[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing and Abstracting::
Reviewers::
Publication Ethics::
Copyright and Licensing::
Fees and Charges::
Open Access Statement::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 5, Issue 2 (8-2020) ::
FOP 2020, 5(2): 123-138 Back to browse issues page
Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla)
Hassan Salehi * , Mozhgan Zangeneh
Shiraz University
Abstract:   (2043 Views)
Narcissus is one of the main ornamental bulbous plants in temperate regions, which is widely produced as a garden plant, cut flower and also as a pot plant. Cultivar selection is important for all of these, and wild species are important not only for species conservation but also for breeders. To select drought tolerant Shahla populations, an experiment was carried out in a complete randomized design with factorial arrangements, each treatment with three replications and two observations in 16 populations and in 4 deficit-irrigation levels. Treatments were applied by weight method (25%, 50%, 75% and 100% of field capacity) and biochemical studies were performed on them. The results showed that in general narcissus is not drought tolerant. Under severe stress, none of the genotypes entered the reproductive stage, and under moderate stress, the highest number of flowers and flowering stem length was observed in Behbahan population, which shows the superiority of this population over the others. Jahrom population can also be used under drought stress conditions in green space due to short flowering stems.
Keywords: Antioxidant enzymes, Drought stress, Narcissus tazetta, Proline
Full-Text [PDF 484 kb]   (283 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/05/24 | Accepted: 2021/06/20 | Published: 2021/12/1
References
1. Ahmadi, A., Sio-Se Mardeh, A. (2004). The effects of water stress on soluble carbohydrates, chlorophyll and proline contents of four Iranian wheat cultivars under different moisture regimes. Iranian Journal of Agricultural Science, 35(3), 753-763 (In Persian).
2. Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science Journal, 171, 382-388. [DOI:10.1016/j.plantsci.2006.04.009]
3. Asada, K. (1999). The water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639. [DOI:10.1146/annurev.arplant.50.1.601]
4. Bahadoran, M., Salehi, H. (2015). Growth and flowering of two tuberose (Polianthes tuberosa L.) cultivars under deficit irrigation by saline water. Journal of Agricultural Science and Technology, 17, 415-426.
5. Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23-58. [DOI:10.1080/07352680590910410]
6. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline of water stress studies. Plant Soil, 39, 205-207. [DOI:10.1007/BF00018060]
7. Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287. [DOI:10.1016/0003-2697(71)90370-8]
8. Blokhina, O., Virolainen, E., Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Annual Review of Botany, 91, 179-194. [DOI:10.1093/aob/mcf118]
9. Blum, A. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2, 199-238. [DOI:10.1080/07352688509382196]
10. Bor, M., Ozdemir, F., Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77-84. [DOI:10.1016/S0168-9452(02)00338-2]
11. Bowler, C., Montagu, M.V., Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83-116. [DOI:10.1146/annurev.pp.43.060192.000503]
12. Bray, E.A., Bailey-Serres, J., Weretilnyk, E. (2000) Responses to Abiotic Stress. Biochemistry & Molecular Biology of Plants. In: Gruissem, W., Jones, R. (Eds.) American Society of Plant Physiologists, Rockville, pp 1158-1203.
13. Chance, B., Maehly, A. (1995). Assay of Catalase and Peroxidase. In: Colowick, S.P., Kaplan N.O. (Eds.) Methods in Enzymology, Academic Press, New York, pp 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
14. Chen, C., Dickman, M.B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS, 102, 3459-3464. [DOI:10.1073/pnas.0407960102]
15. Del Rio, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gomez, M., Barroso, J.B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 53, 1255-1272. [DOI:10.1093/jxb/53.372.1255]
16. Foyer, C.H., Maud, L., Kunert, K.J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92, 696-717. [DOI:10.1111/j.1399-3054.1994.tb03042.x]
17. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
18. Guo, Z., Ou, W., Lu, S., Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44, 828-836. [DOI:10.1016/j.plaphy.2006.10.024]
19. Hanson, A.D., Hitz. W.D. (1982). Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Physiology, 33, 163-203. [DOI:10.1146/annurev.pp.33.060182.001115]
20. Harb, A., Krishnan, A., Ambavaram, M.M.R., Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 154, 1254-1271. [DOI:10.1104/pp.110.161752]
21. Hasani, A., Omid Beygi, R., Heidari Shrifabad, H. (2004). Study of some drought resistance indices in Basil (Ocimum basilicum). Journal of Agricultural Sciences and Natural Resources, 10(4), 65-74 (In Persian).
