چکیده

یکی از گیاهان گلدار برگ زینتی تولید برگ‌های کافی و شاخه‌های جانی برای ایجاد ظاهر متمایز است. شایع‌ترین عامل تحریک کننده رشد چربی‌ریزی جیربیک اسد می‌باشد که شاخه‌ور گیاه‌ها را تولید می‌کند. هدف پژوهش حاضر، تعیین تاثیر سردرد میخانه مختلف چربی‌ریزی جیربیک اسد بر برخی ویژگی‌های رشدی گل و گلدهی جفعه آفریقایی است. در این بخش سردرداری به عناوین عامل اول در سطح (صفر، 5 و 100 و 50 روز پس از نشانگر) و چربی‌ریزی اسد به عناوین عامل دوم در جهات سطح (صفر، 100 و 200 میلی گرم در لیتر) استفاده شد. گیاهان پس از این که در گلادان استقرار یافته، (حدود 15 روز پس از نشانگر)، تحت تیمار سردرد و محلول‌پاشی چربی‌ریزی اسد قرار گرفته‌اند. این پژوهش در قالب آزمایش گفتوگویی شامل سطح سردردی (عامل اول) و چهار سطح چربی‌ریزی اسد (عامل دوم) به صورت طرح پذیرش کامل تصادفی با چهار تکرار و در هر تکرار چهار گلادان انجام شد. بدین‌ترتیب نتایج نشان‌دهنده که این گیاهان در سه مراحل به فاصله‌های زمانی 10 روزه سردرد گرفتند، نتیجه‌گذاری نشان داد که تیمار سردردی به همراه محلول‌پاشی چربی‌ریزی اسد به صورت هم‌زمان، باعث افزایش مقادیر شاخص‌های سبزه‌ای، ارتفاع گیاه و حجم ریشه شد. همچنین برخی ویژگی‌های پرورش گل‌ها بهبود یافت و قطر و فاقد ساقه بالاتری عملکرد را در تیمار 100 میلی گرم در لیتر چربی‌ریزی اسد به همراه داشتند. نتیجه‌گیری‌های دیگر آمده‌اند که با توجه به ویژگی‌های مورد بررسی، کاربرد چربی‌ریزی اسد به 100 میلی‌گرم در لیتر به همراه سردرد می‌تواند تیمار برای افزایش گل‌دهی و بهبود ویژگی‌های مورد بررسی در این گیاه پژوهش‌بردار باشد.

واژه‌های کلیدی: نشان جیربیک اسد، سردردی، گل‌دهی گل‌های باز، سبزه‌ای.

مقدمه

جفعه آفریقایی (Tagetes erecta L.) از تیره میناسانی‌های مرکز و جنوب آمریکا به‌ویژه مکزیک است. این گیاه یکساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌های کمتر از 18 درجه سلسوس رشد آن کننده بوده و گیاهان زرد می‌شوند. گیاه جفعه یک‌ساله و اغلب دوست است به دم‌ای
میکروب‌های گیاهی و شرایط کشت: این پژوهش در گلخانه‌های آزاد جریان انجام شد. منطقه جریفت در جنوب شرقی استان کرمان و با طول جغرافیایی ۵۵° ۲۷ دقیقه و عرض جغرافیایی ۲۷° ۲۳ دقیقه قرار دارد. میانگین دمای روزانه و شبانه در محل آزمایش در اواخر پاییز و زمستان بین ۸ و ۱۸ درجه سلسوس است. در این پژوهش از گلخانه‌های بلا ستیکی با ۴۰ متر مربعی با قطر دهانه ۱۵ سانتیمتر و ارتفاع ۱۵ سانتیمتر استفاده شد. برای خروج آب اضافی از گلخانه، سواری زهکش آن کنترل و سبیل‌های از سبکی بر کف گلخانه ریخته شد. آمیخته‌ای از خاک باخی، ماسه شسته شده و کود گیاهی پوسته‌بندی به نسبت ۴۰٪/۶۰٪ به صورت یک‌پوشیدن گلخانه با یک‌میلی‌متر مفروغته با اندازه ۲/۴ در نسبت ۴/۲ و ۶/۸ هفته پس از کاشته، هر بار ۱۰۰ میلی لیتر بیا قهوه ریخته شد. محلول غلیظ میکروگنی در نیترات عناصر نیترولژن ۸/۸ درف. هم‌اکنون ۵/۵ در نیترات کم صرف شرایط آلی‌سیس، راه، نامی، مولتیدن و بود. چربی‌های اسید و تونین-۲۰۰۰ از شرکت معیار کشت بر دانش‌ها نشان دهنده شهر گستران آدان و همچنین افزایش نسبی واکن از آن تکان حجمی اورجیف یه شد.

