(4), 1-7.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aslami Z, Ghaemi Ghehsareh M, Reezi S. The effect of different LED light spectrums on rooting and growth of benjamin fig cuttings. FOP 2023; 7 (2) :173-184
URL: http://flowerjournal.ir/article-1-237-fa.html

اسلمی زهره، قاسمی قهساره مسعود، ریزی سعید. اثر طیف‌های مختلف نور LED بر ریشه‌زایی و رشد قلمه‌های فیکوس بنجامین. گل و گیاهان زینتی. 1401; 7 (2) :173-184

URL: http://flowerjournal.ir/article-1-237-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 2 - ( پاییز و زمستان 1401 ) برگشت به فهرست نسخه ها
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4645