22. Hodges, D. M., Andrews, C.J., Johnson, D.A., Hamilton, R.I. (1997). Antioxidant enzyme responses to chilling stress in differentially sensitive inbreed maize lines. Journal of Experimental Botany, 48, 1105-1113. [DOI:10.1093/jxb/48.5.1105]
23. Idaso, S.B., Jackson, R.D., Pinter, J.P.J., Reginato, R.J., Hatfield, J.L. (1981). Normalizing the stress degree day for environmental variability. Agricultural Meteorology, 24, 45-55. [DOI:10.1016/0002-1571(81)90032-7]
24. Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., Becana, M. (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 116, 173-181. [DOI:10.1104/pp.116.1.173]
25. Jafarzadeh, L., Omidi, H., Bostani, A.A. (2013). Effect of drought stress and bio-fertilizer on flower yield, photosynthesis pigments and proline content of marigold (Calendula officinalis L.). Iranian Journal of Medicinal and Aromatic Plants, 29(3), 666-680. (In Persian).
26. Jampeetong, A., Brix, H. (2009). Effect of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvina natans. Aquatic Botany, 91, 181-186. [DOI:10.1016/j.aquabot.2009.05.003]
27. Kao, C.H. (1981). Senescence of rice leaves. VI. Comparative study of the metabolic changes of senescing turgid and water-stressed excised leaves. Plant and Cell Physiology, 22, 683-685.
28. Luhova, L., Lebeda, A., Hederrova, D., Pec, P. (2003) Activities of amine oxidase, peroxidase and catalase in seedling of Pisum sativum L. under different light conditions. Plant, Soil and Environment, 49, 151-157. [DOI:10.17221/4106-PSE]
29. Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139-158. [DOI:10.1016/j.abb.2005.10.018]
30. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
31. Moftah, A.E., Al-Humaid, A.I. (2006). Response of vegetative and reproductive parameters of water stressed tuberose plant to vapor grad and kaolin antitranspirants. Journal of King Saud University, 18, 127-139.
32. Mohammadi, R., Haghparast, R., Aghaee-Sarbarze, M., Abdollahi, A.V. (2006). An evaluation of drought tolerance in advanced durum wheat genotypes based on physiologic characteristics and other related indices. Iranian Journal of Agricultural Science, 37, 561-567. (In Persian).
33. Nakhaei, F., Khaligi, A., Naseri, M.A., Abromand, P. (2009). The investigation of chemical components in essential oil of Narcissus tazetta L. flowers under farm and natural conditions in South Khorasan. Journal of Horticulture Science, 22(2), 123-131.
34. Niedzwiedz-Siegien, I., Bogatek-Leszczynska, R., Comea, D., Corbineau, F. (2004). Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Science, 168, 879-888. [DOI:10.1016/j.plantsci.2004.05.042]
35. Omidi, H. (2010). Changes of proline content and activity of antioxidative enzymes in two canola genotype under drought stress. American Journal of Plant Physiology, 5(6), 338-349. [DOI:10.3923/ajpp.2010.338.349]
36. Ozdemir, F., Bor, M., Demiral, T., Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42, 203-211. [DOI:10.1023/B:GROW.0000026509.25995.13]
37. Pessarakli, M. (1999). Hand book of plant and crop stress. Marcel Dekker Inc. 697p. [DOI:10.1201/9780824746728]
38. Rosegrant, M.W., Cline, S.A. (2003). Global food security: challenges and policies. Science, 302, 1917-1919. [DOI:10.1126/science.1092958]
39. Safikhani, F. (2007). Effect of drought stress on quantitative and qualitative yield of Moldavian dragon head medicinal plant (Dracocephalum moldavica L.) under field conditions. PhD Thesis, Shahid Chamran University of Ahvaz, Iran. (In Persian).