روش کاربردی اندازه‌گیری: سربرداری به عناصر عامل در سه سطح صفر، ۴۵، و ۹۰ روز پس از کاشته و چربی‌های اسید میلی‌گرم در لیتر بود. پذیرش و تهیه بر دانش‌های میکروگنی به عنوان عامل در چهار سطح صفر، ۱۰۰، ۳۰۰ و ۵۰۰ میلی‌گرم در لیتر بود. بر اساس یک نظریه تکان، گیاه نسبت به اینکه در گلخانه آنتیکفرت افتاده (حدود ۱۵ درصد) روز پس از نشانه‌گیری، تحت تیمار سربرداری و محلول پاشی چربی‌های اسید بر ثابت گرفتند. در حالی که باعث آوردن شناخته‌های افشاور شد. این کار در حالی آغاز شدکه عناصر گرفته گرفته‌ها است که در محلول پاشی سهم ملکه و برای مددکرده چربی در محلول گیاه‌های در هر بین تیمار در منابع بی‌پردازه ۱۲۰۰/۱۰ (به مقدار ۱۰۰ میلی لیتر در محلول به کار برده شد (Salehi Sardoei et al., ۲۰۱۴b). زمان انتقال نشاء اول آباماه، تخمین محلول پاشی ۱۵ آب انگیزه و محلول پاشی در زمان ۱۰ روزه در حال صورت گرفت. گیاهان شاهد با آب مفرز محلول پاشی شدند.
تیمارها:
تیمار نخست: بدون سربداری + محلول‌پاشی با آب مفرط
تیمار دوم: بدون سربداری + محلول‌پاشی (100 میلی گرم در لیتر جیریلیک اسید)
تیمار سوم: سربداری + محلول‌پاشی (100 میلی گرم در لیتر جیریلیک اسید)
تیمار چهارم: بدون سربداری + محلول‌پاشی (300 میلی گرم در لیتر جیریلیک اسید)
تیمار پنجم: سربداری نشان‌ها 45 روز پس از نشاکاری + محلول‌پاشی با آب مفرط
تیمار ششم: سربداری نشان‌ها 45 روز پس از نشاکاری + محلول‌پاشی (100 میلی گرم در لیتر جیریلیک اسید)
تیمار هفتم: سربداری نشان‌ها 45 روز پس از نشاکاری + محلول‌پاشی (200 میلی گرم در لیتر جیریلیک اسید)
تیمار نهم: سربداری نشان‌ها 90 روز پس از نشاکاری + محلول‌پاشی با آب مفرط
تیمار دهم: سربداری نشان‌ها 90 روز پس از نشاکاری + محلول‌پاشی (100 میلی گرم در لیتر جیریلیک اسید)
تیمار دوازدهم: سربداری نشان‌ها 90 روز پس از نشاکاری + محلول‌پاشی (200 میلی گرم در لیتر جیریلیک اسید)

ویژگی‌های مورد بررسی: شمار گل بذر شده، شمار گل غنچه باز نشده، ارتفاع گیاه، قطر ساقه، محیط زیسته برگ، شمار شاخه، وزن هردام هواپی و ریشه، وزن خشک اندام هواپی و ریشه در تیمارها مختلف اندادگیری شد. حجم ریشه به‌وسیله استوانه مدرج طول شاخه جایی در هرمز گونم با خط‌کش اندادگیری شد. وزن خشک اندام هواپی و ریشه با خشک کردن در دستگاه آون به مدت 48 ساعت در دما 27 درجه سلسیوس تعيین شد. میزان سربای برگ نیز با دستگاه سپیتروسنج مدل 04 ساخت انگلستان در ساعت‌های آغازین صحیح در برگ‌های جوان (برگ‌های انتهای ساقه) انجام شد (Hasibi, 2007).