40. Salehi, M.R. (2012). Investigation on phylogenetic, morphologic, physiologic and tolerance to drought stress in tall fescue (Festuca arundinacea Scherb.). PhD Thesis, University of Shiraz, Iran. (In Persian).
41. Salekjalali, M., Haddad, R., Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contentes of chlorophylls and proteins in Barley. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(1), 57-63.
42. Sarvajeet, S.G., Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 3, 1-22.
43. Sepaskhah, A.R., Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. Journal of Horticultural Science and Biotechnology, 84, 216-222. [DOI:10.1080/14620316.2009.11512507]
44. Shao, H.B., Liang, Z.S., Shao, M.A. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces, 45, 7-13. [DOI:10.1016/j.colsurfb.2005.06.016]
45. Shillo, R., Ding, M., Pasternak, D., Zaccai, M. (2002). Cultivation of cut flower and bulb species with saline water. Scientia Horticulturae, 92, 41-54. [DOI:10.1016/S0304-4238(01)00276-X]
46. Slawinska, J., Obendorf, R.L. (2001). Buckwheat seed set in plant and during In vitro inflorescence culture: evaluation of temperature and water deficient stress. Seed Science Research, 11, 223-233.
47. Tarahomi, G., Lahoti, M., Abasi, F. (2010). Effect of drought stress on variations of soluble sugar, chlorophyll and potassium in Salvia leriifolia Benth. Quarterly Journal of Biological Sciences, 3(2), 1-7 (In Persian).
48. Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. [DOI:10.1016/S1360-1385(00)01838-0]
49. Ahmadi, A. and Sio-Se Mardeh, A. (2004). The effects of water stress on soluble carbohydrates, chlorophyll and proline contents of four Iranian wheat cultivars under different moisture regimes. Iranian Journal of Agricultural Science 35(3): 753-763 (In Persian).
50. Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R. and Singh, T.P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science Journal 171: 382-388. [DOI:10.1016/j.plantsci.2006.04.009]
51. Asada, K. (1999). The water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639. [DOI:10.1146/annurev.arplant.50.1.601]
52. Bahadoran, M. and Salehi, H. (2015). Growth and Flowering of Two Tuberose (Polianthes tuberosa L.) Cultivars under Deficit Irrigation by Saline Water. Journal of Agricultural Science and Technology 17: 415-426.
53. Bartels, D. and Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences 24: 23-58. [DOI:10.1080/07352680590910410]
54. Bates, L.S., Waldren, R.P. and Teare, I.D. (1973). Rapid Determination of Free Proline of Water Stress Studies. Plant Soil 39: 205-207. [DOI:10.1007/BF00018060]
55. Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287. [DOI:10.1016/0003-2697(71)90370-8]
56. Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Annual Review of Botany 91: 179-194. [DOI:10.1093/aob/mcf118]
57. Blum, A. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences 2: 199-238. [DOI:10.1080/07352688509382196]
58. Bor, M., Ozdemir, F. and Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science 164: 77-84. [DOI:10.1016/S0168-9452(02)00338-2]
59. Bowler, C., Montagu, M.V. and Inze, D. (1992). Superoxide desmutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116. [DOI:10.1146/annurev.pp.43.060192.000503]
60. Bray, E.A., Bailey-Serres, J. and Weretilnyk, E. (2000) Responses to abiotic stress. Biochemistry & molecular biology of plants. In: Gruissem, W. and Jones, R. (Eds.) American Society of Plant Physiologists, Rockville, pp 1158-1203.
61. Chance, B. and Maehly, A. (1995). Assay of catalase and peroxidase. In: Colowick, S.P. and Kaplan N.O. (Eds.) Methods in Enzymology, Academic Press, New York, pp 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
62. Chen, C. and Dickman, M.B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102: 3459-3464. [DOI:10.1073/pnas.0407960102]
63. Del Rio, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gomez, M. and Barroso, J.B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255-1272. [DOI:10.1093/jxb/53.372.1255]
64. Foyer, C.H., Maud, L. and Kunert, K.J. (1994). Photooxidative stress in plants. Physiologia Plantarum 92: 696-717. [DOI:10.1034/j.1399-3054.1994.920422.x]
65. Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169: 313-321. [DOI:10.1016/j.plantsci.2005.02.023]
66. Guo, Z., Ou, W., Lu, S. and Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44: 828-836. [DOI:10.1016/j.plaphy.2006.10.024]
67. Hanson, A.D. and Hitz. W.D. (1982). Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Physiology 33: 163-203. [DOI:10.1146/annurev.pp.33.060182.001115]
68. Harb, A., Krishnan, A., Ambavaram, M.M.R. and Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154: 1254-1271. [DOI:10.1104/pp.110.161752]
69. Hasani, A., Omid Beygi, R. and Heidari Shrifabad, H. (2004). Study of some drought resistance indices in Basil (Ocimum basilicum). Journal of Agricultural Sciences and Natural Resources 10(4): 65-74 (In Persian).
70. Hodges, D. M., Andrews, C.J., Johnson, D.A. and Hamilton, R.I. (1997). Antioxidant enzyme responses to chilling stress in differentially sensitive inbreed maize lines. Journal of Experimental Botany 48: 1105-1113. [DOI:10.1093/jxb/48.5.1105]
71. Idaso, S.B., Jackson, R.D., Pinter, J.P.J., Reginato, R.J. and Hatfield, J.L. (1981). Normalizing the stress degree day for environmental variability. Agricultural Meteorology 24: 45-55. [DOI:10.1016/0002-1571(81)90032-7]
72. Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C. and Becana, M. (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology 116: 173-181. [DOI:10.1104/pp.116.1.173]
73. Jafarpur, A., Alijani, B. and Shahdad, F. (2007). Fundamentals of climatology. Payame Noor University Press. 204p. (In Persian).
74. Jampeetong, A. and Brix, H. (2009). Effect of NaCl Salinity on Growth, Morphology, Photosynthesis and Proline Accumulation of Salvina natans. Aquatic Botany 91: 181-186. [DOI:10.1016/j.aquabot.2009.05.003]
75. Jiménez, R. and Caballero, M. (1990). El riego y la Fertilización. In: Jiménez, R. and Caballero, M. (Eds.) El Cultivo Industrial de Plantas en Maceta. Barcelona, Spain, pp 101-122.
76. Kao, C.H. (1981). Senescense of rice leaves. VI. Comparative study of the metabolic changes of senescing turgid and water-stressed excised leaves. Plant and Cell Physiology 22: 683-685.
77. Luhova, L., Lebeda, A., Hederrova, D. and Pec, P. (2003) Activities of amine oxidase, peroxidase and catalase in seedling of pisum sativum L. under different light conditions. Plant, Soil and Environment 49: 151-157. [DOI:10.17221/4106-PSE]
78. Mahajan, S. and Tuteja, N. (2005). Cold, Salinity and Drought Stresses: An Overview. Archives of Biochemistry and Biophysics 444: 139-158. [DOI:10.1016/j.abb.2005.10.018]
79. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
80. Moftah, A.E. and Al-Humaid, A.I. (2006). Response of Vegetative and Reproductive Parameters of Water Stressed Tuberose Plant to Vapor Grad and Kaolin Antitranspirants. Journal of King Saud University 18: 127-139.