برگ‌های گیاهان از دیدگاه Lichtenhaler (1987) و Basile, (1989) انجام شد. براساس این روش 100 گرم بافت نازه برگ انداده گیاهی برابر با (A663.2) = (12.25 × A663.2) - (2.79 × A646.8) و (A646.8) = (21.50 × A646.8) - (5.10 × A663.2) میزان قربانیه‌ها نورسایخت با روش SPAD تعبیه شد.

Chlorophyll a = (12.25 × A663.2) - (2.79 × A646.8)
Chlorophyll b = (21.50 × A646.8) - (5.10 × A663.2)
Total Chlorophyll = Chlorophyll a + Chlorophyll b
Carotenoids = (1000 × A467) - (1.82 × Chl. a)-(85.02 × Chl. b)/198

واکاوی آماری داده‌ها: این پژوهش در قالب آزمایش‌های آزمایشگاهی 3×4 شامل سه سطح سربداری (عامل اول) و چهار سطح چربی‌پوشی اسید (عامل دوم) به‌صورت طرح همبسته کامل تصادفی با چهار تکرار در دو تکرار به کل دانه انجام شد. واکاوی آماری داده‌ها با استفاده از نرم‌افزار SAS نسخه 9/4 انجام شد و میانگین ها به کمک آزمون دانکن در سطح α ≤ 0/05 مقایسه شدند.
In each column, means with same letter(s) are not significantly different according to DMRT at 5% level.

Table 1- Effects of single-factors of topping and gibberellic acid on different growth indices of African marigold.

<table>
<thead>
<tr>
<th></th>
<th>Root volume (cm³)</th>
<th>Total length of lateral branch (cm)</th>
<th>Number of shoots</th>
<th>Number of shoots</th>
<th>Stem diameter (mm)</th>
<th>Number of buds</th>
<th>Number of opened flowers</th>
<th>Plant height (cm)</th>
<th>Gibberellic acid (L⁻¹)</th>
<th>Topping (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>8.56a</td>
<td>13.31a</td>
<td>7.18a</td>
<td>0.23a</td>
<td>10.63a</td>
<td>13.56a</td>
<td>38.58a</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>300 mg L⁻¹</td>
<td>6.62a</td>
<td>14.94a</td>
<td>6.62a</td>
<td>0.23a</td>
<td>11.43a</td>
<td>17.87b</td>
<td>41.56a</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mg L⁻¹</td>
<td>12.25a</td>
<td>11.15a</td>
<td>10.7a</td>
<td>0.21a</td>
<td>10.68b</td>
<td>16.37a</td>
<td>40.26a</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mg L⁻¹</td>
<td>7.50a</td>
<td>11.55a</td>
<td>7.44a</td>
<td>0.21b</td>
<td>10.91a</td>
<td>12.25b</td>
<td>39.26b</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mg L⁻¹</td>
<td>10.83a</td>
<td>16.10a</td>
<td>8.19a</td>
<td>0.26a</td>
<td>12.16a</td>
<td>21.50b</td>
<td>40.19a</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mg L⁻¹</td>
<td>7.91a</td>
<td>13.10a</td>
<td>8.71a</td>
<td>0.25a</td>
<td>11.0a</td>
<td>16.00a</td>
<td>41.10a</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1- Continued.