81. Mohammadi, R., Haghparast, R., Aghaee-Sarbarze, M. and Abdollahi, A.V. (2006). An evaluation of drought tolerance in advanced durum wheat genotypes based on physiologic characteristics and other related indices. Iranian Journal of Agricultural Science 37: 561-567.
82. Niedzwiedz-Siegien, I., Bogatek-Leszczynska, R., Comea, D. and Corbineau, F. (2004). Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Science 168: 879-888. [DOI:10.1016/j.plantsci.2004.05.042]
83. Omidi, H. (2010). Changes of proline content and activity of antioxidative enzymes in two canola genotypes under drought stress. American Journal of Plant Physiology 5(6): 338-349. [DOI:10.3923/ajpp.2010.338.349]
84. Ozdemir, F., Bor, M., Demiral, T. and Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation 42: 203-211. [DOI:10.1023/B:GROW.0000026509.25995.13]
85. Pessarakli, M. (1999). Hand book of plant and crop stress. Marcel Dekker Inc. 697p. [DOI:10.1201/9780824746728]
86. Rosegrant, M.W. and Cline, S.A. (2003). Global food security: challenges and policies. Science 302: 1917-1919. [DOI:10.1126/science.1092958]
87. Safikhani, F. (1386). Effect of drought stress on quantitative and qualitative yield of Moldavian dragon head medicinal plant (Dracocephalum moldavica L.) under field conditions. PhD Thesis, Shahid Chamran University of Ahvaz, Iran. (In Persian).
88. Salehi, M.R. (1391). Investigation on phylogenetic, morphologic, physiologic and tolerance to drought stress in tall fescue (Festuca arundinacea Scherb.). PhD Thesis, University of Shiraz, Iran. (In Persian).
89. Salekjalali, M., Haddad, R. and Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contentes of chlorophylls and proteins in Barley. American-Eurasian Journal of Agricultural & Environmental Sciences 12(1): 57-63.
90. Sarvajeet, S.G. and Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Plant Physiology and Biochemistry 3: 1-22.
91. Sepaskhah, A.R. and Yarami, N. (2009). Interaction Effects of Irrigation Regime and Salinity on Flower Yield and Growth of Saffron. Journal of Horticultural Science and Biotechnology 84: 216-222. [DOI:10.1080/14620316.2009.11512507]
92. Shao, H.B., Liang, Z.S. and Shao, M.A. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces 45: 7-13. [DOI:10.1016/j.colsurfb.2005.06.016]
93. Shillo, R., Ding, M., Pasternak, D. and Zaccai, M. (2002). Cultivation of Cut Flower and Bulb Species with Saline Water. Scientia Horticulturae 92: 41-54. [DOI:10.1016/S0304-4238(01)00276-X]
94. Slawinska, J. and Obendorf, R.L. (2001). Buckwheat Seed Set in Plant and during In vitro Inflorescence Culture: Evaluation of Temperature and Water Deficient Stress. Seed Science Research 11: 223-233.
95. Tarahomi, G., Lahoti, M. and Abasi, F. (2010). Effect of drought stress on variations of soluble sugar, chlorophyll and potassium in Salvia leriifolia Benth. Quarterly Journal of biological Sciences 3(2): 1-7 (In Persian).
96. Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science 6(2): 66-71. [DOI:10.1016/S1360-1385(00)01838-0]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salehi H, Zangeneh M. Effect of different levels of deficit-irrigation on proline changes and antioxidant enzymes in Narcissus indigenous population (Narcissus tazetta L. var. Shahla). FOP 2020; 5 (2) :123-138
URL: http://flowerjournal.ir/article-1-200-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 5, Issue 2 (8-2020) Back to browse issues page
گل و گیاهان زینتی Flower and Ornamental Plants
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645