<table>
<thead>
<tr>
<th></th>
<th>Shoot dry weight (g)</th>
<th>Shoot fresh weight (g)</th>
<th>Shoot dry weight (g)</th>
<th>Shoot fresh weight (g)</th>
<th>Total chlorophyll (mg ml⁻¹)</th>
<th>Chlorophyll a (mg ml⁻¹)</th>
<th>Carotenoid (mg ml⁻¹)</th>
<th>Gibberellic acid (L⁻¹)</th>
<th>Topping (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>2.78ab</td>
<td>6.9a</td>
<td>8.78a</td>
<td>13.54a</td>
<td>13.97a</td>
<td>4.17a</td>
<td>5.18a</td>
<td>8.79a</td>
<td>0</td>
</tr>
<tr>
<td>300 mg L⁻¹</td>
<td>3.8a</td>
<td>4.26b</td>
<td>7.19b</td>
<td>16.4a</td>
<td>14.68b</td>
<td>4.26b</td>
<td>5.75a</td>
<td>8.92a</td>
<td>45</td>
</tr>
<tr>
<td>200 mg L⁻¹</td>
<td>2.31b</td>
<td>5.92b</td>
<td>4.14b</td>
<td>18.43a</td>
<td>14.1a</td>
<td>4.47b</td>
<td>4.84a</td>
<td>9.26a</td>
<td>90</td>
</tr>
<tr>
<td>100 mg L⁻¹</td>
<td>2.99b</td>
<td>5.17b</td>
<td>4.68b</td>
<td>12.69b</td>
<td>13.69a</td>
<td>4.31b</td>
<td>5.07ab</td>
<td>8.62a</td>
<td>Distilled (water)</td>
</tr>
<tr>
<td>50 mg L⁻¹</td>
<td>3.51a</td>
<td>5.65a</td>
<td>7.39b</td>
<td>21.08b</td>
<td>13.64a</td>
<td>4.37b</td>
<td>4.66b</td>
<td>8.98ab</td>
<td>100</td>
</tr>
<tr>
<td>0 mg L⁻¹</td>
<td>2.69b</td>
<td>6.79a</td>
<td>10.01a</td>
<td>16.8a</td>
<td>14.59a</td>
<td>4.38a</td>
<td>5.38ab</td>
<td>9.2b</td>
<td>200</td>
</tr>
<tr>
<td>0 mg L⁻¹</td>
<td>2.66a</td>
<td>5.17b</td>
<td>4.73b</td>
<td>14.59a</td>
<td>15.08b</td>
<td>4.29b</td>
<td>5.92a</td>
<td>9.16ab</td>
<td>300</td>
</tr>
</tbody>
</table>

In each column, means with same letter(s) are not significantly different according to DMRT at 5% level.
Table 2 - The interaction effects of topping and gibberellic acid on different growth indices of African marigold.

<table>
<thead>
<tr>
<th>Topping (days)</th>
<th>Gibberellic acid (mg L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total chlorophyll (mg ml(^{-1}))</td>
</tr>
<tr>
<td>0</td>
<td>15.71 (a)</td>
</tr>
<tr>
<td>100</td>
<td>15.43 (a)</td>
</tr>
<tr>
<td>300</td>
<td>17.81 (a)</td>
</tr>
<tr>
<td>90</td>
<td>18.59 (a)</td>
</tr>
<tr>
<td>0</td>
<td>15.76 (ab)</td>
</tr>
<tr>
<td>45</td>
<td>20.99 (ab)</td>
</tr>
<tr>
<td>200</td>
<td>22.22 (a)</td>
</tr>
<tr>
<td>0</td>
<td>18.94 (ab)</td>
</tr>
<tr>
<td>90</td>
<td>17.72 (ab)</td>
</tr>
<tr>
<td>200</td>
<td>19.75 (bc)</td>
</tr>
<tr>
<td>300</td>
<td>19.34 (bc)</td>
</tr>
</tbody>
</table>

In each column, means with same letter(s) are not significantly different according to DMRT at 5% level.

Table 2 - Continued.

<table>
<thead>
<tr>
<th>Topping (days)</th>
<th>Total chlorophyll (mg ml(^{-1}))</th>
<th>Chlorophyll a</th>
<th>Chlorophyll b</th>
<th>Carotenoid</th>
<th>Total pigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.71 (a)</td>
<td>11.32 (b)</td>
<td>4.42 (a)</td>
<td>3.03 (b)</td>
<td>8.29 (b)</td>
</tr>
<tr>
<td>100</td>
<td>15.43 (a)</td>
<td>14.31 (b)</td>
<td>4.23 (a)</td>
<td>5.71 (bc)</td>
<td>8.6bc</td>
</tr>
<tr>
<td>300</td>
<td>17.81 (a)</td>
<td>13.26 (b)</td>
<td>4.54 (a)</td>
<td>4.27 (ab)</td>
<td>8.99 (bc)</td>
</tr>
<tr>
<td>90</td>
<td>18.59 (a)</td>
<td>14.15 (b)</td>
<td>4.43 (a)</td>
<td>7.45 (bc)</td>
<td>9.4 (bc)</td>
</tr>
<tr>
<td>0</td>
<td>15.76 (ab)</td>
<td>11.47 (bc)</td>
<td>4.29 (ab)</td>
<td>3.28 (bc)</td>
<td>8.19 (b)</td>
</tr>
<tr>
<td>45</td>
<td>20.99 (ab)</td>
<td>16.82 (b)</td>
<td>4.17 (a)</td>
<td>7.4 (a)</td>
<td>9.41 (b)</td>
</tr>
<tr>
<td>200</td>
<td>22.22 (a)</td>
<td>17.68 (b)</td>
<td>4.53 (a)</td>
<td>7.32 (b)</td>
<td>10.36 (c)</td>
</tr>
<tr>
<td>0</td>
<td>18.94 (ab)</td>
<td>14.61 (bc)</td>
<td>4.32 (bc)</td>
<td>5.54 (c)</td>
<td>9.07 (c)</td>
</tr>
<tr>
<td>90</td>
<td>17.72 (ab)</td>
<td>13.3 (bc)</td>
<td>4.41 (bc)</td>
<td>4.33 (ab)</td>
<td>8.97 (bc)</td>
</tr>
<tr>
<td>200</td>
<td>19.75 (bc)</td>
<td>15.45 (bc)</td>
<td>4.16 (a)</td>
<td>6.09 (bc)</td>
<td>9.09 (bc)</td>
</tr>
<tr>
<td>300</td>
<td>19.34 (bc)</td>
<td>15.18 (bc)</td>
<td>4.28 (bc)</td>
<td>4.91 (c)</td>
<td>8.56 (bc)</td>
</tr>
</tbody>
</table>

In each column, means with same letter(s) are not significantly different according to DMRT at 5% level.
ارتفاع گیاه شود. در پژوهش حاضر، تفاوت معناداری در اثر کاربرد چربیکه اسید دیده شد و شایان ذکر است که هم‌اکنون تیمارها در مقایسه با شاهد، ارتقای گیاه را افزایش دادند. بیشترین ارتقای گیاه از تیمار سربرداری 45 روز + ۲۰۰ میلی‌گرم در لیتر چربیکه اسید بهره‌برداری افزایشی به دست آمد. این نتیجه‌ها با روشی تشریحی نشان می‌دهد که حسی وابسته یک‌طرفه می‌باشد که شامل ماده‌هایی مثل پروتئین و هگانوندیگری جون (Pawar et al., 2008) در روا زیبا و منا گزارش شده است. کاربرد تنظیم گرده و اثر چربیکه اسید در مقایسه با شاهد، تغییرهایی در افزایش شمار شاهد در ۹۰ پس از محلول‌پاشی شد. تیمار ۹۰ پس از محلول‌پاشی، بالاترین شمار شاهد از تیمار سربرداری ۹۰ روز + ۲۰۰ میلی‌گرم در لیتر چربیکه اسید به دست آمد. افزایش شمار شاهد از تیمار‌های در واقع عنوان نشان دهنده‌ای رشد می‌تواند ناشی از اثر نان‌نمایی (آنتاکونستی) اکسین باید باشد که موجب چرگی انگیزه‌های می‌شود. این ترتیب شجع جوان‌اندازه‌گر کاهش بالا و ماده‌های غذایی، پیش‌تر در انتخاب جوان‌های جانین قرار می‌گیرد و این منجر به افزایش تحقیق شاخص‌های جانین می‌شود. نتیجه‌های مشابه توسط سایرین (Sunitha, 2006) در جغرافیای افریقا/آمریکا گزارش شده است. افزایش شمار شاهد ممکن است ناشی از افزایش انتقال سیالاتی در جوان‌های بی‌پنجره که موجب افزایش شمار شاهد می‌شود به همین ترتیب افزایش عدد‌گونه‌ها و می‌تواند ناشی از افزایش (Krishnamoorthi and Madalageri, 2001). در آراسی، (Khangoli, 2001) نتراج چربیکه اسید باعث کاهش قطع‌سایه گیاه شد. (Asil, 2014d) کاهش قطع سایه با افزایش غلظت جربیکه اسید و احتمال به دلیل نقص این ماده در اندازه‌های بهتر و بزرگ‌تر می‌تواند یادآور مشابهی باشد که کاهش میزان سیلیز در پلاستیک‌های استفاده‌کرده‌های را افزایش داشته و به شکل گرم شده باعث کاهش قطع سایه می‌شود. (Khangoli, 2001). چربیکه اسید کنش‌بندی‌کننده یادآور دیواره‌ای از افزایش داده و به لغت کردن شیره باعث می‌شود، ممکن است به دلیل هیپرولیز ناشی‌شده به آن سبب کاهش پانیرس آب در باخته‌ها و موجب ورود آب به درون یاپیت به دلیل افزایش چربیکه اسید در رخت (Stephen et al., 2005). جربیکه اسید و چربیکه کاهش گیاه به وسیله میزان گازهای دیوراته‌های باعث نگردن گازهای کاهش گیاه به وسیله چربیکه اسید است. (Janowsk and Jerzy, 2003; Majidian et al., 2011) که این نتیجه‌ها با نتیجه‌های نادردگان هم‌مسو می‌باشند. کاربرد چربیکه اسید در محصول‌پاشی به همراه افزایش چربیکه اسید به میزان کاهش بالایی شناسایی شده است. افزایش چربیکه اسید به میزان میزان سبزیجات و گیاهی افزایش بر تیمار سربرداری ۴۵ روز + ۲۰۰ میلی‌گرم در لیتر چربیکه اسید به دلیل افزایش غلظت چربیکه اسید به میزان سبزیجات و گیاهی تعدادی رشد که این میزان سبزیجات و گیاهی افزایش ناشی از افزایش چربیکه اسید و افزایش سبزیجات و گیاه در هر گیاه است.

Schefflera arboricola - 5
Araceae - 4
Tagetes erecta - 3
Bellis perennis - 2
Guillardia aristata - 1
Zantedeschia aethiopica - 6
نورساخته با عنوان یک فرانولیوک پیشین حساسیت را با دمای بالا دارد که این حساسیت به جای و
مرحله نیمی آن مفتاوت است (Salehi Sardoei and Hassanpour Asil, 2014d). ترکیبی از عوامل زیست شیمیایی و
فیزیولوژیکی به همراه آنتی‌متاژ عملکرد گیاه را تعیین می‌کند. در کاربرد این رابطه، در یک مدل است زیرا خلیه هستند
و با ترکیب تغییر در رشد و نمونه‌گیری گیاه نشان دادند. در این پژوهش
مشخص شد که بین تیمارهای تفاوت زیادی از نظر میزان سبزیجات و کاروتئونیی برگ وجود داشت. کاربرد 200 میلی‌گرم در لتر
جبیریک اسید به همراه استفاده از انتقال سربداری پایه جبیریک اسید میز بسیار داشت. افزایش میزان سبزیجات برگ برحسب
جبیریک اسید افزایش نشان دادن نشان داده شده در آزمایش برای گیاه همیشه‌هایا دیده‌شده این افت‌ها که با افزایش غلظت جبیریک
(Salehi Sardoei and Shahdadneghad, 2014a). کاهش تحریک
جبیریک اسید و افزایش سالنگی در سبزیجات باشد.
همچنین افزایش میزان سبزیجات کل برگ می‌تواند ناشی از افزایش سبزیجات باشد. در
افراش سبزیجات و کاروتئونیی باشد. جبیریک اسید نشان دهنده از غشای کاروتئونیات، استفاده باعث می‌شود
jab (Janowsk and Jerzy, 2003). سبزیجات در گیاهان از نظر جذب و همکاری در انتزاع نور از نظر سبزیجات
اساسی است. به طور دلیل افزایش در سطح محوطه برگ، تحریک میزان نورساخته می‌باشد. افزایش عناصر
برخی آزمایش‌ها با تغییر در توزیع ماده‌های نورساخته ضروری است. باعث آزمایش برخی
تجهیزات سبزیجات و انتقال انرژی به انرژی ایجاده است.
جبیریک اسید با تحریک عناصر برخی
ابزارهای پروتئینی به انرژی ایجاده از ماده‌ها درون این باعث (جبیریک اسید سبزیجات)
می‌باشد و در وابستگی در سبزیجات نرمی
تبغایا باعث به انرژی یک می‌باشد، که این مسئله ایزان به بالاتری دیده که درون
جبیریک اسید افزایش عناصر باعث سبزیجات
(Bani Nasab and Rahami, 1998).
نتیجه این مورد باشد. فنگهای
کاربکسیل-کوارتزناز که آزمایش در گیاهان است را افزایش می‌دهد. جبیریک اسید افزایش در نژاده این نیز ضروری
در طی فرآیند پری که کاهش می‌دهد که می‌تواند است به تحریک نورساخته بوده یک ضروری
متجه به افزایش عناصر می‌شود (2005). محلول پاپاژوکریم (BA+GA)
پروتئینی (Salehi Sardoei et al., 2014d). افزایش غلظت جبیریک اسید تا 200 میلی‌گرم در لتر، وزن تر و خشکی ریشه را افزایش داد (جدول 3). این در حالی است که کاربرد ترکیب
200 میلی‌گرم در لتر جبیریک اسید به همراه افزایش سربداری 90 روز از نشانگر به

| Ficus benjamina | -3 | Dizygotheca elegantissima | -2 | Calendula officinalis | -1 |

105
Table 3- The interaction effects of topping and gibberellic acid on fresh and dry weights of root and shoots of African marigold.

<table>
<thead>
<tr>
<th>Gibberellic acid (mg L⁻¹)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topping days</td>
<td>45</td>
<td>90</td>
<td>180</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gibberellic acid (mg L⁻¹)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In each column, means with same letter(s) are not significantly different according to DMRT at 5% level.

In stressful conditions, Cheshmehgarhi vegetable extract increased the weight of fresh and dry leaves and shoots of African marigold (Javid et al., 2011). Biological extracts of Colchicum autumnale and Trachyspermum ammi (Krishnamoorthy and Madalageri, 2000) are also used to enhance plant growth and increase yield.

In stressful conditions, biological extracts of Colchicum autumnale and Trachyspermum ammi (Krishnamoorthy and Madalageri, 2000) are also used to enhance plant growth and increase yield.

Effects of topping and foliar application of gibberellic acid on some growth and flowering characteristics of African marigold

Ali Salehi Sardoei1*, Mojgan Shahdadnejad2, Mohmmad Ali Bahmanyar3

1. Department of Horticultural Science, Faculty of Plant Production, Gorgan University of Agriculture and Natural Resources, Gorgan
3. Department of Horticultural Sciences, University of Agricultural Sciences and Natural Resources, Sari, Iran

alischeisardoei@gau.ac.ir

Abstract
One of the characteristics of ornamental foliage plants is the production of enough leaves and lateral branches to create a dense appearance. In some cases, it is necessary to treat some non-growing branches with some growth regulators to produce enough leaves and lateral shoots. The most common treatments are topping the branch and gibberellic acid application to produce more foliage on the plant. This research was conducted to study the influence of topping and application of gibberellic acid on vegetative and reproductive growth of African marigold as a bedding plant. In this study, topping as the first factor at three levels (0, 45, and 90 days before transplanting) and gibberellic acid as the second factor at four levels (0, 100, 200, and 300 mg L⁻¹) were applied in a pot experiment outdoor under a factorial experiment with a completely randomized design, 4 replications in each treatment (4 pots in each replication). The seeds were planted in late summer. Then, approximately 7 cm long seedlings with six leaflets were transferred to pots. Plants were treated with gibberellic acid and topping 15 to 20 days after transplanting. Foliar spraying was carried out at three stages with 10 days’ intervals. Distilled water was sprayed on control plants. Results showed that using of gibberellic acid combined with a topping treatment increased the amount of chlorophyll index, plant height, length, and lateral roots volume. The number of opened flowers, bud and stem diameter had the highest performance at 120 days after spraying with 100 mg L⁻¹ gibberellic acid. Therefore, topping combined with gibberellic acid at the concentration of 100 mg L⁻¹ increased flowering and most other characteristics studied.

Keywords: Chlorophyll, Gibberellic acid, Opened flowers, Topping, Transplant.